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Alternative polyadenylation (APA) is a molecular process that generates diversity at

the 3’ end of RNA polymerase II transcripts from over 60% of human genes. APA

and microRNA regulation are both mechanisms of post-transcriptional regulation

of gene expression. As a key molecular mechanism, Alternative polyadenylation

often results in mRNA isoforms with the same coding sequence but different

lengths of 3’ UTRs, while microRNAs regulate gene expression by binding to

specific mRNA 3’ UTRs. Nudix Hydrolase 21 (NUDT21) is a crucial mediator

involved in alternative polyadenylation (APA). Different studies have reported a

dual role of NUDT21 in cancer (both oncogenic and tumor suppressor). The

present review focuses on the functions of APA, miRNA and their interaction and

roles in development of different types of tumors.NUDT21 mediated 3’ UTR-APA

changes can be used to generate specific signatures that can be used as potential

biomarkers in development and disease. Due to the emerging role of NUDT21 as a

regulator of the aforementioned RNA processing events, modulation of NUDT21

levels may be a novel viable therapeutic approach.

KEYWORDS
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Introduction

Cancer ranks as a leading cause of death and an important barrier to increasing life

expectancy in every country of the world. According to the GLOBOCAN 2020 estimates of

cancer incidence and mortality produced by the International Agency for Research on

Cancer, worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding Non-

melanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding Non-

melanoma skin cancer) occurred in 2020 (1). The low survival rate of cancer is mainly due to
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the high invasion rate and easy metastasis of cancer cells in its

development process, which makes it difficult to diagnose early in

clinical work. Therefore, it is urgent to find out the mechanism of

invasion and metastasis of cancer. The initiation and progression of

cancer have long been considered as a result of the accumulation

of genetic mutation, by which oncogenes are activated and/or tumor

suppressor genes are inactivated. Recent studies demonstrated that

alternative polyadenylation (APA) activates oncogenes without

genetic mutations and facilitates cancer transformation (2). APA is

emerging as a novel mechanism of gene expression regulation in

normal and in disease states. Polyadenylation, a cotranscriptional

process, was first identified in the nuclear extracts of calf thymus as

early as the 1960s (3). Cleavage and polyadenylation are RNA

maturation events that cut and add an oligonucleotide (DA) tail to

the 3’ end of the nascent transcript (4, 5). This processing is to prevent

mRNAs from degradation and to increase their stability. Previous

studies have indicated that more than half of human genes possess

multiple polyadenylation sites,called alternative polyadenylation

(APA), which may produce mRNA isoforms with different protein-

coding regions or 3’UTRs of variable length (when APA occurs in the

last exon) (6). However microRNAs have been shown to be a very

important post-transcriptional regulator of gene expression. It can

regulate gene expression by complementarily binding to recognition

sequences, mostly 6-8 nt, in the 3’ untranslated regions (3’ UTR) of

their target mRNAs, thus inducing mRNA degradation and/or

blocking mRNA translation. Moreover, several microRNAs have

been shown to be expressed abnormally in many cancer types,

indicating that microRNA is closely related to carcinogenesis (7).

In the last three decades, thousands of papers have supported the

existence of a class of small ncRNAs termed microRNAs (miRNAs)

that have biologically relevant roles in gene regulation (8). MiRNAs

are defined as short non-coding RNAs~22 nucleotides long, present

in all eukaryotic cells, and highly conserved during evolution.

Investigators have implicated them in many biological processes,

including metabolism, cell cycle, development, differentiation, and

apoptosis (9). MiRNAs contribute to both malignant and benign

diseases (9). There is mounting evidence that miRNAs repress gene

expression through translational repression pathways as well as

through mRNA degradation (8, 10). Due to the partial

complementarity to their targets, miRNAs are capable of targeting

multiple genes, often in multiple sites, and some mRNAs have

multiple binding sites for different miRNAs (11). It is noteworthy

that Brumbaugh et al. have shown that post-transcriptional regulation

plays a key role in reprogramming, transdifferentiation, and stem/

progenitor cell differentiation.NUDT21 is a highly conserved

hydrolase, which constitutes a subunit of the CFIm complex

required for 3’ RNA splicing and polyadenylation.Mechanistically,

NUDT21 suppression exerts its effect on cell fate by inducing a

widespread switch of APA patterns in over 1,500 transcripts (12). At

present, studies have shown that NUDT21 is involved in the

occurrence and development of many kinds of tumors, including

glioblcomplementarily astoma (13), cervical cancer (14), breast cancer

(15, 16), bladder cancer (17), pancreatic ductal adenocarcinoma (18),

small cell lung cancer (19), gastric tumorigenesis (20). The lack of

understanding of the mechanisms and regulation of APA, miRNA

and their interaction and roles has underscored the need for further

research regarding their role in cancer and other diseases.This paper
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will describe the impact on tumor from the relationship between

miRNA, APA and NUDT21.
APA process of gene expression

Each segment of gene expression with genetic information

includes two steps: transcription and translation, that is, a DNA

strand is used as a template for transcription into mRNA, and mature

mRNA is translated into protein or other products. In the process of

transcription, when a gene is transcribed into a precursor mRNA by

RNA polymerase II, it has to go through multiple processing steps to

become a mature mRNA, which is the key step of transcription. The

formation of mature mRNA mainly involves 5’ terminal capping,

splicing and 3’ terminal polyadenylation (21). Most eukaryotic

mRNA precursors (premRNAs) must undergo extensive processing,

including cleavage and polyadenylation at the 3’-end. Processing at

the 3’-end is controlled by sequence elements in the pre-mRNA (cis

elements) as well as protein factors (22). The 3’-end processing

machinery also has important roles in transcription and splicing.

Non coding RNA (ncRNA) is usually not translated into protein

RNA, including miRNA, lncRNA and circle RNA (23), which can

regulate mRNA expression at the transcriptional and post

transcriptional levels (24).

MicroRNAs (miRNAs) are a group of highly conserved small

non-coding RNAs, with a vital role in regulating the expression of

protein coding genes, and could function either as oncogenes

(oncomiRs) or tumor suppressors. MiRNAs are key players

participating in different stages of the signal transduction process

(5). They function by targeting several mRNAs affecting a multitude

of transcripts to control cellular metabolisms; therefore, their

dysregulation influences numerous cancer relevant processes such

as proliferation, differentiation, apoptosis, and metastasis (25). They

function to stabilize mRNA transcripts via post-transcriptional gene

silencing through inhibiting the translational process of their target

mRNAs via binding partially or fully to complementary sequences of

mRNA 3′-untranslated region (3′ UTR) (26). Owing to the genomic

events including mutations, deletions, amplifications, or

transcriptional changes, miRNAs are dysregulated in several

diseases including cancer (27). In the processing of the 3’ termini,

the 3’ end of nascent mRNA is cleaved, followed by addition of a poly

(A) tail (i .e. , polyadenylation) (28). Both cleavage and

polyadenylation occur at polyadenylation sites (PASs) which are

located within the 3’ untranslated regions (3’ UTRs), introns, or

internal exons (29, 30). Most eukaryotic genes contain multiple PASs.

A conserved hexameric sequence AAUAAA (31), occurring upstream

of the PASs, contains the most important signal (i.e., poly(A) signal)

of pre-mRNA cleavage and polyadenylation. Both this canonical poly

(A) signal and the PASs are widespread in eukaryotic mRNA.

According to the analysis, the status of 3’ UTRs do not affect their

own RNA level. Instead, they significantly influence their binding

RBP’s downstream targets. However, it is still possible that the

changed 3’ UTRs might affect their protein translation even though

they not affect mRNA level directly (32). Alternative poly(A) sites can

be located in the last or 3’-most exon, giving rise to mRNAs with

variable 3’-untranslated region (3’-UTR), or in a different exon,

resulting in protein products that vary at the C-terminus (33).
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Polyadenylation of eukaryotic mRNA occurs in a step-wise process,

which includes a specific cleavage at the 3’ end of nascent mRNA

followed by an addition of a poly(A) tail. Six factors, namely CPSF,

CstF, CFIm, CFIIm (cleavage factor II), PAP (poly(A) polymerase)

and PABII (poly(A) binding protein II) have been characterized to

facilitate the 3’ end processing (34, 35). The cleavage reaction requires

recognition by CPSF of AAUAAA hexamer upstream of the cleavage

site and by CstF of degenerate GU- and U-rich sequences

downstream of the cleavage site. CFIm is an essential pre-mRNA 3’

end processing factor unique to metazoans, which facilitates assembly

of 3’ end processing factors on pre-mRNA in vitro (36). 3′ UTRs
contain regulatory element binding sites of miRNA and RNA binding

protein, which allow the regulation of these genes and provide an

important gene expression regulatory layer. Different lengths of 3’

UTR can lead to the inclusion or deletion of cis regulatory elements

(miRNA and RNA binding protein) binding sites, thus affecting the

stability, transport and translation efficiency of mRNA. It is worth

noting that some fast-growing cell populations (including cancer

cells) prefer to generate mRNA with shorter 3’ UTR by APA

process, while static or differentiated cell populations tend to

generate mRNA with longer 3’ UTR (37, 38). Studies have shown

that the number of proteins translated by an mRNA depends on its 3’

UTR length, and shorter 3’ UTR transcripts can produce higher

protein levels. When APA produces the same protein, the production

of protein will also be affected by the increase or decrease of regulatory

elements in 3’UTR. In a word, APA promotes the complexity of RNA

structure and diversity of RNA function, which complicates the

transmission of genetic information from genome to phenotype

Group (39, 40). The diverse 3′ UTRs generated by APA may confer

different stability, translation efficiency, or subcellular localization to

the mRNA isoforms (41).
miRNA, APA and cancer

At present, many studies have found that polyadenylation is an

RNA-processing mechanism that generates distinct 3’-termini on

messenger RNAs, producing messenger RNA isoforms. Different

factors influence the initiation and development of this process. All

forms of APA (both splicing-APA and tandem UTR-APA) involve

changing the position of the poly(A) tail making the identity of the 3′-
UTR different between each mRNA isoform (42). The majority of the

3′-UTR changes are quite likely to be impactful because an estimated

70% of protein-coding genes in humans have conserved microRNA

(miRNA) target sites and ~11% have AU-rich elements (AREs)

within their 3′-UTRs (43–45). Over the past decade, significant

attention has been focused on the role that 3′-UTR localized

microRNA-binding sites and AREs play in modulating gene

expression of protein-coding genes (46, 47). Up to now, at the

genomic level, a number of single-nucleotide polymorphisms have

been identified that disrupt miRNA-binding sites in the 3′-UTRs of
genes associated with increased cancer risk and poor survival (48). As

we know, 3′-end polyadenylation is a critical step of eukaryotic

mRNA processing to maturation (49). Alternative polyadenylation

(APA) generates multiple mRNA isoforms, among which the shorter

ones can escape from translation repression or mRNA degradation

mediated by microRNAs (miRNAs) or other RNA regulatory
Frontiers in Oncology 03
elements within its 3′-UTRs (50). Recently, shortening of mRNA

3′-UTRs has been reported to be involved in the pathogenesis and

progression of certain malignancies (39, 44, 46). A prevailing

hypothesis is that it induces proto-oncogene expression in cis

through escaping microRNA-mediated repression (51). Their

results suggest a major role of 3’ UTR shortening in repressing

tumor-suppressor genes in trans by disrupting ceRNA crosstalk,

rather than inducing proto-oncogenes in cis (51, 52).

1. The role of APA as RNA regulation process has been reported

in various human physiological conditions and diseases. Transcripts

with longer 3′ UTRs were observed during embryonic development

(53) and neuron differentiation (54), as well as the development of the

central nervous system (55, 56). Several recent studies have shown

that global 3′ UTR shortening is present in malignancies (39, 57). The

global 3’UTR shortening landscape and 3’UTR shortening of specific

genes could have opposite effect thus when we discuss about the

impact of Nudt21 on tumor growth it should be evaluated on a case by

case basis. In addition, APA plays an important role in cellular

processes, including cell proliferation (58, 59), cell fate

determination (12). The consequences of APA can be significant,

with effects on post-transcriptional gene regulation, including mRNA

stability, translation, nuclear export, and cellular localization (60).

Many studies have found that APA process is closely related to the

occurrence and development of tumors. As mentioned earlier,

Rehfeld et al. used high-throughput sequencing data to map poly

(A) sites and characterize polyadenylation genome-wide in three

small intestinal neuroendocrine tumors(SI-NETs) and a reference

sample. In the tumors, 16 genes showed significant changes of APA

pattern, which lead to either the 3′ truncation of mRNA coding

regions or 3′ untranslated regions. Among these, 11 genes had been

previously associated with cancer, with 4 genes being known tumor

suppressors: DCC, PDZD2, MAGI1, and DACT2 (61). Li et al. in

2020 identified that the 3′-UTR shortening of fibronectin type III

domain containing 3B (FNDC3B) mRNA mediated its

overexpression in Nasopharyngeal carcinoma(NPC)and promoted

NPC progression by targeting myosin heavy chain 9 (MYH9) (62).

This newly identified FNDC3B-MYH9-Wnt/b-catenin axis could

represent potential targets for individualized treatment in NPC.

Meanwhile, another study showed that the use of tandem APA sites

was prevalent in NPC, and numerous genes with APA-switching

events were discovered (63) In total, they identified 195 genes with

significant differences in the tandem 3′UTR length between NPC and

normal nasopharyngeal epithelial tissue (NNET): including 119 genes

switching to distal poly (A) sites and 76 genes switching to proximal

poly (A) sites. Several gene ontology (GO) terms were enriched in the

list of genes with switched APA sites, including regulation of cell

migration, macromolecule catabolic process, protein catabolic

process, proteolysis, small conjugating protein ligase activity, and

ubiquitin-protein ligase activity. Lai et al. found that the new mRNA

isoforms in MKN28 cell line contained shorter 3’UTR compared with

MKN45 and AGS cell lines (64). MKN28 is a kind of gastric

adenocarcinoma with lymph node metastasis, which is more

malignant than the other two gastric cancer cell lines. This result

suggests that the new isoforms containing shorter 3’UTRmRNAmay

be closely related to the malignant degree of the tumor. Similarly, the

3’ UTR of SEC11A gene was significantly shorter than that of normal

cells, but it was previously reported that SEC11A gene was
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overexpressed in gastric cancer (65). Fu et al. found that the

shortening of 3’ UTR caused the deletion of miRNA recognition

sites, resulting in gene overexpression (66). Therefore, the

overexpression of SEC11A in gastric cancer cells may be related to

the emerging APA sites. In 2021, Venkat et al. reported widespread,

recurrent, and functionally relevant 3′-UTR alterations associated

with gene expression changes of known and newly identified

pancreatic ductal adenocarcinoma (PDAC) growth-promoting

genes and experimentally validate the effects of these APA events

on protein expression (67). They found enrichment for APA events in

genes associated with known PDAC pathways, loss of tumor-

suppressive miRNA binding sites, and increased heterogeneity in

3′-UTR forms of metabolic genes. According to the researches, Ki-67

is an independent prognostic factor in early breast cancer (68) and in

neoadjuvant therapy (69). Yan et al. identified a novel post-

transcriptional mechanism, involving APA and miRNA, that

underlies the elevated expression of Ki-67 in breast cancer (70).

The results have shown that breast cancer cells preferentially

express Ki-67 mRNA isoforms with short 3’UTRs, and the

expression of shorter Ki-67 mRNAs leads to an increase in Ki-67

mRNA stability and translational efficiency. In all, Ki-67 promotes the

proliferation and migration of breast cancer by replacing the

interaction between polyadenylation (APA) and microRNA. It has

been known that the expression ratio between long isoforms and

short isoforms (LSR) of overall genes is variable across different

tissues or cell types (71, 72). Interestingly, Sandberg et al. found

that the ratio has a strong negative correlation with cell proliferative

state (50). In addition, cancer cells exhibit significantly lower ratios

than normal tissues and untransformed cells (46). Liaw et al. retrieved

public APA annotations and isoform expression profiles of breast

cancer and normal cells from a high-throughput sequencing method

study specific for the mRNA 3′end (73). Combining microRNA

expression profiles, they performed statistical analysis to reveal and

estimate microRNA regulation on APA patterns in a global scale.

They found that: 1). The amount of microRNA target sites in the

alternative UTR (aUTR), the region only present in long isoforms,

could affect the LSR of the target genes; 2). The genes whose aUTRs

were targeted by up-regulated microRNAs in cancer cells had an

overall lower LSR; 3). The target sites of up-regulated microRNAs

tended to appear in aUTRs. Finally, they demonstrated that the

amount of target sites for up-regulated microRNAs in aUTRs

correlated with the LSR change between cancer and normal cells.

The results indicate that up-regulation of microRNAs might cause

lower LSRs of target genes in cancer cells through degradation of their

long isoforms. Singh et al. suggested that alternative mRNA

processing, particularly APA, can be a powerful molecular

biomarker with prognostic potential (74). By the global shortening

of 3’ UTRs in vitro and in vivo,the 3’ UTRs show distinct features in

primary cancer samples (75). With shortened 3’ UTRs, functional

consequences have been produced by genes, which has led to greater

mRNA stability and increased protein output (46). Through forcing

the expression of shorter 3’ UTR isoforms, phenotypic consequences

were observed, which suggests that 3’ UTR shortening is associated

with cell proliferation, including T-cell activation or early

embryogenesis (50, 53). WANG et al. found a significantly greater

number of genes with shortened 3’ UTRs in the samples with luminal
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B breast cancer (76). According to the research, there are 64

significant differentially expressed miRNAs (DERs) in colorectal

cancer (CRC) patients (77). Their target genes were related to cell

adhesion and transcription regulation and were prevailingly involved

in the CRC-related pathway. Integrative analysis of the miRNA and

APA profi le revealed 16 DERs were correlated with 12

polyadenylation factors, and six of them were significantly

differently expressed in CRC. Meanwhile they also found four DERs

that lost binding sites due to APA and showed a positive correlation

between the miRNA and gene expression. The above data show that

miRNAs regulated APA by modulating key polyadenylation factors,

and several miRNAs lost their suppression on mRNA due to APA.

The current study performed a systematic identification and analysis

of survival-associated genes from the perspectives of AS, APA and

DNA methylation in gynecology cancers (78). The results indicate

that the mRNA expression levels of CIRBP and INPP5K are

significantly downregulated and associated with the clinical

outcomes of patients with cervical squamous cell carcinoma and

endocervical adenocarcinoma (CESC), uterine corpus endometrial

carcinoma (UCEC) and ovarian serous cystadenocarcinoma (OV).

Further enrichment analysis confirmed that these prognostic genes

possibly modulate cancer progression by inducing T cell activation.

Similarly, it has been identified that remarkably consistent alternative

3’ UTR isoforms between the two cohorts, most of which were

shortened in lung adenocarcinoma (LUAD) (79). The research

further suggested that aberrant usage of proximal poly(A) sites

resulted in escape from miRNA binding, thus increasing gene

expression. Notably, it also showed that the 3’ UTR lengths of the

mRNA transcriptome were correlated with the expression levels of

APA factors. These results suggest that APA events, both 3′ -UTR
shortening and lengthening, play important roles in cancer etiology

and treatments.
NUDT21 and APA and tumor

NUDT21 (also known as CPSF5 and CFIm25) is a highly

conserved hydrolase, which constitutes a subunit of the CFIm

complex required for 3’ RNA splicing and polyadenylation (80).

Studies have found that silencing NUDT21 can lead to changes in

the utilization of poly(A) sites in other genes, thus promoting the

selection of proximal poly(A) sites and ultimately shortening the 3’

UTRs of cell mRNA (81, 82). Analysis of NUDT21 target showed that

3’ UTRs of corresponding mRNA enriched multiple miRNA binding

sites. When NUDT21 was knocked out, the Poly(A) sites in JMJDC1,

RYBP andWDR5 target genes shifted from the far end to the near end,

resulting in the loss of miR-34C andmiR-29A binding target sequences.

This finding confirmed that escaping from miRNA mediated

degradation is an important mechanism of NUDT21 silencing

increasing cell reprogramming. NUDT21 posttranscriptional

regulation of APA plays a key role in gene reprogramming, stem cell

directed differentiation and tumor progression (12). NUDT21, also

referred to as cleavage and polyadenylation specificity factor subunit 5

(CPSF5), is a subunit of the cleavage factor Im (CFIm) complex

required for 3′-UTR cleavage and polyadenylation. Recently, the

mammalian cleavage factor I 25-kD subunit (CFIm25; encoded by
frontiersin.org
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the gene Nudt21) was discovered as a master regulator of APA among

15 cleavage and polyadenylation factors (81, 83). NUDT 21 is

responsible for sequence-specific recognition of the element UGUA

upstream of the poly (A) site (PAS), and thus plays a determinant role

in APA (84, 85). In mammals, the factors that are required for mRNA

maturation in vitro include the cleavage and polyadenylation specificity

factor (CPSF), cleavage stimulatory factor (CstF), cleavage factors Im

and IIm (CFIm and CFIIm), poly(A) polymerase (PAP) and nuclear

poly(A) binding protein (PABN2). The cleavage reaction requires

CPSF, CstF, CFIm, CFIIm, and PAP. CPSF binds the highly

conserved AAUAAA hexamer upstream of the cleavage site, and

CstF binds the GU/U-rich sequence downstream of the cleavage site

(86). CFIm25 can regulate the selection of poly(A) site in this way,

promote the assembly of pre-mRNA 3′-end processing complex, and

improve the splicing rate and efficiency of polyadenylate site in vitro

(87). As a key factor in alternative polyadenylation, cleavage factor I

m25 plays an important role in messenger RNA maturation and cell

signal transduction. Moreover, by regulating the process of alternative

polyadenylation, it can inhibit the proliferation, invasion, and

metastasis of a variety of tumors. Sun X et al. discovered cleavage

factor I m25 also acts as an oncogene in select tumors (88). Recently, a

unbiased shRNA screen revealed that NUDT21 expression is a major

barrier for creation of iPS cells from fibroblasts (12). In this context,

downregulation of NUDT21 will induce broad shortening of 3′-UTRs
enhancing differentiation of cells leading to a stem-like state (12). It has

been shown that CFIm25 stimulates the use of PASs that are enriched

in UGUA elements, which are most prevalent at distal PASs (dPAS)

(12). Research found that depletion of NUDT21 not only causes

increased pPAS usage but also increases cell proliferation and

enhances glioblastoma(GBM) cell tumorigenicity (83, 89).

Mechanistically, NUDT21 suppression exerts its effect on cell fate by

inducing a widespread switch of APA patterns in over 1,500 transcripts

(12). Inhibition of NUDT21 can enhance the induction of pluripotent

stem cells, promote the transformation of trophoblast stem cells, and

affect the differentiation of myeloid precursor and embryonic stem cells,

indicating that NUDT21 plays a broad role in the process of cell

differentiation. APA of the poly (A) splice site at the 3′-end of the

mRNA precursor was carried out in different environments to produce

mature mRNA with different 3′ untranslated region (3′ UTR) or

different coding ability. Different lengths of 3′ UTR can cause

changes of RNA binding protein or microRNA binding site, and

then affect the localization, stability and translation of mRNA.

Related studies have shown that NUDT21 can guide APA to regulate

3′ UTR length by combining proximal cleavage and polyadenylation

sites (90). NUDT21-mediated alternative polyadenylation has been

shown to influence various cell fate decision processes as well as

tumorigenesis (12, 83). In particular, depletion of NUDT21 leads to

global 3′ UTR shortening, which has been linked to increased

tumorigenesis and tumor development (91). Saeko et al.

demonstrated the cytoplasmic localization of NUDT21 and its

unexpected role in regulation of antiviral proteins in the cytoplasm in

addition to its well-established localization to nucleus and function in

alternative polyadenylation (92). According to the research, Masamha

et al. demonstrated that downregulation of NUDT21 enhanced the

tumorigenic properties and increased the tumor size, whereas the

upregulation of NUDT21 inhibited the growth and tumorigenicity of

GBM cells (83). In hepatocellular carcinoma, Sun et al. showed that
Frontiers in Oncology 05
downregulation of NUDT21 led to enhanced cancer cell proliferation

via shortening the 3′ UTR of several oncogenes (93). Meanwhile,

NUDT21 can function as an oncogene under certain conditions. In

2020, Xing et al. found that NUDT21 was remarkably downregulated in

Cervical Cancer(CxCa) tissues and cells, and that the aggressive

phenotype of CxCa cells, including proliferation, migration, and

invasion were inhibited by NUDT21 overexpression; conversely,

silencing NUDT21 yielded the opposite effect (14). 3′-UTR

shortening (3′ US) was reported widespread in diverse types of

human cancers (39). Using PRIMATA-APA on the cancer genome

atlas (TCGA) breast cancer data, Kim et al. found that the global APA

events collectively increase or decrease the target sites of the miRNAs

that are known to regulate cancer etiology and treatments (15). Their

results were replicated in a reanalysis of NUDT21 knockdown (KD)

data. NUDT21 knockdown (KD) was shown to induce global 3′ US
events and promote tumorigenesis in vivo and in vitro by removing

miRNA target sites to repress tumor suppressor genes (83). They also

found that although the NUDT21 KD in HeLa Cells and the TCGA

breast cancer carry a distinct set of 3′ US genes, they change the target
sites of the common miRNAs (tamoMiRNA), suggesting that the APA

initiated tumorigenesis is attributable to the miRNA target site changes,

not the APA events themselves (51). Weng et al. demonstrated a

consistent downregulation of CFIm25 in skin samples collected from

systemic sclerosis patients, and this downregulation was mainly

detected in (myo)fibroblasts (94). RNA-seq detected significant APA

events in human skin fibroblasts upon CFIm25 KD and identified

important fibrotic TGFb-regulated genes targeted by CFIm25. Previous

studies have shown that the production of a eukaryotic protein-coding

messenger RNA (mRNA) requires the recognition of a specific poly(A)

site sequence at the end of the gene. The deletion of CFIm25 or CFIm68

promotes the use of a proximal poly(A) site, thereby affecting the

function of the 3′ untranslated region (3′UTR) of many mRNAs (95).

In addition, Elkon et al. suggested that when located in the last or 3′-
most exons, alternative poly(A) sites could lead to the production of

mRNAs with variable 3′-untranslated regions, resulting in protein

products that vary at the C-terminus (96). It suggests that CFIm

generally promotes the recognition of distal poly(A) sites. Related

studies have shown that the misregulation of CFIm is associated with

the tumorigenicity of glioblastoma and some neuropsychiatric diseases

by altering the length of the 3′UTR ofmRNA (83). In 2020, Wang et al.

found that NUDT21 might play a tumor-suppressive role by inhibiting

cell proliferation and invasion via the NUDT21/CPSF6 signaling

pathway in breast cancer cells (16). In HeLa Cells, it was found that

the most significant poly (A) site transition was found after NUDT21

knockout, and abnormal expression of several oncogenes including

cyclin D1 (83). Recently, Chu et al. have identified that NUDT21

regulates the APA of a broad spectrum of mRNA in GBM, with target

genes enriched in the Ras signaling pathway (13). They also find the

activated oncogenic function of Pak1 is potentiated by NUDT21-

regulated 3′-UTR shortening and therefore can contribute to GBM

development and progression. Further, their results reveal that both

NUDT21 and Pak1 may serve as a biomarker for predicting prognosis

of GBM patients and imply an important role in GBM development

and progression. Moreover, NUDT21 expression is reduced in low-

grade glioma(LGG) grade II and grade III, and all four GBM subtypes

relative to normal brain tissue. Collectively, these results suggest that

reduction in NUDT21 is an important component of GBM tumor
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progression. The research in 2019 for the first time provide novel

insight into the crucial role played by NUDT21 in regulation of APA-

mediated 3′-UTR alterations, which further promote bladder cancer

(BC) progression (17). Here they reported NUDT21 inhibits cell

proliferation, migration, and invasion, and represses tumorigenicity

in BC. It characterized NUDT21-regulated genes with shortened 3′-
UTRs, and found that ANXA2 and LIMK2 contribute to NUDT21-

mediated tumor suppression by augmentingWnt and NF-kB signaling.

Recently, it has been reported that loss of NUDT21 increased usage of

proximal polyadenylation sites and produced shorter 3′UTR in various

oncogenes, such as PSMB2 and CXXC5, which had fewer miRNA

binding sites, escaped from miRNA-mediated gene repression, and

further promoted hepatocellular cancer(HCC)cell proliferation and

invasion (2, 93). In addition, Sun et al. reported that loss of NUDT21

shortens the 3′-UTR of various oncogenes (mainly RAB3IP,

TMEM267, UBA5, and CCT5) in HCC cells, leading to unregulated

tumor cell proliferation (93). In hematologic malignancy, silencing

NUDT21 inhibits proliferation and promotes apoptosis of human

K562 leukemia cells through regulation of p-ERK expression (97).

Similarly, In Huang’s study, they found KD of CFIm25 promoted its 3′
UTR shortening (98). The shortened transcripts were sufficient to

increase its protein turnover without increasing its transcript level,

suggesting that 3′ UTR shortening of IGF1R could be a mechanisms

that promotes its protein expression in Non-small cell lung cancer

(NSCLC). This mechanism was further confirmed by RNA-seq data

from the Cancer Genome Atlas which showed a significant 3′ UTR
shortening of IGF1R in lung cancer samples compared to normal

donors.Traditionally, CFIm25 is known to facilitate 3’ end formation of

pre-mRNAs resulting in the formation of polyadenylated transcripts.

Recent studies suggest that CFIm25 may be involved in the cyclization

and hence generation of circular RNAs (circRNAs) that contain UGUA

motifs (99). These circRNAs act as competing endogenous RNAs

(ceRNAs) that disrupt the ceRNA-miRNA-mRNA axis. Different

studies have reported a dual role of CFIm25 in cancer (both

oncogenic and tumor suppressor). microRNAs (miRNAs) may be

involved in CFIm25 function as well as competing endogenous

RNAs (ceRNAs) (100). Last year Zhu et al. published that NUDT21

promoted cell proliferation, colony formation, cell migration and

invasion through modulating SGPP2 in human gastric cancer (101).

They found that NUDT21 expression was positively correlated with

tumor size, lymph node metastasis and clinical stage in gastric cancer

patients. High level of NUDT21 was associated with poor overall

survival (OS) rates in gastric cancer patients. A recent work

published by Witkowski et al. on Nature Immunology also reported

the negative role of Nudt21 in chimeric antigen receptor T cell therapy

(CAR-T) (102). They foung that NUDT21 limits CD19 levels through

alternative mRNA polyad xsenylation in B cell acute lymphoblastic

leukemia.Nudt21 has been reported to both prohibit and promote

tumor progression.In many cancers, NUDT21 acts as a tumor

suppressor. However, there are some cancers where NUDT21 has the

opposite effect. These studies indicate the mechanism underlying

NUDT21-mediated tumor suppression may be cancer specific and

have different features in different malignancies. Because of the key role

of APA in mRNA output, we hypothesized whether NUDT21 could

affect the occurrence and development of oral cancer by controlling the

APA process.
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Conclusion

Revealing the molecular mechanism of malignant tumor

pathogenesis and progression may help to develop new and

effective early detection, diagnosis and prediction strategies. The

occurrence of cancer is a multifactorial process, involving many

genetic and epigenetic processes, which can change the functions of

tumor suppressor genes, oncogenes and other related molecules.

Malignant tumors have difficulty in early diagnosis, high metastasis

rate and poor prognosis. In recent years, the search for tumor related

epigenetic biomarkers has shown an upward trend, especially the

study of miRNA and APA. Herein above statement, we need to find

novel regulatory molecules and epigenetic biomarkers. With the

research of tumor, more and more tumor related genes and

molecular mechanisms have been gradually explored, such as

NUDT21 and APA. Up to date, it has been reported that the APA

process mediated by NUDT21 is closely related to the biological

behavior of many tumors. Due to the lack of current knowledge

regarding the mechanisms of action and regulation of NUDT21 and

alternative polyadenylation, it is necessary to further examine their

role in cancer as well as in other diseases. This provides a new idea for

us to study tumor. Studying the expression of NUDT21 mediated

APA process in cancers may become an attractive field, which will

bring new markers for cancer diagnosis, prognosis and new

therapeutic targets. The significance of NUDT21 and APA in

tumorigenesis, metastasis and progression needs to be studied. They

may be important regulatory molecules in the occurrence and

development of tumors. The discovery of this epigenetic biomarker

may have an impact on the early diagnosis and prognosis of

tumor patients.
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