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Purinergic signaling: Diverse
effects and therapeutic potential
in cancer
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Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER),
Chandigarh, India
Regardless of improved biological insights and therapeutic advances, cancer is

consuming multiple lives worldwide. Cancer is a complex disease with diverse

cellular, metabolic, and physiological parameters as its hallmarks. This instigates a

need to uncover the latest therapeutic targets to advance the treatment of cancer

patients. Purines are building blocks of nucleic acids but also function as metabolic

intermediates and messengers, as part of a signaling pathway known as purinergic

signaling. Purinergic signaling comprises primarily adenosine triphosphate (ATP)

and adenosine (ADO), their analogous membrane receptors, and a set of

ectonucleotidases, and has both short- and long-term (trophic) effects. Cells

release ATP and ADO to modulate cellular function in an autocrine or paracrine

manner by activating membrane-localized purinergic receptors (purinoceptors, P1

and P2). P1 receptors are selective for ADO and have four recognized subtypes—

A1, A2A, A2B, and A3. Purines and pyrimidines activate P2 receptors, and the P2X

subtype is ligand-gated ion channel receptors. P2X has seven subtypes (P2X1–7)

and forms homo- and heterotrimers. The P2Y subtype is a G protein-coupled

receptor with eight subtypes (P2Y1/2/4/6/11/12/13/14). ATP, its derivatives, and

purinoceptors are widely distributed in all cell types for cellular communication,

and any imbalance compromises the homeostasis of the cell. Neurotransmission,

neuromodulation, and secretion employ fast purinergic signaling, while trophic

purinergic signaling regulates cell metabolism, proliferation, differentiation,

survival, migration, invasion, and immune response during tumor progression.

Thus, purinergic signaling is a prospective therapeutic target in cancer and

therapy resistance.
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Introduction

Diverse cellular, molecular, and metabolic adequacies underlie cancer’s pathology (1–3).

Aerobic glycolysis or the Warburg effect is a prominent metabolic feature in tumors (4, 5).

Cancer cells acquire ATP from glycolysis preferably, in spite of ample oxygen availability and

mitochondrial oxidative phosphorylation fitness (6).
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Cancer cells are committed to replication and constantly use

metabolic pathways to provide biomolecules and genetic material to

promote their undifferentiated and aggressive state (7). Cancer cells

constantly experience a “metabolic dilemma”: deciding whether to use

ATP to facilitate biosynthetic processes/reductive power (NADPH)

and biomolecules to synthesize membrane and genetic material (8).

Thus, understanding the multifaceted metabolic adaptations in cancer

is crucial to develop successful therapeutic approaches.

Purine nucleotides and nucleosides such as adenosine and ATP

regulate intracellular energy homeostasis, nucleotide synthesis, and

immune response (9, 10). Purines bind and activate plasmalemmal

purinoceptors as endogenous ligands in the cell and/or in nearby cells

and regulate extracellular signaling known as “purinergic signaling”

(11). The Hungarian physiologist Albert Szent-Györgyi first described

purines’ extracellular role, after he observed a temporary reduction in

heart rate in a guinea pig by purified adenine compounds (12). In

1972, Geoffrey Burnstock proposed ATP as a non-adrenergic, non-

cholinergic (NANC) neurotransmitter (11), but it seemed implausible

that cells will actively release ATP as a neurotransmitter if it is already

a ubiquitous intracellular molecular energy source (13). Adenine

nucleotides [ATP, adenosine diphosphate (ADP), and adenosine

(ADO)] function as signaling molecules (14) and modulate diverse

signaling pathways through specific membrane receptors (15). ATP

released through purinergic signaling activates both paracrine and

autocrine signaling (16) and ATP hydrolysis further generates

additional signaling molecules (17).
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Purinergic signaling

Purinergic signaling is a primitive evolutionary system (18), with

short-term effects in neurotransmission and neuromodulation (19).

Non-neuronal actions of purinergic signaling in mammals include

immune response, pain, platelet aggregation, acute inflammation,

exocrine and endocrine secretion, and endothelial-mediated

vasodilatation (20). Trophic effects of purinergic signaling on cell

proliferation, motility, and apoptosis mediate regeneration, wound

healing, and cancer (21, 22).

Perivascular sympathetic nerves release ATP as a co-transmitter

to cause smooth muscle contraction, whereas endothelial cells release

ATP due to shear stress and hypoxia to produce nitric oxide and

relaxation (23). Gentle mechanical distortion or hypoxia causes most

cell types to release ATP physiologically (Figure 1) (24). Intracellular

ATP is released via vesicular exocytosis, specific ATP binding cassette

(ABC) transporters, connexin hemichannels, pannexin 1 (Figure 1),

calcium homeostasis modulator (CALHM) channels, maxi-ion

channels (MACs), volume-regulated ion channels (VRACs), and

even purinergic (P2X7) receptors (Figure 1) (25, 26).

Extracellular ATP (exATP) either activates purinergic receptors

or gets hydrolyzed by ectonucleotidases (E-NTPDases—

ectonucleoside triphosphate diphosphohydrolases, CD-73-ecto-59-

nuc l eo t ida se , ENPP—ec tonuc l eo t idepyrophospha ta se /

phosphodiesterase, AP—alkaline phosphatases, and ecto-5′-
nucleotidase) (27–29). Ectonucleotidases thus limit ATP signaling
FIGURE 1

Purinergic signaling in cancer: Glycolysis and oxidative phosphorylation (OXPHOS) produce ATP in the cell, and it is released via cellular lysis, pannexin-1
(PNX-1) hemichannels, P2X7R, etc. to extracellular space. Cell membranes have several purine-hydrolyzing enzymes known as ectonucleotidases and
include ectonucleotide triphosphate diphosphohydrolases (E-NTPDases/CD39), ectonucleotide pyrophosphatase/phosphodiesterases (E-NPPs), alkaline
phosphatases (APs), and ecto-5’-nucleotidases (E-5’-NT/CD73). E-NTPDases hydrolyze exATP to ADP and also ADP to AMP. exATP activates ionotropic
P2X receptors (ligand-activated ion channels) and metabotropic P2Y receptors (members of GPCR superfamily). AMP is hydrolyzed to ADO by E-5’-NT
and APs. CD39 and CD73 hydrolyze exATP to ADP and AMP to ADO in cancer cells. ADP activates P2Y receptors and ADO activates P1 receptors
(member of the GPCR family). ADO is hydrolyzed to inosine (Ino) by ADA or transported back into the cell by nucleoside transporters (NTs). The binding
of purines to purinergic receptors turns on/off downstream signaling pathways. P1/P2Y receptor activation alters adenylate cyclase (AC) or phospholipase
C-b (PLC-b) activity via different G proteins (Gs and Gq are stimulatory receptors). Activation of P2X receptors induces ion fluxes (Na+, K+, and Ca2+). All
these actions alter the levels of secondary messengers like cAMP, inositol 1,4,5-trisphosphate (IP3), and Ca2+. IP3 binds to the IP3R receptors on the
endoplasmic reticulum (ER), causing Ca2+ release from the ER. The secondary messengers regulate downstream proteins like protein kinase C (PKC),
protein kinase A (PKA), cAMP response element-binding protein (CREB), androgen receptor (AR), mitogen-activated extracellular signal-regulated kinase
(MEK), p38, extracellular signal-regulated kinases (ERK), and activating transcription factor 2 (ATF2). Transcription factors CREB, AR, and ATF2 induce
gene expression for cancer development and progression.
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and produce additional ligands for purinergic receptors like ADP to

P2Y12 and adenosine to A2AR (A2-adenosine receptors) (30).

ATP has a minor role as a co-transmitter in a healthy human

bladder; however, the purinergic component increases to 40% nearly

during interstitial cystitis, neurogenic bladder, and outflow obstruction

(20, 31). Purinergic signaling has crucial participation in trauma,

ischemia, multiple sclerosis, amyotrophic lateral sclerosis, and

Alzheimer’s, Parkinson’s, and Huntington’s diseases (25, 32).

Purinergic signaling is also reported to be involved in mood

disorders, epilepsy, and neuropsychiatric diseases (33, 34).

Deregulation of purinergic signaling can lead to neurodegeneration,

rheumatic immune diseases, inflammation, and cancer (34, 35). Thus,

purinergic agents are being explored to treat disorders of the urinary

tract (36, 37), gut (38), bone (39, 40), cardiovascular system (41), kidney

(42, 43), reproductive system (44, 45), and cancer (46–51). Selective

agonists and antagonists of purinergic receptors play a role in the

development of thrombosis, stroke, osteoporosis, kidney failure, and

colitis (20, 52, 53), which are orally bio-available and stable in vivo.
Purinergic receptors

Purinergic receptors (purinoceptors) were first described as

membrane receptors in 1976 (54), which mediate potent

physiological actions of exATP on multiple cell types (55) including

stem cells (56–58). Purinoceptors were primarily distinguished into

two families—P1 and P2, where P1 mediates responses for adenosine

(ADO) and P2 mediates responses for ATP/adenosine 5′-diphosphate
(ADP) (59). P1 and P2 receptors mediate neurotransmission and

neuromodulation in the central nervous system (CNS) and functions

such as memory, feeding, locomotion, and cognition (60).

Early on, two subtypes of the P1 (adenosine) receptor were

recognized (61, 62), followed by four subtypes using P1 (adenosine)

receptors cloning and characterization (63). The P2 receptor was

dist inguished into two subtypes—P2X and P2Y—on a

pharmacological basis in 1985 (64). In 1993, P2Y was cloned as the

first G protein-coupled receptor (65, 66) and two P2X receptors were

cloned as ligand-gated ion channels in 1994 (67, 68). Presently, the

P2X receptor has seven and the P2Y receptor has eight recognized

subtypes, and these receptors are sensitive to both purines and

pyrimidines (15, 69, 70). Among the three purinergic receptors, i.e.,

P1, P2X, and P2Y, P1- and P2Y-mediated cell signaling events have

opposite effects in biological systems (71). Almost every cell type

expresses specific purinergic receptors and ectonucleotidases, and

experiences continuous fluctuations of intracellular ATP (iATP),

exATP, and ADO (72). A dissimilar set of purinoceptors and

ectonucleotidases in cells generate diverse cellular responses, and a

definite set of purinergic signaling components in a particular cell is

known as a “purinome” (73).
P1 receptors

Selective amplification and cloning were used to isolate

complementary DNAs (cDNAs) for two P1 receptor subtypes (A1

and A2) in 1989 (74), followed by the A3 subtype (75). Currently,

there are four P1 receptor subtypes—A1, A2A, A2B and A3 (63)—
Frontiers in Oncology 03
and A1 and A2A receptors have shown polymorphisms (76). P1

receptors are activated by ADO and belong to the G-protein-coupled

receptor (GPCR) superfamily (77). P1 receptors are activated by

extracellular adenosine (exADO) and AMP, and regulate adenylyl

cyclase (AC) (78). A2A and A2B receptors couple to Gs proteins,

stimulating increased levels of intracellular cAMP by AC activation,

whereas A1 and A3 receptors negatively coupled to AC via Gi/o

proteins and inhibit cAMP production (28, 70). Adenosine deaminase

(ADA) hydrolyzes exADO and hence regulates ADO-associated

signaling, and ADO is transported back into the cytosol by

nucleoside transporters (NTs) (49). P1 receptor subtypes arbitrate

physiological effects in the central nervous, cardiovascular, and

immune systems (79, 80) and many P1-specific agonists and

antagonists are identified and in use (Table 1) (133).
P2X receptors

P2X receptors are permeable ligand-gated cation channels

(LGICs), where homotrimeric or heterotrimeric complexes of

P2X1–P2X7 subunits form a trimer ion pore (69, 134, 135). P2X6R

can only function as part of a heteromeric complex (136–140),

whereas all other P2X subunits can assemble into homomeric or

heteromeric ion channels. P2X1–7 receptors’ amino (N-) and

carboxyl (C-) termini are intracellular and have binding motifs for

protein kinases (69, 141, 142). The intracellular N- and C-termini of

P2X receptors are linked to a large extracellular ligand-binding

domain (with 10 conserved cysteine residues) using two

transmembrane-spanning helices (TM1 and TM2) (143–145). TM1

assists with channel gating, while TM2 lines the ion pore (146).

Cloning of P2X-like receptors suggested ATP as an untimely

evolutionary extracellular signaling molecule and a natural ligand

for P2X receptors (147). ATP binds in the extracellular domain of

P2X receptor and elicits a global conformational change that opens

the channel for free cations’ movement in and out of the cell

(148, 149).

Alternative splicing of the human P2X7R gene produced different

isoforms with diverse cellular responses (150). P2X7R gene isoforms

A and B are ubiquitously expressed as functional ion channels (151).

P2X7A is a full-length variant, but the P2X7B isoform retains an

intron between exons 10 and 11 with a stop codon, thus producing a

shorter protein (152, 153). The truncated P2X7B lacks the C-terminal

tail, which is crucial to macropore opening; however, P2X7B is still

capable of opening the ion channel (153, 154).

P2X receptors mediate fast neurotransmission and at times are

located pre-junctionally to promote the amplified release of co-

transmitters, such as glutamate in primary afferent neuron

terminals in the spinal cord (155). Activation of P2X receptors

results in rapid membrane depolarization via Na+ and Ca+2 influx

and K+ efflux (Figure 1) (156). P2XRs do not discriminate between

Na+ and K+, but prefer the movement of Na+ down its

electrochemical gradient at resting membrane potentials (157).

P2XRs’ Ca2+ permeability is relative to Na+ (PCa/PNa), but varies

due to the subunit makeup of the functional channel (158). Thus,

P2XR activation results in Na+-mediated plasma membrane

depolarization and an increased free cytosolic Ca2+ concentration

([Ca2+]i), leading to action potential propagation and a myriad of Ca2
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TABLE 1 Clinical trial status and cancer studies of purinoceptors agonists and antagonists.

Target
receptor

Drug Cancer
type

Clinical
trial
phase

Recruitment
status

Clinical
trial

number
Cancer studies

Agonist Antagonist

A1

N6-Cyclopentyladenosine
(CPA)

Nil Nil Nil Nil
MCF-7 breast cancer cell line
(81), renal cell carcinoma (82)

R-isomer of N6
phenylisopropyladenosine
(R-PIA)

Nil Nil Nil Nil Human tumor cell lines (83)

1,3-Dipropyl-8-
cyclopentylxanthine
(DPCPX)

Nil Nil Nil Nil
MCF-7 breast cancer cell line
(81), renal cell carcinoma (82)

CGS15943 Nil Nil Nil Nil Breast cancer (84)

PSB36 Nil Nil Nil Nil
Cisplatin-resistant ovarian
cancer cells (85)

A2A

Regadenoson/CVT-3146
Breast cancer
High-grade
glioma

Nil
Phase 1

Completed
Active

NCT03505736
NCT03971734

KF17837 Nil Nil Nil Nil Human astroglioma cells (86)

SCH58261 Nil Nil Nil Nil PC9 xenograft model (87)

ZM241385 Nil Nil Nil Nil PC9 xenograft model (87)

A2B

Bay 60-6583 Nil Nil Nil Nil
Human glioma and breast
cancer cell lines (88), human
epithelial lung cells (89)

PSB-603 Nil Nil Nil Nil
Colorectal cancer cells (90),
head and neck squamous cell
carcinoma cells (91)

MRS1754 Nil Nil Nil Nil Renal cell carcinoma (92)

PSB1115 Nil Nil Nil Nil Melanoma (93)

Alloxazine Nil Nil Nil Nil MCF-7 breast cancer cells (94)

A3

2-Cl-IB-MECA/
Namodenoson/CF102

Advanced
hepatocellular
carcinoma
Advanced
hepatocellular
carcinoma
Hepatocellular
carcinoma
(HCC)

Phase III
Phase I
Phase II

Not yet
recruiting
Completed
Completed

NCT05201404
NCT00790218
NCT02128958

MRS1191 Nil Nil Nil Nil
Human small cell lung
carcinoma (95)

MRS1523 Nil Nil Nil Nil Melanoma cells (96)

VUF5574 Nil Nil Nil Nil
LNCaP and N1S1 cell lines
(97)

PSB10 Nil Nil Nil Nil Breast cancer (98)

MRS1220 Nil Nil Nil Nil
Glioblastoma stem-like cells
(99)

P2X1

BzATP
(benzoylbenzoyl-ATP,
2’(3’)-O-(4-benzoylbenzoyl)
adenosine 5’-triphosphate)

Nil Nil Nil Nil
Tumor-derived human
endothelial cells (TEC) (100)

NF449 Nil Nil Nil Nil Colorectal cancer cell line (101)

NF023 Nil Nil Nil Nil Anticancer compound (102)

(Continued)
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TABLE 1 Continued

Target
receptor

Drug Cancer
type

Clinical
trial
phase

Recruitment
status

Clinical
trial

number
Cancer studies

Agonist Antagonist

P2X2

PPADS
(pyridoxal
phosphate-6-azo
(benzene-2,4-
disulfonic acid))

Nil Nil Nil Nil
Hepatocellular carcinoma
(HCC) cell lines (103)

P2X3

AF353 Nil Nil Nil Nil Bone cancer pain (104)

A317491 Nil Nil Nil Nil
Cancer-induced bone pain
(105)

P2X4

Ivermectin Neoplasm Phase II Recruiting NCT02366884

CTP (cytidine 5′-
triphosphate)

Nil Nil Nil Nil Prostate cancer (106)

5-BDBD Nil Nil Nil Nil Prostate cancer (107)

PSB-12062 Nil Nil Nil Nil Prostate cancer (107)

PPADS Nil Nil Nil Nil
Human T47D breast cancer
cells (108)

Paroxetine Nil Nil Nil Nil Gastric cancer cell AGS (109)

P2X7
(P2Z)

BzATP
(benzoyl ATP)

Nil Nil Nil Nil
Human cervical cancer cells
(110), human HOS/MNNG
osteosarcoma cells (111)

KN62 Nil Nil Nil Nil Hepatoma cells (112)

AZ10606120 Nil Nil Nil Nil
Experimental neuroblastoma
(113)

A740003 Nil Nil Nil Nil
Experimental neuroblastoma
(113)

A438079 Nil Nil Nil Nil Colorectal cancer (114)

JNJ-47965567 Nil Nil Nil Nil
Human cervical cancer cells
(110)

BBG Nil Nil Nil Nil
Human high-grade gliomas
(115), glioma tumor (116)

P2Y1

MRS2365
((N)-methanocarba-
2MeSADP)

Nil Nil Nil Nil Prostate cancer (117)

ADPbS
(adenosine 5′-O-2-
thiodiphosphate)

Nil Nil Nil Nil THP-1 leukemia cells (118)

2-MeSADP
(2-methylthioadenosine 5′-
diphosphate)

Nil Nil Nil Nil Prostate cancer cells (119)

MRS2179
(N6-methyl-2′-
deoxyadenosine-
3′,5′-bisphosphate)

Nil Nil Nil Nil Breast cancer (120)

P2Y2

2-thio-UTP Nil Nil Nil Nil
MCF-7 breast cancer cells
(121)

Ap4A
(diadenosine 5′,5′′′-p1,p4-
tetraphosphate)

Oral cancer No phase Unknown NCT03529604
T47D and MCF7 breast
cancer cells (122)

Suramin
Prostate cancer
Bladder cancer

(Continued)
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+-sensitive processes like secretion (159, 160), muscle contraction

(161, 162), and cell survival (163, 164). P2X1-, P2X2-, P2X3-, P2X4-,

and P2X7-knockout mice and P2X1-overexpressing transgenic mice

have multiple diseases associated with P2X receptor polymorphisms

(165). Thus, selective P2X agonists and antagonists are available for

multiple diseases like neurodegenerative diseases, thrombosis, stroke,

osteoporosis, kidney failure, and cancer (20, 52, 53).
P2Y receptors

P2Y are purinergic G protein-coupled receptors with eight accepted

human subtypes: P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11–14 (15, 166),

and are stimulated by adenosine and uridine nucleotides and nucleotide

sugars. The missing numbers for P2Y receptor correlate to non-

mammalian orthologs with a little sequence homology to P2Y

receptors, but with no functional proof of receptiveness to

nucleotides (147). Based on sequence similarity, P2Y receptors have

two distinct subgroups: Gq-coupled receptors sharing a 28%–52%

sequence similarity (P2Y1,2,4,6,11) and Gi/o-coupled receptors with a

45%–50% sequence similarity (P2Y12,13,14) (15). Human P2Y1,

P2Y12, and P2Y13 are activated by ADP, P2Y2 and P2Y11 are

activated by ATP, P2Y2 and P2Y4 are activated by UTP, P2Y6 is

activated by UDP, and P2Y14 is activated by UDP-glucose (167). For

P2Y1 receptors, ADP is a stronger agonist than ATP (168).
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P2Y1, P2Y2, P2Y4, and P2Y6 receptors are coupled to Gq proteins

to activate phospholipase C (PLC), increase phosphoinositide level,

and mobilize Ca+2 (169). ATP and UTP fully activate P2Y2 receptors;

however, ADP and UDP are less effective as agonists (15). UTP is the

strongest activator of the human P2Y4 receptor and P2Y6 receptors

are UDP receptors (15).

P2Y11 receptor activation by ATP increases both cAMP and

inositol triphosphate (IP3), whereas activation by UTP causes

calcium mobilization without raising cAMP or IP3 (170). ATP is

the preferred native ligand at P2Y11 receptors (170); however,

ATPgS is a more efficacious agonist than ATP (15). P2Y12, P2Y13,

and P2Y14 coupling to Gi proteins cause inhibition of adenylate

cyclase (AC) (15). ADP is the original agonist of the P2Y12 receptor

and the P2Y12 receptor activates RhoA and Rho kinase and

phosphatidylinositol 3-kinase (PI3-K) via Gai (171). The P2Y13

receptor can couple to Gs at high ADP concentrations and to G16

and Gi simultaneously (172). Activation of several P2Y receptors

stimulates mitogen-activated protein kinase (MAPK), especially

extracellular signal-regulated protein kinase 1/2 (ERK1/2) (15).
Purinergic signaling in cancer

Purines perform autocrine–paracrine functions in cancer cells by

ATP production and release, which causes cell proliferation, tumor
TABLE 1 Continued

Target
receptor

Drug Cancer
type

Clinical
trial
phase

Recruitment
status

Clinical
trial

number
Cancer studies

Agonist Antagonist

Brain and
central nervous
system tumors

Phase III
Phase I
Phase II

Completed
Completed
Completed

NCT00002723
NCT00006476
NCT00002639

AR-C118925 Nil Nil Nil Nil
Head and neck squamous cell
carcinoma cell lines (123)

P2Y6

MRS2693 Nil Nil Nil Nil Colorectal cancer (124)

UDPbS Nil Nil Nil Nil HeLa cell line (125)

MRS2578 Nil Nil Nil Nil Breast cancer (126)

P2Y11

ATPgS
(adenosine 5′-O-(3-thio)
triphosphate)

Nil Nil Nil Nil Breast cancer (127)

NF546 Nil Nil Nil Nil
Hepatocellular carcinoma
cells (128)

NF157 Nil Nil Nil Nil Breast cancer cells (127)

NF340 Nil Nil Nil Nil Breast cancer (129)

P2Y12

Clopidogrel
Head and neck
Head and neck

Phase I
Phase II

Recruiting
Completed

NCT03245489
NCT00020189

2-MeSAMP
(2-Methylthio-AMP)

Nil Nil Nil Nil
MCF7 breast cancer cells
(130)

P2Y14

UDP glucose Nil Nil Nil Nil Lung cancer (131)

UDP-galactose Nil Nil Nil Nil
Hepatocellular carcinoma
(132)
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growth, and immunosuppression (72). Cancer cells use aerobic

glycolysis to synthesize ATP (Warburg effect), lactate production,

and consequent extracellular acidification (72). Cancer cells release

ATP from pannexin-1 (PANX1) hemichannels, P2X7R, or by cellular

lysis and can activate either P2 receptor (Figure 1) (72). ExATP

activates P2 receptors in cancer cells (primarily P2X7R and P2Y2R)

via an autocrine–paracrine way to encourage proliferation, epithelial-

to-mesenchymal transition (EMT), and migration (72).

Ectonucleotidases (CD39 and CD73) hydrolyze exATP to ADO and

increased ADO inhibits the anti-tumor function of innate immune

cells and effector T cells (Teff, CD4+ and CD8+), and monocyte

differentiation into associated tumor macrophages 2s (72).

Purines in the tumor microenvironment (TME) have gained

immense attention, as high concentrations of ATP and ADO in the

TME are established biochemical markers of cancer (173, 174).

Treatment of pheochromocytoma PC-12 cells with maitotoxin

released ATP and activated purinergic receptors (175); mechanical

stimulation of Ehrlich ascites tumor cells released ATP (176) and

TGF-b stimulation of A549 human lung cancer cells released ATP by

exocytosis (177). In vivo ATP monitoring in a tumor-bearing mouse

using reporter cells carrying an exATP sensor revealed that exATP is a

primary source of exADO in the TME (178). ExADO is copious in

microdialysates from tumoral core regions (178) and tumor hypoxia

promotes ADO formation by hypoxia-inducible factor 1a/b (HIF-1a/
b)-induced CD39 and CD73 expression (179–182). Ectonucleotidases

CD39 and CD73 are immune checkpoints in cancer, expressed in

cancer cell lines, stromal cells, and immune cells, and modulate ATP

and ADO levels in the TME (183). ATP is released through the

PANX1 channel and a truncated PANX1 protein (PANX11-89) is

overexpressed in metastatic human cancer cell lines (184). PANX11-89

along with wild-type PANX-1 promotes gain of function of channel

activity, an increased ATP release, and resistance of cancer cells to

mechanical deformation (184). ATP is also released through P2X7R

and P2X7R association with NLRP3 inflammasome producing pro-

inflammatory cytokines, like IL-1b and IL-18 (185–187). Tissue

damage and cell death induced during chemotherapy/radiotherapy

produce damage-associated molecular patterns (DAMPs), which are

mostly ATP (188). The CD39/CD73 pathway quickly converts this

exATP into ADO, and thus, a particular equilibrium of purines in the

TME decides the success of a given clinical treatment (189).

P2X7R is the most studied purinergic signaling element for its

role as an apoptotic inducer (190). However, P2X7R promoted

proliferation in lymphoid cells (191), instead of its previously

designated role as a pro-apoptotic and necrotic cationic channel

receptor (192). Elevated exATP levels and activated P2X7R had

growth-promoting effects via MAPK/ERK kinases and stimulated

de novo synthesis of pyrimidine nucleotides (193). P2X7R has a pro-

mitotic function in B-cell chronic lymphocytic leukemia, and higher

P2X7R expression was seen in patients with an aggressive form of

chronic lymphocytic leukemia (194). P2X7R expression promoted

prostate and breast tumor progression (195); thus, P2X7R has a dual

ability to induce apoptosis and promote cell survival (196).

Increased P2X7R expression is found in breast (195), thyroid

(197), mesothelioma (198), ovarian (199), pancreatic (200), colon

(201, 202), osteosarcoma cell (111), and liver (203) cancer, and higher

P2X7R expression associated with a high tumor grade. Elevated

P2X7R expression was originally known to induce apoptosis;
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however, proliferating and/or survival effects of P2X7 were reported

later on (204). P2X7R as a growth-promoting receptor was supported

by its exogenic expression in numerous cancer cell lines and tissues,

by high amounts of ATP in the TME, and by positively regulating

aerobic glycolysis (204). P2X7R stimulates ERK phosphorylation-

dependent and -independent intracellular Ca2+ rise (205, 206), the

PI3K/AKT/GSK3b/b-catenin pathway, and mTOR/HIF1a/VEGF
signaling (199, 207).

P2X7B is a widely studied splice variant of P2X7 in cancer due to

its pro-tumoral role and powerful constructive effect on P2X7A (208,

209). Removal of the lengthy carboxy-terminal in P2X7B enables its

growth-promoting potential in response to ATP; however, it loses its

cytotoxicity linked to the pore formation (208). P2X7B promoted

ATP secretion, activated NFATc1 (nuclear factor of activated T cells

c1) proliferative pathway, and supported soft agar invasion (208, 209).

The role of P2X7B in solid cancer was first reported in human

osteosarcoma, where P2X7 isoforms were expressed in

osteosarcoma tissues and P2X7B expression was the most prevalent

(209). Transfection of Te85 osteosarcoma cells with P2X7B increased

proliferation and reduced bone deposition in serum-starving

conditions compared to non-transfected cells (209). Bradykinin

treatment of human neuroblastoma cell lines (CHP-100, SH-SY5Y)

upregulated P2X7B and cell proliferation, suggesting a growth-

metastatic stimulus by P2X7B overexpression (210). The P2X7B

isoform favored metastasis and resistance in tumor cells (208, 209,

211), caused malignancy of neuroblastoma (NB) cells (210),

suppressed autophagy, and induced drug efflux and EMT in NB (212).

P2Y receptor overexpression also promotes cell proliferation and

is observed in basal cell and squamous cell carcinoma biopsies (213).

cDNA microarray analysis showed higher expression of P2RY2

transcript in gastric cancer biopsies than adjacent healthy tissue

(214). P2Y2R promoted cell proliferation in C6 glioma cells via the

Ras/Raf/MEK-1 pathway, which was modulated by PLC/PKC and

Ca2+ (215).

ADO is the chief product from exATP, and ADO receptor A2BR

functions as a cell proliferation promoter in human hepatocellular

carcinoma (216), prostate cancer (217), colorectal carcinoma (218),

breast cancer (219), oral squamous carcinoma (220), head and neck

squamous cell carcinoma (HNSCC) (91), and bladder urothelial

carcinoma (221). Pharmacological/genetic inhibition of A2BR

decreased cell proliferation in colon carcinoma cells, human oral

cancer, and bladder urothelial carcinoma (218, 220, 221).

Contrary to P2Y2R activity, P2X4R expression inhibited

proliferation in gastric cancer cell lines (222) and reversed P2X7R-

induced proliferation in breast cancers (223). P2X7R is

downregulated in endometrial cancer and P2X7R activation-

induced apoptosis in endometrial carcinoma cells (224) and

inhibited virus-induced skin cancer formation in vivo (225). P2Y2

receptor activation suppressed cell proliferation in endometrial

carcinoma cells (HEC-1A and Ishikawa) (226), human esophageal

cancer cells (227), human colorectal carcinoma cells (HT29 and

Colo320 D) (228), and nasopharyngeal carcinoma cells (229).

P2Y6R activity inhibited cell proliferation through store-operated

Ca2+ entry (SOCE) and b-catenin (230). Consequently, purinergic

signaling positively regulates cell proliferation; however, functional

interactions among purinergic receptor subtypes determine the

ultimate effect of purinergic signaling in cancer.
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Warburg effect during
purinergic signaling

HEK293 and ACN (neuroblastoma) cell lines transfected with

P2X7R showed an amplified lactate production and cell proliferation,

signifying aerobic glycolysis and the Warburg effect (231). P2X7R

expression upregulated glycolytic promoters like glucose transporter

Glut1, enhanced intracellular glycogen stores, repressed pyruvate

dehydrogenase (PDH) activity, and increased protein kinase B

(PKB/Akt) phosphorylation and hypoxia-inducible factor 1a (HIF-

1a) expression to evade aerobic adaptations (231).

P2X7R accomplishes Warburg and proliferative effect by

functioning as an ion channel and a highly conductive non-selective

pore (232). In this way, P2X7R stimulated a rise in mitochondria’s

resting membrane potential and basal calcium levels (232). P2X1R and

P2X7Rs activation in leukemia T cells (Jurkat) caused higher

intracellular calcium levels and uncontrolled proliferation, and

pharmacological inhibition of these receptors decreased cell

proliferation, mitochondrial activity, and calcium signaling (233).

A549 (human non-small cell lung cancer cell line) internalized

exATP by clathrin-mediated endocytosis (CME), caveolae-mediated

endocytosis, and macropinocytosis (234), which served as glycolytic

ATP in cancer cells (235) and favors proliferation, drug resistance,

and EMT (234). High exATP and exADO concentrations are typical

of neoplastic cells, thus recognizing ADO as a pro-tumoral factor

(236). Toll-like receptor 3 (TLR3) is a pro-inflammatory receptor and

promoted glucose consumption and lactate release in prostate cancer

cell lines via HIF-1a and extracellular activation of A2BR (237).

ZM241385 and SCH5826 are A2AR antagonists and repressed

proliferation in cancer-associated fibroblasts and human tumor

xenografts in mice (87).
Purinergic signaling in cell proliferation
and death

Continual proliferation characterizes tumor cells and growth

factors stimulate cell proliferation through receptors with

intracellular tyrosine kinase domains (238). ATP is not a member

of the growth factor family and P2RX7 has no tyrosine kinase

domains; however, low concentration of ATP activates P2RX7, cell

proliferation (111, 200, 239–241), and kinase activity (242). P2RX7

activated cellular sarcoma tyrosine kinase (c-Src), PI3-K/Akt, MAPKs

(ERK1/2, p38, and JNK), and protein kinase C (PKC) (243). P2RX7

activated these kinases in response to ATP, indirectly via Ca2+ or its

co-localization with kinases in lipid rafts using a lipid-interaction

motif in its C-terminus (amino acids from 574 to 589) (244–247).

Reduced P2RX7 expression resulted in the development of various

cancers (150, 248–250) and P2RX7 inhibition by shRNA in glioma

tissue increased EGF and phosphor-EGF protein expression (251).

P2RX7 is not known to inhibit tumor suppressor proteins like TP53

or retinoblastoma-associated (RB), but a death domain is localized in

its C-terminus (244).

The ATP/P2RX7 axis can induce or inhibit apoptosis. The ATP/

P2RX7 axis promoted p53 protein levels, apoptosis, and necrosis in
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mesangial (252) and human cervical cancer cells (253), and induced

apoptosis in acute myeloid leukemia (AML) (254). Tumors grew

faster in p2rx7−/− mice (255, 256), and P2RX7 inhibition induced

apoptosis in colorectal cancer cells (241) and the MCF7 breast cancer

model (257). P2RX7-induced necrosis released growth factors to

advance the proliferation and invasiveness of cancer cells (200) and

immunomodulatory cytokines. A non-conformal receptor (nfP2RX7)

promotes tumor growth, has calcium channel activity, but is

incapable of inducing cell death (258, 259).
Purinergic signaling in angiogenesis

Tumors facilitate neoangiogenesis, i.e., growth of novel blood

vessels from a prior vasculature for oxygen and nutrients (260).

Tumor vasculature is abnormal with hardly any perivascular cells,

and this brings hypoxia and acidity in TME, which facilitates tumor

aggression (261). Vascular endothelial growth factor (VEGF) couples

with VEGF receptor 2 (VEGFR2) to boost endothelial cell

propagation (262). P2RX7 promoted VEGF discharge in human

monocytes (263, 264) and P2RX7-expressing tumor xenografts of

human embryonic kidney cells were found to be more angiogenic

than the control cell tumors (239). The ATP/P2RX7 axis stimulates

PI3K/Akt and NF-kB pathways to induce VEGF and higher vessel

density (113, 239, 265).
Purinergic signaling in migration
and metastasis

Malignant cells invade surrounding and distant tissues, and this

metastatic extension of the primary tumor is responsible for

approximately 90% of mortality in cancer patients (266). Metastatic

stages in a primary tumor involve cell–cell adhesion loss, EMT,

anoikis evasion, migration, invasion, mesenchymal–epithelial

transition (MET), and embedding as a secondary tumor (267).

EMT initiates metastatic stages, as epithelial cells morph into a

mesenchymal phenotype with a superior invasive and migration

capacity (268). Transforming growth factor-b (TFG-b), Wingless/

Int (WNT), and epidermal growth factor (EGF) stimulates EMT

promoter transcription factors, i.e., TWIST and SNAIL (269). TWIST

and SNAIL cause loss of epithelial marker expression [E-cadherin,

zona occludens-1 (ZO-1), and keratins] and induce expression of

mesenchymal markers [N-cadherin, metalloproteinases (MMPs), and

vimentin], thus promoting metastasis (270).

ATP is the cellular energy currency, but during purinergic

signaling, it engages in EMT, migration/invasion, and metastasis in

various cancer types (271). High ATP concentrations in lung cancer

cell lines favored cell detachment, migration, and invasion, with

increased MMPs, vimentin, SNAIL and SLUG expression, and

filopodia development and cell protrusions (235). A decrease in E-

cadherin and ZO-1 expression by the micropinocytosis of exATP and

genetic deletion of sorting nexin-5 (SNX5, a gene involved in

intracellular trafficking) reduced cancer cell proliferation and

metastasis (235). TGF-b1 elicited lung cancer cells to release ATP

and activated P2 receptors (177). TGF-b1 induced remodeling of
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actin and cell migration by autocrine stimulation of P2X7R and

knockdown or pharmacological inhibition of P2X7R suppressed these

processes (177). A mutated EGFR in PC9 (human lung

adenocarcinoma cell line) caused a constitutive activation of P2X7R

and cell migration, even without TGF-b1 (272). AG1478 is an EGFR

inhibitor and abolished PC9 cells’ motility and lamellipodium

extension, showing a TGF-b1/P2X7R/EGFR cross-signaling during

cell migration (272).

P2X7R promoted metastasis in pulmonary (177, 269), prostatic

(273), mammary (108), pancreatic (200), glioma (274), osteosarcoma

(111), and glioblastoma stem cell (GSC) cancer (275). P2RX7 high

expression inMDA-MB-435 cells (an invasive human breast cancer cell

line) activated pro-migratory phenotype and invasiveness by releasing

extracellular matrix-degrading proteases in vitro and in vivo (276, 277).

The ATP/P2X7R axis encouraged an autocrine-mediated TGF-b-
instigated cell migration in lung cancer cells (177). In response to

ATP, P2X7R promoted cell migration and invasion in pancreatic ductal

adenocarcinoma (200), human breast cancer, and colon cancer cells,

where the ATP-activated PI3K/Akt/GSK3 pathway mediated E-

cadherin expression and EMT (108, 241). In a mammary 4T1 cancer

mouse model, P2RX7 expression promoted tumor growth and

metastasis and was reversed by P2X7R antagonists (108). Tumors

with distant metastasis showed higher expression of P2X7R in

broncho-alveolar lavage (278) and more lung tumors were observed

in p2rx7−/− mice injected with B16 melanoma cells, suggesting that

endogenous P2X7R activity hinders B16 migration and invasion (256).

Bradykinin induced P2X7B expression and promoted neuroblastoma

metastasis in bonemarrow using high exATP levels in the bonemarrow

as growth, seeding, and anti-apoptosis stimulus (210).

In most breast cancer cell lines (121, 279, 280), the invasive edge

of the breast tumor tissue and tumor embolus in lymphatic sinuses

express P2Y2R highly, proving the participation of P2Y2R in

metastasis (279). Breast cancer cell lines with more exATP are

highly metastatic (281), and migration and invasion are moderated

through MEK/ERK1/2-dependent signaling pathway activation (121,

279, 282) and ATP-P2Y2R-b-catenin (280). Activation of P2Y2R

increases EMT-related gene expression and transactivates a pathway

amid P2Y2R and EGFR in ovarian (283) and prostate cancer

cells (284).

A1R antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX)

reduced proliferation and migration in renal cancer cell (RCC)

lines, and tumor growth in vivo , while A1 agonist N6-

Cyclopentyladenosine (CPA) rescued RCC cell migration (82).

Higher CD73 expression was seen in lymph nodes of HNSCC

patients, and CD73 encouraged HNSCC migration and invasion in

vitro by A3R activation via the EGF/EGFR signaling pathway (285).

CD73 expression promoted mesenchymal phenotype in

hepatocellular carcinoma and A2AR activation restored the effect of

CD73 knockdown, suggesting an adjuvant treatment of CD73 and

A2AR inhibitors (286). Low ADO concentrations reduced migration

and the invasive capacity of prostate and breast cancer cell lines (287)

and human cervical and ovarian cancer cell lines (288, 289), but

enhanced stemness and EMT gene expression in gastric cancer cells

by activation of A2AR and the Akt/mTOR pathway (290).

A2BR activation induced a partial EMT through cAMP/PKA and

MAPK/ERK transduction pathways in human type II alveolar epithelial

cells (A549) (89) and BAY 60-6583 (selective A2BR agonist)
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counteracted TFG-b-induced EMT in A549 cells (89). ADO

augmented migration via the A2BR/AC/PKA/cAMP axis in MDA-

MB231 breast cancer cells (219). A2BR antagonist PSB-603 inhibited

cell proliferation and transmigration in HNSCC-derived cell lines and

MRS1754 (a selective A2BR antagonist) reduced proliferation and

migration in RCC 769-P and Caki-1 cell lines (91, 92).

A3R activation detained cancer cell motility and invasive capacity

by hampering NADPH oxidase activity and AC/PKA in AT6.1 rat

prostate (291). A3R obstruction reduced cell migration and invasion

in glioblastoma (GBM) patient-derived primary cultures of stem-like

cells and a GBM cell line (292). Collagen architecture modulates ATP

: ADP ratio, and this ratio increases in dense extracellular matrices

(ECMs) where migration is arrested and decreases in aligned ECMs

where migration is eased (293). Thus, the adhesion environment

changes the cellular energy necessity, and ATP increases in the ECM

assist metastasis (293). ATP is also vital during invadopodia

formation, and even in the absence of MMPs, it helps in F-actin

network growth (294).
Purinergic signaling in anti-tumor
immune response

The immune system fights infections and immune surveillance

eliminates cancer cells via checkpoint inhibitor (CPI) expression,

immunosuppressive factor secretion (295, 296), and Teff cell and

natural killer (NK) cells (297). These immune responses against

cancer cells are dulled by immune-suppressive cells [regulatory T

(Treg) and myeloid-derived suppressor cells (MDSCs)] (298).

Ectonucleotidases mediate ADO accumulation, where CD39/

NTPDase1 converts ATP to ADP/AMP and CD73 converts AMP

to ADO (299). Tumor cells with activated CD73 favor cell adhesion

through EGF and ADO accumulation energizes cell proliferation and

metastasis by inducing intracellular cAMP’s downstream signaling

through A2A and A2B, leading to immunosuppression (300). exATP

evokes a “find me” signal evoking an immune response, and this

response is overturned by exATP conversion to ADO by CD39 and

CD73 (183, 189, 301). ADO, thus, has an immunosuppressive role

and dismantles the anti-tumor immune attack in the TME (183, 189,

301). Conditions like hypoxia, necrosis, and inflammation prime cells

to release DAMPs, mainly ATP (187), and exATP employs

macrophages, neutrophils, and dendritic cells (DCs) to resolve

cellular damage (302–304). Chemotherapeutic agents in AML

induced exATP and promoted the upregulation of Treg cells (305),

suggesting that ATP mediates the communication of tumor cells and

immune system components and modulates the inflammatory

response in the TME. Post-anti-cancer therapies, dying cancer cells

release ATP and activate P2X7R in DCs, leading to IL-1b secretion via
P2X7R-dependent NLRP-3 inflammasome assembly (306, 307), and

this suggests the role of NLRP-3 inflammasome in the efficacy of anti-

cancer therapies. Hypoxia in cancer cells favors ADO accumulation

and CD39 and CD73 overexpression in the TME, by HIF-1

transcription factor activity (179–182).

Ovarian cancer cell lines generated ADO to attract myeloid cells

and induce their differentiation to macrophages with a non-

inflammatory phenotype (M2-TAM) with CD39 overexpression
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(308). CD39-expressing TAMs and CD73-expressing stromal

fibroblasts collaborated to amplify ADO levels and immune-

suppressive effects in ovarian cancer cell lines (308). ADO buildup

is deadly for immune surveillance, and CD39/CD73-targeted

antibodies promoted immunosuppression in macrophages, DCs,

and T cells (309), making these ectonucleotidases the obvious

immunity-strengthening targets. Antibodies against CD39 and

CD73 improved NK and T-cell cytotoxicity in ovarian cancer cell

lines by ADO reduction (310). CD73 expression and ADO levels

increase post-focal radiotherapy, and thus, blocking CD73 during

focal radiotherapy enhanced DC infiltration and anti-tumor T-cell-

dependent responses in breast cancer cells (311).

P2RX7 has an extensive role in immune cells and tumor onset

(312). P2RX7 is expressed in human macrophages and DCs to alter

cytokine production owing to exATP (313–316). The ATP/P2RX7

axis boosts anti-tumor immune response, as exATP attracts DC

precursors to the tumor bed, in the immediacy of dying cells, and

promotes their ability to present tumor-associated antigens (317).

P2RX7 activation in macrophages and DCs releases NLRP3 to

increase IL-1b and IL-18 production and NLRP3 has pro- and anti-

tumorigenic roles in cancers based on cytokine quantity (318). AML

patients have upregulated P2X7R receptor mRNAs (splice variants A

and B) in AML blasts, suggesting P2X7RA and P2X7RB as potential

prognostic markers in AML patients (211, 319). Murine B16

melanoma cells express high levels of P2X7R, and its

xenotransplantation in wild-type and p2rx7–/– null mice showed

accelerated tumor growth in the p2rx7–/–mice (320). Compared to

wild-type animals, p2rx7–/–mice tumors showed immunosuppression

with a higher number of Treg cells and fitness markers (OX40, PD-1,

and CD73) and a declined number of Teff and CD8+ T cells (320).

Ectonucleotidase CD73 was expressed highly in macrophages, Treg,

and CD8+ Teff, while CD39 was prominent in Teff in tumor-bearing

p2rx7–/– mice (320). These CD39/CD73 expression alterations

reduced exATP and increased ADO in the TME, causing

immunosuppression in p2rx7–/– mice tumors (320). Blocking P2X7

by using A740003 in wild-type mice reduced the growth of tumors,

improved the immune response, elevated IFN-g, and reduced IL-1b
levels, without changing exATP levels (320). Thus, P2X7R is a key

determinant of anti-tumor immune response due to its effects on

immune cell infiltration (320). Leukocyte common antigen (CD45

+)-immune cells in the lung adenocarcinoma patients’ TME had

lesser P2X7R pore function than CD45+ cells from outside the

tumors, suggesting higher P2X7B mRNA levels in the immune cells

from the TME than normal lung tissue (321).

P2X7 stimulation restricted tumor suppression by inducing stress-

induced premature senescence (SIPS) in tumor-infiltrating

lymphocytes (TIL) and transfer of p2rx7-/- CD8 T cells reduced

tumor growth with improved survival in lymphopenic mice (322).

However, in a mouse melanoma CD8+ T-cell adoptive transfer model,

the number of tumor-specific p2rx7-/-CD8+ T declined with an increase

in tumor burden, and this was concurrent with decreased proliferation

and higher apoptosis (323). In vitro stimulation of P2RX7 via ATP

analog BzATP controlled B16 melanoma by CD8+ T cells, suggesting

that exATP sensing on CD8+ T cells by P2RX7 diminished melanoma

tumors (323). This presents P2X7 as a purinergic checkpoint that may

be targeted to enhance anti-tumor response.
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A2AR is the foremost P1 causing immunosuppression and its

genetic deletion eased tumor eradication by T cells (324).

Supplemental oxygenation (hyperoxia) helped CD8+ T cells to

infiltrate tumors, regress the tumor, weaken immunosuppression by

Treg, and enhance chemokines and cytokine levels, through the

hypoxia/ADO/A2AR pathway, and these effects were not shown by

A2AR-/- mice (181). A2AR antagonist co-administration improved

the efficiency of PD-1 antibodies (325) in reversing the

immunosuppression of induced tumors, thus making A2AR an

immunotherapy target (326). Tissues lacking A2AR showed

improved tumor rejection, diminished immunosuppression, and

enhanced IFN-g secretion by T cells (327). A2AR-mediated ADO

signaling ablation matured NK cells, improved anti-tumor immunity,

and delayed tumor instigation and growth (328). A2BR works

synergically with A2AR in colorectal cancer cells to participate in

the NT5E/ADO-dependent immune checkpoint to launch

immunosuppression (329). A1R deletion reduced human melanoma

cell line and tumor growth in immune-deficient xenografts,

upregulated PD-L1 levels, and inactivated co-cultured T cells, which

compromised anti-tumor immunity in vivo (330), indicating the

critical role of ARs in the anti-tumor immune response.
Purinergic signaling in cancer
stem cells

Cancer stem cells (CSCs) within the tumor are related to cancer

metastasis, chemotherapeutic drug resistance, and tumor recurrence

(331). CSCs drive tumor spread and preservation due to their stem

cell-like properties (332) of self-renewal and multi-lineage

differentiation potential (333). Unlike normal tissue renewal, CSCs

do not mature and form a core in a tumor to sustain tumor growth

(334). CSCs express explicit cell surface markers like CD166+, CD133

+, CD44+, CD29+, and CD24+ (335), and the nature and expression

level of these markers vary depending on the type of cancer (336).

Endogenous ATP release caused a proliferation in various human

glioma cell lines (U251MG, U87MG, and U138MG) via both P1 and

P2 receptor signaling (337). ATP treatment decreased the number

and size of tumor spheres in human U87 or U343 and rat C6 gliomas

(338), by upregulating P2X4, P2Y1, and P2Y14 in tumor spheres

(338) and reduced the number of Nanog, Oct-4, and CD133+ CSCs

(338). Thus, ATP and purinergic receptors are potential

pharmacological targets for CSC therapy (338, 339).

Expression of the P2X7 receptor correlates with the degree of cell

differentiation and its higher expression and activity are seen in

embryonic stem cells (340). A decrease in pluripotency markers

suppresses P2X7 receptor expression and activity, and

differentiation was induced in quiescent cells upon P2X7 inhibition

pharmacologically (340, 341). Sustained P2X7 stimulation in

glioblastoma multiforme stem-like cells from primary human

tumors decreased CSC proliferation due to cell death and growth

arrest (342). This growth arrest induced a quiescent state in the

surviving cells and caused cell regrowth and sphere formation 2 weeks

after the end of the treatment (342), suggesting P2X7-induced

chemoresistance and tumor recurrence.
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P2X7B promoted osteosarcoma by a higher expression in

osteoblast precursor cells than differentiated osteoblasts (343). ATP

analog and P2X7 agonist 2’[3’]-O-[4-benzoylbenzoyl]-ATP (BzATP)

increased the expression of P2X7A and B in human GSCs and

supported GSC invasion (275). P2X7 antagonist A438079 nullified

BzATP effects on P2X7A and P2X7B expression (275).
Purinergic signaling in drug resistance

Dying tumor cells release ATP, making exATP levels multiple

times higher in cancer tissues than the analogous normal tissues

(178). exATP induces cellular stress and anti-cancer therapy

resistance via inflammation, hypoxia, and platelet aggregation

(344). Anti-cancer drugs (targeted and chemotherapeutic) increase

iATP and cancer cell survival by exATP (345). Sunitinib promoted

drug resistance in NSCLC A549 cells by internalizing exATP through

CME, caveolae-mediated endocytosis, and macropinocytosis, which

elevated iATP levels to 150%–200% of the original iATP

concentration (234, 345, 346). Increased iATP levels by exATP is

not a momentary effect and the elevation lasts till exATP is present in

the TME (346).

Macropinocytosis activation is a hallmark of oncogenic Ras

mutations harboring cancers, and macropinocytosis/endocytosis-

mediated elevated iATP levels from exATP internalization

promote drug resistance (347). p21-activated kinase 1 (PAK1) is

an essential enzyme for macropinocytosis, and its inhibition by

siRNA knockdown or IPA3 inhibitor resulted in lower iATP levels

and survival in exATP- and sunitinib-treated A549 cells (345).

Abundant iATP molecules after exATP internalization contend for

the ATP binding site on receptor tyrosine kinases (RTKs) with

tyrosine kinase inhibitors, inducing phosphorylation and, in turn,

activation of downstream signaling events causing drug

resistance (345).

Internalized exATP molecules served as an energy supplement,

regulated ABC transporter expression levels, and increased cell

survival in A549 lung cancer and SK-Hep-1 cells (345), indicating

intense effects of exATP on transporter activity of ABC to enhance

anti-cancer drug efflux and drug resistance. exATP hastened EMT,

mobility, and invasion, increased MMP expression, increased levels

of EMT-transcription factors (vimentin, Snail, and Slug), and

decreased epithelial markers in lung cancer cells (235). These

effects were TGF-b-independent and partially dependent on the

purinergic signaling (P2X7) activation (235), suggesting exATP-

induced drug resistance via EMT. exATP promotes drug resistance

through P2 receptors as an extracellular messenger (72), and hence,

the P2X and P2Y receptor families have emerged as potential

candidates for chemotherapy resistance (348, 349). ENTPD1/

CD39 convert exATP to AMP and activate cAMP-mediated

mitochondrial stress response via the CD39/P2RY13/cAMP/PKA

axis and aided resistance to cytarabine in AML, proposing exATP

and CD39 as key factors in AML chemoresistance (348).

Activated platelets in tumor cells release ADP in the extracellular

compartment, and ADP-activated P2Y12 in pancreatic ductal

adenocarcinoma (PDAC) increased expression of markers for

gemcitabine resistance like human equilibrative nucleoside

transporter 1 (hENT1) and cytidine deaminase (CDD) (350).
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P2Y12 inhibition by ticagrelor blocked the survival of PDAC cells

induced by platelet-derived ADP and ATP (350).

P2X7 receptor is bi-functional, and depending on the cell type

and level of activation, it can trigger either cell growth or death (191,

194, 351–353). P2X7 overstimulation by mM ATP concentration

formed pores and caused cell death in rat peritoneal cells (RPCs) and

in P2X7 transfected 1321N1 cells (1321rP2X (7)-11) (354). Low-level

stimulation of P2X7 endowed P2X7-expressing cells with proliferative

advantage by enhancing aerobic glycolysis, OXPHOS, and

biosynthesis (173). P2X7 expression helps cancer cells to invade

and metastasize (153, 173), and thus, its antagonists inhibited

tumor growth and migration (344). Non-pore functional P2X7

(nfP2X7) is a distinct P2X7 conformation that cannot form a

functional pore upon exATP stimulation (259). ATP concentration

equivalent to TME drives nfP2X7 expression and survival in tumor

cells (259), suggesting a role of nfP2X7 in promoting resistance to

apoptosis and chemotherapies.

Some chemotherapeutic agents incite immunogenic cell death

(ICD), leading to immunological memory generation and improved

relapse-free survival (355). Stressed/dying tumor cells release exATP

as a DAMP during ICD (259), and thus, ICD depends on exATP

release as well as on its stability in the TME (356). exATP release

drives DC recruitment and activation by P2RX7 ligation, generating

adaptive immunity against cancer by tumor-derived antigens and

IL-1b secretion (306).

P2X7B caused daunorubicin and radiotherapy resistance in

P2X7B-overexpressing cells by increasing exATP levels in the TME

(211, 357). P2X7B expression increased neuroblastoma

chemoresistance through drug efflux via multi-drug resistance

protein (MRP)-type transporters, suppressing autophagy,

promoting EMT and resistance to retinoids, and retaining stem-like

phenotype (212).

exATP communicates with immune cells like monocytes, T cells,

B cells, macrophages, eosinophils, and neutrophils to execute

immune-activating functions (306). exATP is converted to ADO by

CD39 and NT5E/CD73, and while exATP promotes anti-tumor

immunity, ADO attenuates it (349, 358). CD39 and CD73 have

emerged as potential targets for anti-cancer immunotherapy, as

these limit exATP conversion to ADO (355). CD39 blockade

augmented exATP/P2X7-mediated pro-inflammatory anti-tumor

response and release of IL-18, which facilitated increased

infiltration of intra-tumor Teff cells and overturned anti-PD-1

resistance (349). Adenosine-induced signaling diminishes the anti-

tumor action of immune cells (macrophages, T cells, B cells, DCs,

mast cells, and NKs) and activates Treg cells, creating an immune-

suppressive environment to diminish immune-therapy efficacy (344,

359). Tumor cell autophagy is critical for chemotherapy-induced

ICD, and it promotes exATP release over adenosine generation (360);

thus, purinergic signaling inhibition might improve anti-cancer

drug response.

Fe3+ and doxorubicin-releasing nanoparticles depleted exATP

via metal ion-triphosphate coordination and sensitized

chemotherapy (361), suggesting that exATP depletion may also

reduce drug resistance. Macropinocytosis inhibition reduced

cellular uptake of exATP and iATP levels, alleviating EMT and

drug resistance promoted by exATP (361), suggesting a

multifunctional role of ATP as an energy currency, a drug efflux
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facilitator, and a signal transducer for cell survival and tumor

migration/invasion.
Conclusion

Cancer is a complex disease and self-regulation of differentiation,

growth, and expansion has allowed cancer cells to succeed biologically

over normal cells (266, 362). This review summarizes existing

information about the role of purinergic signaling in the attainment

and preservation of cancer cell phenotype. Purinergic signaling in the

TME exerts autocrine–paracrine actions to alter energy metabolism to

facilitate cell survival, proliferation, migration, immunosuppression,

and drug resistance in cancer cells. exATP is an emerging inducer and

regulator of drug resistance through EMT and CSCs in cancer cells,

and thus, targeting exATP will improve drug sensitivity of cancer cells

to chemotherapeutic agents (363). Clinical interventions of purinergic

signaling agonists and antagonists in various cancer patients are

ongoing (Table 1), but are still in their infancy as very few agonists

and antagonists are successful and steady in vivo (364). This may be

due to the fact that most purinoceptors are ubiquitous and hence

there is a problem of redundancy, and selectively targeting specific cell

type remains a challenge.

Thus, there is still a lot unknown about purinergic signaling. For

example, why do dual actions of exATP and purinoceptors occur in both

normal and malignant cells? What is an apparent function of various

purinoceptors and the concrete effects mediated by purinoceptors? What

is the cell-specific location of ectonucleotidase expression in a tumor and

is this expression stromal or in the immune cells? Furthermore, what is
Frontiers in Oncology 12
the most effective route of administration of ATP or purinoceptor-

selective agonists or antagonists in humans, which best imitate the

current administration procedure for anti-cancer drugs? Thus, further

understanding of purinergic signaling and its interactions with other

oncogenic signaling systems is the need of the hour.
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276. Jelassi B, Chantôme A, Alcaraz-Pérez F, Baroja-Mazo A, Cayuela ML, Pelegrin P,
et al. P2X(7) receptor activation enhances SK3 channels- and cystein cathepsin-
dependent cancer cells invasiveness. Oncogene (2011) 30:2108–22. doi: 10.1038/
onc.2010.593

277. Jelassi B, Anchelin M, Chamouton J, Cayuela ML, Clarysse L, Li J, et al.
Anthraquinone emodin inhibits human cancer cell invasiveness by antagonizing P2X7
receptors. Carcinogenesis (2013) 34:1487–96. doi: 10.1093/carcin/bgt099

278. Schmid S, Kübler M, Korcan Ayata C, Lazar Z, Haager B, Hoßfeld M, et al.
Altered purinergic signaling in the tumor associated immunologic microenvironment in
metastasized non-small-cell lung cancer. Lung Cancer Amst Neth (2015) 90:516–21.
doi: 10.1016/j.lungcan.2015.10.005

279. Qiu Y, Liu Y, Li W-H, Zhang H-Q, Tian X-X, Fang W-G. P2Y2 receptor
promotes the migration and invasion of breast cancer cells via EMT-related genes snail
and e-cadherin. Oncol Rep (2018) 39:138–50. doi: 10.3892/or.2017.6081

280. Zhang J-L, Liu Y, Yang H, Zhang H-Q, Tian X-X, Fang W-G. ATP-P2Y2-b-
catenin axis promotes cell invasion in breast cancer cells. Cancer Sci (2017) 108:1318–27.
doi: 10.1111/cas.13273

281. Eun SY, Ko YS, Park SW, Chang KC, KimHJ. P2Y2 nucleotide receptor-mediated
extracellular signal-regulated kinases and protein kinase c activation induces the invasion
of highly metastatic breast cancer cells. Oncol Rep (2015) 34:195–202. doi: 10.3892/
or.2015.3972
frontiersin.org

https://doi.org/10.1016/j.canlet.2014.06.008
https://doi.org/10.1186/s12935-019-0973-0
https://doi.org/10.4149/gpb_2017031
https://doi.org/10.3389/fphys.2017.00097
https://doi.org/10.1158/0008-5472.CAN-11-1947
https://doi.org/10.1371/journal.pone.0051164
https://doi.org/10.1371/journal.pone.0051164
https://doi.org/10.1016/j.ejphar.2021.174041
https://doi.org/10.1007/s11302-021-09811-9
https://doi.org/10.3389/fnmol.2019.00183
https://doi.org/10.3389/fnmol.2019.00183
https://doi.org/10.4049/jimmunol.167.4.1871
https://doi.org/10.1096/fj.08-114637
https://doi.org/10.1074/jbc.M114.574699
https://doi.org/10.1016/bs.ctm.2017.05.004
https://doi.org/10.1016/j.bj.2019.05.007
https://doi.org/10.1593/neo.101332
https://doi.org/10.1074/jbc.M602999200
https://doi.org/10.1016/j.biocel.2013.03.005
https://doi.org/10.1152/ajprenal.1998.275.6.F962
https://doi.org/10.1091/mbc.E14-01-0042
https://doi.org/10.1091/mbc.E14-01-0042
https://doi.org/10.18632/oncotarget.13927
https://doi.org/10.1158/0008-5472.CAN-14-1778
https://doi.org/10.1158/0008-5472.CAN-14-1259
https://doi.org/10.3892/etm.2015.2705
https://doi.org/10.4172/2155-9899.1000237
https://doi.org/10.1038/s41388-018-0426-6
https://doi.org/10.1056/NEJM197111182852108
https://doi.org/10.1054/bjoc.2001.1809
https://doi.org/10.1177/1947601911423031
https://doi.org/10.4049/jimmunol.1001298
https://doi.org/10.1016/j.canlet.2007.10.025
https://doi.org/10.1016/j.canlet.2007.10.025
https://doi.org/10.1111/jcmm.15708
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1111/bph.12704
https://doi.org/10.1159/000147748
https://doi.org/10.1016/j.devcel.2019.04.010
https://doi.org/10.1038/s41568-021-00332-6
https://doi.org/10.1007/s11302-016-9550-3
https://doi.org/10.1007/s11302-014-9411-x
https://doi.org/10.1371/journal.pone.0114371
https://doi.org/10.1371/journal.pone.0114371
https://doi.org/10.1155/2018/8591397
https://doi.org/10.3390/cells9010085
https://doi.org/10.1038/onc.2010.593
https://doi.org/10.1038/onc.2010.593
https://doi.org/10.1093/carcin/bgt099
https://doi.org/10.1016/j.lungcan.2015.10.005
https://doi.org/10.3892/or.2017.6081
https://doi.org/10.1111/cas.13273
https://doi.org/10.3892/or.2015.3972
https://doi.org/10.3892/or.2015.3972
https://doi.org/10.3389/fonc.2023.1058371
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kaur and Dora 10.3389/fonc.2023.1058371
282. Chen L, He H, Li H, Zheng J, Heng W, You J, et al. ERK1/2 and p38 pathways are
required for P2Y receptor-mediated prostate cancer invasion. Cancer Lett (2004)
215:239–47. doi: 10.1016/j.canlet.2004.05.023
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