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One of the key challenges for successful cancer therapy is the capacity of tumors

to evade immune surveillance. Tumor immune evasion can be accomplished

through the induction of T cell exhaustion via the activation of various immune

checkpoint molecules. The most prominent examples of immune checkpoints are

PD-1 and CTLA-4. Meanwhile, several other immune checkpoint molecules have

since been identified. One of these is the T cell immunoglobulin and ITIM domain

(TIGIT), which was first described in 2009. Interestingly, many studies have

established a synergistic reciprocity between TIGIT and PD-1. TIGIT has also

been described to interfere with the energy metabolism of T cells and thereby

affect adaptive anti-tumor immunity. In this context, recent studies have reported a

link between TIGIT and the hypoxia-inducible factor 1-a (HIF1-a), a master

transcription factor sensing hypoxia in several tissues including tumors that

among others regulates the expression of metabolically relevant genes.

Furthermore, distinct cancer types were shown to inhibit glucose uptake and

effector function by inducing TIGIT expression in CD8+ T cells, resulting in an

impaired anti-tumor immunity. In addition, TIGIT was associated with adenosine

receptor signaling in T cells and the kynurenine pathway in tumor cells, both

altering the tumor microenvironment and T cell-mediated immunity against

tumors. Here, we review the most recent literature on the reciprocal interaction

of TIGIT and T cell metabolism and specifically how TIGIT affects anti-tumor

immunity. We believe understanding this interaction may pave the way for

improved immunotherapy to treat cancer.
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1 Introduction

1.1 Reciprocal metabolic interaction
of tumor cells and T cells within the
tumor microenvironment

Tumors are notorious for evading surveillance of the immune

system via T cell hyporesponsiveness and dysfunction (1, 2). In

particular, limited nutrient availability, in particular the scarcity of

glucose (3) and tryptophan (4, 5) which are required for normal cell

functionality, in the tumor microenvironment (TME) due to

competition can impair CD8+ cytotoxic T cells (CTL) proliferation,

survival, and effector function (4–6). In this context, tumor cells have

been shown to express the enzyme indoleamine 2,3-dioxygenase

(IDO), which on the one hand depletes tryptophan, a critical amino

acid needed for T cell proliferation (4, 5), and on the other hand

produces kynurenine, a T cell suppressive metabolic ‘waste’ product

(7). It is noteworthy that the role of effector CD4+ T cells during anti-

tumor immunity is not as well resolved as it is for CD8+ T cells (8). In

addition, hypoxia within the TME can diminish anti-tumor activity

directly by inhibiting NK cell-mediated killing (9), or by inducing T

cell apoptosis through inhibition of CCR7 expression via the A2A

receptor signaling pathway (10). Hypoxia has also been demonstrated

to upregulate immune checkpoint proteins such as PD-L1 on tumor

cells (11–13). Additionally, metabolites produced by tumor cells can

promote tumor immune evasion. In this regard, adenosine, a

byproduct of the enzymatic breakdown of adenosine 5 ’-

triphosphate (ATP) via the ectonucleotidases CD39 and CD73,

promotes tumor growth, survival, and metastasis and also impairs

CD8+ T cell signaling and function (14–18). Furthermore,

acidification of the TME through the generation of lactic acid by

the tumor itself impairs respiration, chemotaxis, and cytokine

production of CTLs (6, 19). Altogether, the TME is a unique

metabolic niche that consists of several mechanisms to escape

immune surveillance by impairing T cell metabolism and

effector function.
1.2 The role of T cell and tumor cell
metabolism for anti-tumor immunity

For T cells to be able to undergo essential processes such as

proliferation, growth and differentiation, they need to metabolically

adapt to their new requirements, a process also referred to as

metabolic reprogramming (20, 21). Naïve T cells mainly make use

of fatty acid oxidation, while activated T cells tend to shift from the

energetically more favorable oxidative phosphorylation (OXPHOS) to

the Warburg metabolism (22–24) to fulfill their need for various

metabolic resources. In order to facilitate this kind of metabolic

reprogramming during T cell activation, several different signaling

cascades and transcription factors come into play. IL-2, a classical

growth factor cytokine, and the ligation of costimulatory proteins will

enable the metabolic transition to glycolysis by increasing the

expression of nutrient transporters and activation of mTOR, a key

metabolic regulator (25–27). Together with c-Myc, a protein that

activates the transcription of metabolic genes essential for T cell
Frontiers in Oncology 02
activation (28), mTOR induces the increased expression of glucose

transporter 1 (GLUT1) and CD98, a protein responsible for

transporting amino acids into the cell (29). To summarize, it can be

stated that the metabolic profile of T cells will determine their

functional state.

There is increasing appreciation for the fact that a metabolic

interplay between tumor and immune cells exists in the TME (30, 31).

Further, there is evidence that immune checkpoint proteins

themselves have an effect on T cell metabolism, reviewed

comprehensively by Lim et al. (32). Kleffel et al. (33) have

demonstrated that melanoma cell intrinsically expressed PD-1

upregulates the Akt/mTOR signaling pathway in cancer cells. In

another study by Chang et al. (31), tumor PD-L1 expression

promoted glycolysis and the activation of Akt/mTOR in tumor

cells, while simultaneously suppressing the activity of mTOR in T

cells by competing for glucose. The blocking of PD-L1, PD-1 and

CTLA-4 resulted in altered concentrations of extracellular glucose

(31). This is noteworthy as acidosis in the TME can limit the anti-

tumor activity of CTL, as well as suppress their proliferation and

cytokine production (34). It is plausible to assume that several

immune checkpoint proteins can promote glycolysis in tumor cells,

therefore creating a nutrient competitive scenario between tumor cells

and immune cells within the TME.
1.3 Immune checkpoints in T cell immunity

To elicit a successful immune response against tumors, T cells

need to become fully activated. This activation depends on two

distinct signals. The first signal represents the engagement of the T

cell receptor (TCR) by cognate peptide:MHC class I or II complexes

(pMHC) presented by antigen presenting cells (APCs) (35). The

second signal involves the co-stimulation via B7 proteins on APCs

that interact with cluster of differentiation (CD)28 expressed on the

surface of T cells (36, 37). Unchecked and/or persistent activation of T

cells could lead to aberrant inflammation causing severe damage to

host tissue. Because of this, it is necessary that T cell activation is

closely regulated by co-stimulatory and co-inhibitory proteins,

referred to as immune checkpoints (38).

In the past 10 years, the development of novel immunotherapies

has been enormously successful especially within the areas of

chimeric antigen receptor (CAR) T cells (39), bispecific antibodies

capable of binding two targets simultaneously (40), and immune

checkpoint inhibitors (ICI) (41). However, despite the enormous

success of ICIs, many patients show or acquire resistance to

treatment with ICIs (42). Consequently, the latter has resulted in a

need for the identification of novel immune checkpoints such as

lymphocyte activation gene-3 (LAG3) (43), V-domain Ig suppressor

of T cell activation (VISTA) (44), B and T cell attenuator (BTLA) (45),

B7 homolog 3 protein (B7-H3) (46), T cell immunoglobulin and

mucin-domain containing-3 (TIM3) (47) and T cell immunoglobulin

and ITIM domain (TIGIT) (48). These proteins each have distinct

ligands and suppress T cell function through several mechanisms to

ensure there is proper regulation of the T cell response. In the

following paragraphs, we will briefly introduce several immune

checkpoints by structure and function. Figure 1 details these
frontiersin.org
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structural differences and similarities between the different

immune checkpoints.

1.3.1 PD-1
Programmed Death-1 (PD-1) is a type I transmembrane protein

that is expressed in several immune cells, such as T, B, and NK cells.

Structurally, it is composed of an extracellular immunoglobulin-like

binding domain, a transmembrane region and a cytoplasmic domain

containing an immunoreceptor tyrosine-based inhibitory motif

(ITIM) and an immunoreceptor tyrosine-base switch motif (ITSM)

(49). Engagement of PD-L1 with its receptor results in T cell

dysfunction, exhaustion, and production of the immunosuppressive

cytokine IL10 within the tumor (50). With the FDA approval for

Nivolumab and Pembrolizumab, the potential of blocking PD-1 was

realized and successfully applied to improve patient outcomes.

1.3.2 CTLA-4
Cytotoxic T lymphocyte antigen 4 (CTLA-4), also known as

CD152, and CD28 are homologous receptors expressed on T cells.

While structurally similar, they mediate opposing functions in T cell

activation (51–54). Blockade of CTLA-4, such as with Ipilimumab

(55), results in the amelioration of the immune response

against tumors.

1.3.3 LAG3
LAG3 and CD4 share very similar structures in that they both

have four extracellular Ig-like domains (56, 57). Interestingly, LAG3

has a 100-fold higher binding affinity with MHC class II (MHCII)

compared to CD4, which is why MHCII is presumed to be the ligand

for LAG3 (43) and why LAG3 may be a negative competitor of CD4

(58–62).
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1.3.4 TIM3
Contrary to other immune checkpoint proteins, TIM3 does not

consist of classical inhibitory signaling motifs such as ITIMS, but

instead contains five conserved tyrosine residues (47). Two of these

residues can be phosphorylated by Src kinases and are essential for

downstream signal transduction (63, 64). Thus far, four distinct

ligands, both soluble and surface-bound, have been found to

interact with the IgV domain of TIM3 (phosphatidylserine

(PtdSer), high-mobility group box-1 protein (HMGB1),

carcinoembryonic antigen-related cell adhesion molecule 1

(CAECAM-1) and galectin-9 (Gal-9)) (65). It is noteworthy to

mention that PD-1 and TIM-3 can share ligands, as is the case with

Gal-9 (66). Tumor-infiltrating dendritic cells (DC) highly express

TIM3, which can compete with nucleic acid binding to its ligand

high-mobility group protein B1 (HMGB1), reducing anti-tumor

immunity otherwise mediated by nucleic acids (67). TIM3 also

works to inhibit T cells via interaction with the ligand Caecam1 (68).
1.3.5 TIGIT
T cell immunoglobulin and ITIM domain (TIGIT) was first

identified in 2009 as an inhibitory immune checkpoint by Yu et al.

(48). TIGIT has an extracellular immunoglobulin variable region, a

transmembrane domain, as well as a cytoplasmic portion that

contains an ITIM and an immunoglobulin tail tyrosine (ITT)-like

phosphorylation motif (48), by which it delivers its inhibitory signals.

TIGIT expression is restricted to lymphocyte and is found mainly on

memory T cells and regulatory T cells (Tregs) as well as on NK cells

(48, 69). Niebel et al. (70) have suggested that the expression of TIGIT

mRNA is regulated via the methylation of the TIGIT gene. TIGIT

binds to poliovirus receptor (PVR), also known as CD155 (71) with

the highest binding affinity, as well as PVR ligand (PVRL) 2, also
FIGURE 1

Structure of different immune checkpoints. Immune checkpoints and their structure expressed on T cells (bottom) and their respective ligands expressed
on APCs (top). Depicted here are CTLA-4, PD-1, TIGIT, TIM-3 and LAG3. APC, antigen presenting cell; CTLA-4, Cytotoxic T lymphocyte antigen 4;
PD-1, Programmed Death-1; TIGIT, T cell immunoglobulin and ITIM domain; TIM-3, T cell immunoglobulin domain and mucin domain 3; LAG3,
lymphocyte activation gene-3.
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known as CD112 or Nectin-2 and PVRL3, also known as CD113 or

Nectin-3 with lower affinity (71). Similar to CTLA-4/B7/CD28

pathway (72), TIGIT achieves its inhibitory effects by competing

with other ligands such as CD266 or CD96 (73). The hypothesis that

TIGIT inhibits T cell proliferation has been tested by several groups

(74–76) and they reported a direct inhibitory effect.

Concerning the immunosuppressive effect of TIGIT, several

mechanisms may explain its function. Among them, TIGIT

signaling has been shown to inhibit NK cell degranulation and

cytotoxicity (69, 77), where Stanietsky et al. (69) have demonstrated

that this inhibitory effect is mediated directly via the ITIM of TIGIT.

Additionally, TIGIT prevents CD226 signaling in T cells by

preventing the homodimerization of the protein (78). CD226

transmits an activating signal and consequently induces the

aggregation of LFA-1, an important integrin involved in T cell

migration as well as cytotoxicity (79), where aggregation of

integrins affects their conformation and the interaction with their

ligand (80). The Treg response has also been reported to be

modulated by TIGIT (78, 81). In these studies, TIGIT+ Tregs

express higher levels of classical Treg genes, such as the

transcription factor forkhead box P3 (FoxP3), and the surface

molecules CD25 and CTLA-4. The engagement of TIGIT further

leads to the secretion of IL10, a hallmark immunosuppressive

cytokine, which selectively dampens T helper (Th)1 and Th17

immune responses (78). In certain types of cancer such as follicular

lymphoma, TIGIT is strongly expressed by intratumoral Tregs as well

as memory CD8+ T cells. Here, high numbers of TIGIT-expressing

tumor infiltrating lymphocytes have been correlated with a poor

survival rate (82). As such, TIGIT may in the future be used as a

prognostic marker, since elevated expression in T and NK cells

predicts negative clinical outcomes (83–90). Based on these

findings, TIGIT has become the subject of increased research as a

target for cancer therapy, especially in combination with other ICIs,

such as PD-1 inhibitors (91).

We here set out to review the literature of the past 20 years on the

reciprocal interaction of TIGIT and the T cell metabolism, how it

affects anti-tumor immunity, and how a better understanding of this

interaction can pave the way for improved immunotherapy to

treat cancer.
2 Main review

2.1 Interaction of TIGIT and the
metabolic TME

2.1.1 Inhibition of glucose metabolism in T cells
A recent study by Shao et al. (92) focused on the role of TIGIT in

patients with colorectal cancer and revealed that upregulated TIGIT

expression in CD3+ T cells correlated with poor survival. In this study

the authors found that T cells expressing TIGIT had impaired

proliferation, cytokine production, glucose uptake, and glycolytic

function. Investigations by He et al. (86) demonstrated that TIGIT+

CD8+ T cells are impaired in their effector function, allowing for the

hypothesis that immune escape in gastric cancer is at least in part

mediated by the upregulation of TIGIT. These TIGIT+ CD8+ T cells

had significantly reduced expression of glycolysis genes, including
Frontiers in Oncology 04
GLUT1 as well as (hexokinase) HK1 and HK2, which resulted in

impaired glucose uptake and glycolysis (Figure 2). Aside from cancer,

another study by Calvet-Mirabent et al. (93) has shown the relevance

of the connection between glucose metabolism and TIGIT as an

immune checkpoint in HIV infection. In their study, the authors

utilized dual blockade of PD-1 and TIGIT, as well as employed the

pro-glycolytic drug Metformin, and investigated the functional

properties of CD8+ T cells from HIV-1 patients. Significant positive

correlations were observed between the increase in maximum

glycolytic activity after TCR activation and the percentages of

single-positive TIGIT cells, while co-expression of PD-1 and TIGIT

resulted in lower glycolysis rates. Further, treatment with Metformin

together with dual blockade of the two checkpoints restored cytotoxic

activity of CD8+ T cells (93). Thus, TIGIT seems to be capable to alter

T cell function via the inhibition of glycolysis.

2.1.2 Hypoxia
Hypoxia is widely accepted to be a critical mechanism responsible

for the resistance of tumor cells to radio-, chemo-, and

immunotherapy (94–97). As the volume of a tumor increases,

increasing numbers of cells need to be supplied with blood and

oxygen, which requires additional vascularization of the tumor tissue.

Without this additional supply of blood and oxygen, a state of

hypoxia sets in (98). It is well established that the transcription

factor hypoxia-inducible factor 1a (HIF-1a) regulates the

expression of immune checkpoint proteins such as PD-L1 and

CD73 (99, 100). HIF-1a is a master regulator of the cell’s response

to hypoxia (101). Under normoxic conditions, the activity of HIF-1a
is repressed by proteasomal degradation via the oxygen-dependent

prolyl hydroxylase domain (PHD) and the von Hippel-Lindau (VHL)

protein (102). During tumor development, HIF-1a is pivotal to the

cells’ metabolic adaptation to their surroundings, as growth success

under metabolic duress strongly depends upon the cell’s ability to

shift from oxidative phosphorylation (OXPHOS) to the more

inefficient glycolytic metabolism for ATP generation. This is

accomplished by HIF-1a-regulated genes encoding enzymes for

glycolysis, such as the glucose transporters GLUT1 and GLUT3,

HK1, and HK2 as well as phosphoglycerate kinase 1 (PGK1) (103).

HIF-1a further regulates the expression of vascular endothelial

growth factor (VEGF) (104), which enables neovascularization

of tumors.

So far, one study has recently addressed the synergy between

TIGIT and HIF-1a (105). In this study, Fathi et al. demonstrated that

simultaneous blocking of both TIGIT and HIF-1a results in a

significant reduction of tumor cell invasion, decreased colony

formation, and inhibited angiogenesis (105). Both matrix

metalloproteinases (MMP) 2 and MMP9 as well as VEGF mRNA

expression levels were decreased under the dual blockade.

Additionally, expression of the anti-apoptotic protein B-cell

lymphoma (BCL)2 was downregulated, whereas mRNA expression

of the pro-apoptotic protein Bcl-2-associated X protein (BAX) was

upregulated. What remains unclear is if and how, precisely, these two

proteins interact with one another. Since a correlation between TIGIT

and HIF1a was demonstrated by Fathi et al., further research is

required to unravel the precise mechanisms of relation of the two

proteins in T cells, especially when considering that HIF1a increases

the expression of other immune checkpoints such as PD-L1 (11–13).
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2.1.3 Adenosine
Originally, adenosine receptors (ARs) were categorized into A1 or

A2 ARs, depending on whether they have an inhibitory or stimulatory

effect on cyclic adenosine monophosphate (cAMP) in the brain (106).

Currently, ARs are categorized into four subtypes, A1, A2A, A2B and A3

(107). Themajority of A2ARs are distributed in organs of the respiratory

system, heart and lung, as well as in the central nervous system (CNS),

and the immune system (108, 109). The adenosine receptor A2A

(ADORA2) plays an important role in protecting tissues from

immune-mediated damage following noninfectious inflammation, as

well as in regulating the accumulation of CD8+ T cells and NK cells (110,

111). An altered metabolism, increased expression of CD73 as well as

hypoxia (112) in the tumor can lead to higher adenosine levels in the

TME (111, 113) via signaling through the A2A adenosine receptors

(114). In this context, Ohta et al. (111) investigated the effect of A2A

receptor deficiency on anti-tumor immunity mediated by CD8+ T cells

and observed that genetic deletion of the A2A receptor results in tumor

rejection in mice. Additionally, A2A receptor antagonists considerably

delayed tumor growth via anti-tumor CD8+ T cells. Ohta et al. (115)

have shown that immunosuppressive Tregs were induced by increased

levels of extracellular adenosine, as mediated via A2AR stimulation. As

of yet, only very few studies (116, 117) have investigated in detail the
Frontiers in Oncology 05
correlation between the A2A receptor and TIGIT so far. Brauneck et al.

(116) investigated the correlation between the A2A receptor and TIGIT

on NK cells and showed that NK-cell mediated killing of acute myeloid

leukemia (AML) cells could be ameliorated by co-blockade of TIGIT

and A2AR, or of TIGIT and CD39, indicating a link between the two

proteins. Another study by Muhammad et al. (117) revealed that the

stimulation of the A2A receptor is necessary for the emergence of

TIGIT-positive Tregs in mice and that this axis is impaired in uveitis

patients. This study appears to have identified a subset of TIGIT+ Tregs

that are functionally dependent on the expression of the A2A receptor.

2.1.4 IDO
IDO1 plays a pivotal role in the conversion of tryptophan to

kynurenine (118). IDO1 is highly expressed in tumor cells and

contributes to the establishment of a local immunosuppressive TME

by enabling immune tolerance (119). It has been demonstrated that

IDO1 inhibition induced a robust anti-tumor immune response in a

mouse model when employed both as a single agent (120–127), or in

combination with chemotherapeutic drugs (121, 128), highlighting the

potential of IDO1 as a therapeutic target.

A recent study by Robertson et al. (129) has shown that CD8+ T

cell tumor infiltrates from uveal melanoma (UM) overexpress the genes
FIGURE 2

Reciprocal interaction of TIGIT signaling and T cell metabolism. I: Effect of TIGIT on glucose metabolism. Cancer cells inhibit T cell metabolism via
enhancing the upregulation of TIGIT, resulting in impaired glycolysis gene expression of GLUT1 and HK1/2, glucose uptake and glycolysis, and reduced
proliferation. II: Effect of TIGIT on hypoxia and hypoxia sensing. HIF1-a regulates the expression of immune checkpoints and the expression of VEGF,
which mediates tumor neovascularization. Simultaneous blocking of HIF1-a and TIGIT results in reduced tumor invasion and colony formation, as well as
impaired angiogenesis and reduced MMP2/9 expression. Dual blockade leads to induction of pro-apoptotic BAX. III: Interaction of TIGIT and adenosine
signaling and IDO. A2AR regulates the accumulation of CD8+ T cells and Tregs. Altered metabolism and hypoxia result in increased adenosine in the
TME. Deletion of A2AR leads to tumor rejection in mice. IDO is highly expressed by tumor cells and generates an immunosuppressive TME. Many cancer
cells overexpress IDO1 and TIGIT simultaneously. IV: Interaction of chemotherapy and senescence and TIGIT. Chemotherapy regimens can result in the
upregulation of TIGIT. A2AR is increased on the surface of senescent cells, with simultaneous upregulation of TIGIT. TIGIT, T cell immunoglobulin and
ITIM domain; HK, hexokinase; GLUT1, glucose transporter 1; HIF1-a; hypoxia-inducible factor 1 alpha; MMP, matrix metalloproteinase; BAX, Bcl-2-
associated X protein; IDO, indoleamine-pyrrole 2,3-dioxygenase; TME, tumor microenvironment.
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encoding for both IDO1 and TIGIT. As previously mentioned, IDO is

known to limit T cell function and induce mechanisms of tolerance

(130, 131). Stålhammer et al. (83) have demonstrated that not only the

number of IDO+ cells in tumor tissues of UM appear higher than in

normal choroid tissues, but that the same is true for TIGIT+ cells.

Importantly, the number of IDO+ cells correlated with the number of

TIGIT+ cells in tumor cores and full tumor sections (83). The

association of TIGIT expression with IDO and PD-L1 has also been

observed in the tumor core of glioblastoma (GBM) (132), underlining

the necessity to further study the correlation between these proteins.

2.1.5 Chemotherapy and senescence
TIGIT has recently been described as a marker for senescence due

to its higher expression in aged T cells (133). The blocking of TIGIT

results in improved functional capacity of senescent T cells as

demonstrated by Song et al. (133), Chew et al. (134) and Kong

et al. (84). The latter study also demonstrated that TIGIT expression

on CD8+ T cells is not only elevated in acute myeloid leukemia (AML)

patients, but that high TIGIT levels also correlate with primary

refractory disease, as well as leukemia relapse following allogenic

stem cell transplantation. TIGIT-high CD8+ T cells presented as

functionally impaired and exhausted, whereas TIGIT blockade

rescued functionality and anti-tumor response, highlighting TIGIT

blockade as a potential therapeutic approach for leukemia.

Cancer treatment options in terms of chemotherapy are varied and

often rely on combinatorial therapies. Some common agents used for

different types of cancer are 5-Fluorouracil, an antimetabolite, DNA

intercalators such as oxaliplatin and taxanes that target microtubules

(135). A recent study by Davern et al. (136) revealed certain

chemotherapy regimens give rise to an immune-resistant phenotype

via the upregulation of inhibitory immune checkpoint ligands, among

them TIGIT, in oesophageal adenocarcinoma (OAC). The study aimed

to elucidate the effect of OAC chemotherapy approaches on the

induction of a senescent-like state in cancer cells as senescent cancer

cells are involved in conferring treatment resistance and promoting a

microenvironment conducive to tumor growth via secretion of several

pro-inflammatory markers, referred to as senescence-associated

phenotype (SASP) (136).Using ß-galactosidase (ß-gal), an enzyme

involved in the process of producing galactosylated proteins, as a

marker for senescence, the authors demonstrated that the number of

senescent-like cells increased significantly following chemotherapy,

prompting the question whether immune checkpoints were expressed

on these senescent cells or even upregulated following the treatment. The

immune checkpoint TIM-3 was significantly upregulated in OE33 cells,

whereas TIGIT was significantly upregulated in the SK-GT-4 cells. We

know that immune checkpoints are essential for immune evasion, and if

these immune checkpoints are present on senescent OAC cells, this may

represent a drugable target for future therapies. Returning to another

protein already addressed in this review, the adenosine receptor A2A was

significantly increased on the surface of senescent-like SK-GT-4 cells,

which were also shown to have increased TIGIT expression following a

chemotherapy regimen. While senescent cells do have an activated

glucose metabolism, they at the same time display an unbalanced lipid

metabolism, which results in an altered expression of lipid metabolic

enzymes, ultimately culminating in senescence induction and thereby

limited functionality (137). Senescent T cells also demonstrate loss of cell

surface CD28 (138–140), a protein required for lipid raft formation, IL-2
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gene transcription and T cell activation. Since CD28 has also been linked

to metabolic fitness of a T cell (141), the loss of this protein due to

senescence can dramatically affect T cell functionality (142). Liu et al.

(137) have demonstrated that the prevention of T cell senescence resulted

in enhanced anti-tumor immunity, therefore maybe providing another

point of potential therapeutic application.

Interestingly, TIGIT has also been shown to be intrinsically

expressed in murine colorectal cell lines (143). To elucidate the

functional effect of this intrinsic TIGIT, Zhou et al. (143) deleted

the protein using CRISPR/Cas9 and observed that knockout resulted

in significantly impaired tumor growth, together with increased IFNy

secretion and cytotoxicity by NK cells, indicating that tumor cell-

intrinsic TIGIT has a considerable effect on tumor growth and may

present a potential therapeutic target.
2.2 Current status of anti-TIGIT therapeutics
in clinical studies

As of August 2021, several anti-TIGIT antibodies were registered in

preclinical and active clinical trials (clinicaltrials.org, anti-TIGIT). For

example, two antibodies had progressed to the Phase III status

(Tiragolumab (144), Ociperlimab (145)) and two were active in

Phase II trials Vibostolimab, Domvanalimab) (146, 147), all of which

also in combination with Atelizumab (anti-PD-L1), Pembrolizumab

(anti-PD-1) and other agents. Additionally, a bispecific antibody

targeting both PD-1 and TIGIT (HLX301, NCT05102214)

simultaneously is under current clinical review. As discussed, TIGIT

expression has been observed, among others, with PD-L1 in the tumor

core (132), hinting at some kind of link between these two proteins.

Currently, an anti-TIGIT candidate in combination with an anti-PD-1

antibody is being evaluated for the application for recurrent

glioblastoma (148). Furthermore, increased levels of extracellular

adenosine, as mediated by A2AR stimulation (114), have been shown

to have a detrimental effect on anti-tumor activity (111, 115–117).

Etrumadenant, an A2AR antagonist, is currently being investigated in a

clinical trial in combination with Domvanalimab and Zimbrelimab

(anti-PD-1) (149). It is noteworthy that the majority of the anti-TIGIT

antibodies in clinical trials currently are fully human and demonstrate

good tolerance by patients, also in combination with anti-PD-1 and

anti-PD-L1 antibodies (150). As previously discussed in this review,

TIGIT monotherapy does not result in significantly altered disease

outcomes, underlining this as a potential caveat of TIGIT as a

therapeutic target and highlighting the necessity for a combinatorial

approach with other agents. Immune checkpoint therapy using

Ipilimumab and Nivolumab as the most prominent agents has

proved successful, and, taken together with the low efficacy of anti-

TIGIT monotherapy, prompts the question which cohort of patients

could additionally benefit from either a monotherapy or a

combinatorial treatment.
2.3 The potential of PD-1, CTLA-4 and other
negative regulators as biomarkers

Predictive biomarkers are essential to evaluate the outcome of

therapeutic approaches, or at least, to provide an indication before
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commencement of the therapy regimen. Especially in the case of

highly multifactorial diseases such as cancer and autoimmunity, such

biomarkers should ideally indicate whether a monotherapy or a

combinatorial approach is necessary. Here, the induction of

negative regulators results in the suppression of, among other

mediators, cell death mechanisms (151). Specifically these negative

regulators of cell death signaling, such as heat shock proteins (HSP)

(152), the Bcl-2 family (153), the PI3K/Akt/mTOR pathway (154) and

others, as reviewed in detail by Razaghi et al. in (155), have found

clinical application as prognostic biomarkers. In summary, negative

regulators of cell death signaling appear to have great potential and

present clinical application as prognostic biomarkers, raising the

question whether this is also the case for the immune checkpoint

proteins. When considering anti-PD-1 or anti-PD-L1 therapy, using

(over-)expression of PD-L1 as biomarker appears plausible. In this

context, Teng et al. (156) came up with a classification that describes

PD-L1 positive tumors with infiltrating lymphocytes as a type 1 TME,

proposing it to be the most likely to respond to immune checkpoint

blockade. However, also PD-L1 negative tumors have been shown to

be able to respond positively to antibodies targeting the PD-1/PD-L1

axis (157, 158). This consequently raises the concern that the

predictive value of PD-1 and PD-L1 as biomarkers may not be

optimal and universally valid across all patients, as intrapatient and

even intratumor heterogeneity has been observed (159).

Other studies have hinted at the possible prognostic power of

CLTA-4 expression. Here, Liu et al. (160) have demonstrated that, in

some cancers, patients with higher CTLA-4 expression had a shorter

overall survival than those with lower expression. However, an

association between the expression levels of PD-1 and CTLA-4 and

tumor-infiltrating cells exists (160). Liu et al. point out that the

expression of these two immune checkpoint proteins varies across

different cancers and that many cancer types demonstrate PD-1 and

CTLA-4 mutations, leading to their abnormal expression, which may

be used as a prognostic biomarker.

Whether TIGIT can be used in a similar manner remains to be

investigated and demonstrated. Since TIGIT in its effects appears to

be functionally and mechanistically tethered to other negative

immune regulators such as PD-1, TIGIT alone may not prove a

reliable and unambiguous prognostic biomarker. To assess the

protein’s capacity of serving as a prognostic factor, large amounts

of correlation data from different kinds of cancers, across different

genders, ages and perhaps even ethnicities are necessary, providing

information on its function and mechanistics on its own and together

with other proteins that TIGIT is known to interact with. It may well

be possible that a combination of factors, such as presence of PD-1,

TIGIT and senescence markers will be able to form a prognostic unit

of response to and success of immunotherapy in different cancers.
3 Discussion

While the exact role of TIGIT within the TME is still not fully

elucidated, the apparent synergy between TIGIT and HIF-1a as well

as PD-1 (161) does allow for the assumption that this protein does not

simply have a redundant role. Based upon the literature reviewed

here, blockade or targeting of TIGIT alone does not appear to have a

major effect on either the progression or even curative approaches in
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different oncologic diseases. It is rather the combination of TIGIT

blockade together with blocking of another checkpoint, such as PD-1.

The fact that a synergy exists between the two is well documented and

accepted to the point that several clinical trials aiming to block both

proteins simultaneously are currently ongoing (162). The challenge of

such a therapy, even if successful, lies in the fact that not all cancers

are PD-L1 positive, thereby restricting the potential applications from

the beginning. Another potential caveat is that the precise mechanism

of the synergistic effects observed between the two checkpoint

proteins is not fully understood, and as such it may prove difficult

to design effective and individualized therapies without fully

understanding the mechanistic foundations of the observed effects.

In terms of metabolism, it can be hypothesized that presence or

overexpression of TIGIT poses a metabolic barrier to T cell function.

Data by Gilmour et al. (163) suggest that the co-expression of TIGIT

with VISTA may lead to an altered metabolic phenotype of CTL. It

was been detailed in the introductory section of this review that

several other immune checkpoint proteins, such as

PD-1 and CTLA-4 appear to have an effect on glycolysis of tumor

cells, and thereby on the ability of immune cells to perform glycolysis

due to nutrient competition within the TME. Limited nutrient ability,

such as the scarcity of glucose, will lead to impaired T cell function

and therefore an impaired anti-tumor response of those T cells. It is

therefore crucial to further investigate the potential direct and indirect

effects of TIGIT on the metabolism of T cells and other immune cells

in the context of anti-tumor immunity.

It is well-known that hypoxia plays a major role in creating hostile

microenvironments that are toxic to immune cells yet conducive to

tumor growth. So far, only one study has investigated the direct

interaction between HIF-1a and TIGIT. It remains an open question

whether a potential three-way synergy might exist between blocking

not only TIGIT and PD-1, but also HIF-1a. Along this line, it would
be important to assess whether a co-blockade of TIGIT and HIF-1a is

as effective as the blockade of TIGIT and PD-1 as a therapeutic

possibility for those cancers which are not PD-L1 positive.

The interplay between TIGIT and adenosine as well as the A2A

receptor makes for another interesting point of further investigation.

The genetic deletion of the A2A receptor in mice resulted in tumor

rejection (162), allowing for the hypothesis that some connection may

also exist between these proteins. Additionally, it is known that

hypoxia leads to higher adenosine levels in the TME, prompting the

question whether the TIGIT-A2AR-HIF-1a axis could provide

another possible three-way blockade for therapeutic purposes. The

A2A receptor was additionally observed to be upregulated on the

surface senescent cancer cells, which at the same time showed

increased TIGIT expression following some chemotherapy regimens.

The potential of TIGIT expression as a biomarker has been

suggested, although for this, larger association studies are needed.

Future experiments should aim to elucidate the connection between

TIGIT and other immune checkpoints, particularly those involved in

the immune response against cancers which do not express PD-L1, as

well as the interplay with HIF-1a and the A2A receptor. Perhaps this

will lead to a better understanding of the exact mechanisms governing

the synergistic inhibitory effects of combination treatments. Taken

together, TIGIT appears to have a therapeutic potential, especially in

the context of combinatorial therapies and alleviating the metabolic

barrier that immune checkpoint proteins are able to pose, that should
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not be overlooked and disregarded for further research, both of basic

and translational nature.
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