
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Lorenz Kadletz-Wanke,
Medical University of Vienna, Austria

REVIEWED BY

Serena Monti,
National Research Council (CNR), Italy
Rachel Ger,
Johns Hopkins Medicine, Johns Hopkins
University, United States

*CORRESPONDENCE

Lili Guo

guolili163@163.com

SPECIALTY SECTION

This article was submitted to
Head and Neck Cancer,
a section of the journal
Frontiers in Oncology

RECEIVED 03 October 2022

ACCEPTED 20 January 2023
PUBLISHED 03 February 2023

CITATION

Kong D, Shan W, Zhu Y, Xu Q, Duan S and
Guo L (2023) Preliminary study on CT
contrast-enhanced radiomics for
predicting central cervical lymph node
status in patients with thyroid nodules.
Front. Oncol. 13:1060674.
doi: 10.3389/fonc.2023.1060674

COPYRIGHT

© 2023 Kong, Shan, Zhu, Xu, Duan and Guo.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 03 February 2023

DOI 10.3389/fonc.2023.1060674
Preliminary study on CT
contrast-enhanced radiomics for
predicting central cervical lymph
node status in patients with
thyroid nodules

Dan Kong1, Wenli Shan1, Yan Zhu1, Qingqing Xu1,
Shaofeng Duan2 and Lili Guo1*

1Department of Imaging, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University,
Huaian, Jiangsu, China, 2Institute of precision medicine, GE Healthcare, Shanghai, China
Objective: To explore the feasibility of using a contrast-enhanced CT image-based

radiomics model to predict central cervical lymph node status in patients with

thyroid nodules.

Methods: Pretreatment clinical and CT imaging data from 271 patients with surgically

diagnosed and treated thyroid nodules were retrospectively analyzed. According to

the pathological features of the thyroid nodules and central lymph nodes, the patients

were divided into three groups: group 1: papillary thyroid carcinoma (PTC) metastatic

lymph node group; group 2: PTC nonmetastatic lymph node group; and group 3:

benign thyroid nodule reactive lymph node group. Radiomics models were

constructed to compare the three groups by pairwise classification (model 1: group

1 vs group 3; model 2: group 1 vs group 2; model 3: group 2 vs group 3; andmodel 4:

group 1 vs groups (2 + 3)). The feature parameters with good generalizability and

clinical risk factors were screened. A nomogram was constructed by combining the

radiomics features and clinical risk factors. Receiver operating characteristic (ROC)

curve, calibration curve and decision curve analysis (DCA) were performed to assess

the diagnostic and clinical value of the nomogram.

Results: For radiomics models 1, 2, and 3, the areas under the curve (AUCs) in the

training group were 0.97, 0.96, and 0.93, respectively. The following independent

clinical risk factors were identified: model 1, arterial phase CT values; model 2, sex

and arterial phase CT values; model 3: none. The AUCs for the nomograms of

models 1 and 2 in the training group were 0.98 and 0.97, respectively, and those in

the test group were 0.95 and 0.87, respectively. The AUCs of the model 4

nomogram in the training and test groups were 0.96 and 0.94, respectively.

Calibration curve analysis and DCA revealed the high clinical value of the

nomograms of models 1, 2 and 4.

Conclusion: The nomograms based on contrast-enhanced CT images had good

predictive efficacy in classifying benign andmalignant central cervical lymph nodes

of thyroid nodule patients.
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thyroid, cancer , lymph node, radiomics , x-ray computed tomography,
contrast enhancement
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1 Introduction

Thyroid nodules are a common disease that appear in the neck,

the most common of which are papillary carcinoma (PTC) and

adenoma, which are often associated with enlarged lymph nodes in

the neck. Patients with PTC have a relatively good prognosis, with a

mortality rate of less than 10% (1, 2). However, approximately 40-

70% of patients with PTC develop cervical lymph node metastases,

which are associated with recurrence and poor prognosis (3). Lymph

node metastasis occurs mainly in the central region, which contains

the sentinel lymph nodes of thyroid cancer, while the lymph nodes of

adenoma are mostly reactive hyperplasias. Some patients present with

enlarged lymph nodes in the neck, and therefore, the nature of the

lymph nodes often needs to be determined in the absence of a clear

etiology. Currently, the analysis of lymph nodes mainly relies on

morphology, but enlarged lymph nodes may be attributable to

inflammatory reactive hyperplasia, while normal-sized lymph nodes

may also have tumor infiltration; therefore, the accuracy in assessing

benign and malignant lymph nodes based solely on morphological

features (e.g., size) is not high (4), with an overall misclassification

rate of approximately 15%-20% (5). Radiomics can help identify

features that are difficult to observe with the naked eye in images and

can be used to quantitatively assess the heterogeneity of lesions (6).

Recent studies have found that radiomics can be used to describe

tumor phenotypes, distinguish benign and malignant tumors, and

predict lymph node metastasis and outcomes (7). Radiomics models

have been shown to predict lymph node metastasis in PTC (8, 9), and

CT-based radiomics models are also valuable in the differentiation of

benign and malignant lymph nodes in the head and neck (10). Few

studies have examined the differentiation of metastatic and

nonmetastatic lymph nodes among patients with PTC and the

classification of reactive hyperplastic lymph nodes among patients

with benign thyroid lesions. The purpose of this study was to

determine the efficacy of using a CT-based radiomics model to

classify lymph nodes in the central neck regions of patients with

thyroid nodules.
2 Materials and methods

2.1 General information

This retrospective study was approved by a hospital ethics

committee, and informed consent was waived. We retrospectively

collected data from patients with surgically and pathologically

confirmed thyroid nodules from May 2020 to December 2021.

Clinical data and contrast-enhanced CT images of lymph nodes in

the central cervical region were collected. The inclusion criteria were

as follows: 1. A single thyroid lesion, diagnosed as PTC or thyroid

adenoma by postoperative pathology; 2. intraoperative lymph node

dissection in the central neck region revealing a PTC pathology (for

patients with PTC) or no lymph node pathology (for patients with

thyroid adenoma); no history of malignant tumors or blood disorders;

and normal tumor-related indicators on preoperative routine

examination; 3. lymph node diameter in the central region of the

neck ≥5 mm (11); 4. contrast-enhanced CT examination performed
Frontiers in Oncology 02
within two weeks before surgery and treatment consistent with the

diagnosis and postprocessing; and 5. no radiotherapy or

chemotherapy before surgery. To avoid experimental deviation,

lymph nodes larger than 20 mm were excluded from this study.

For the final lymph node pathological findings, the all-or-none

principle was used (12). When all lymph nodes within the central

zone of PTC patients had metastatic pathological findings, the lymph

nodes seen on images within the zone were labeled metastatic lymph

nodes; when all lymph nodes within the zone had nonmetastatic

pathological findings, the lymph nodes seen on images within the

zone were labeled nonmetastatic lymph nodes; and when the lymph

node pathological results were both metastatic and nonmetastatic,

they were not included. One large and clearly displayed lymph node

in the central region was selected as the target lesion for each patient.

A total of 271 patients were included in this study, including 41

males and 230 females, with ages ranging from 22-78 years (average

46.5 ± 17.4 years). The flowchart of inclusion and exclusion is shown

in Figure 1. A total of 178 patients had PTC (71 patients in the lymph

node metastasis group and 107 patients in the nonmetastasis group).

Ninety-three patients were pathologically diagnosed with thyroid

adenoma, and their lymph nodes were classified into the benign

reactive lymph node group. Based on the pathologic findings of

thyroid nodules and central lymph nodes, we divided the patients

into three groups: the PTC metastatic lymph node (MLN) group; the

PTC nonmetastatic lymph node (non-MLN) group; and the

hyperplastic lymph node (HLN)/thyroid adenoma group. Four

classification models were constructed, as shown in Figure 2.

First, three models were constructed:
Model 1: MLN 71 patients, HLN 93 patients;

Model 2: MLN 71 patients, non-MLN 107 patients;

Model 3: non-MLN 107 patients, HLN 93 patients.
Second, model 4 was constructed, including 71 patients in the

MLN group and 200 patients in the HLN and non-MLN groups.
2.2 CT examination method

A Siemens definition 64-slice CT scanner from Germany was

used to perform routine noncontrast scans and 2-phase enhanced

scans. The tube voltages were 120 kV, and CARE Dose 4D was used.

The slice thickness was 2 mm, and the pitch was 0.8. A volume of 60-

70 ml of the contrast agent ioversol (containing 320 mg/ml iodine)

was injected into the median elbow vein at an injection rate of 3.0 ml/

s, followed by injection of 15 ml of normal saline. The aortic arch was

monitored by the contrast agent bolus tracking method, with a trigger

threshold of 100 HU, an arterial phase delay time of 10 s, and a venous

phase delay of 25 s. Before the scan, the patients were instructed to

breathe and then hold their breath with the arms placed at the sides of

the body. During the scan, the patients were asked to maintain a

supine position with the neck leaning backward and maximally

lowered shoulders, and swallowing was prohibited. The scanning

range extended from the mandible to the base of the neck. If the

thyroid extended behind the sternum, the scanning range was

expanded to cover the entire thyroid.
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2.3 CT image analysis

The clinical and imaging data of all patients were analyzed by two

experienced radiologists to determine lymph node status, including

age, sex, the short and long diameters of the lymph nodes in the

transverse axis on the slice showing the largest area, the shape of the

lymph nodes, the CT value during the arterial and venous phases, and

the difference in the CT value between the venous phase and arterial

phase. The CT value is a measurement unit that can reflect the density

of the lymph nodes. Two experienced radiologists measured the

corresponding CT values three times and took the average value.

During the measurement, the radiologists ensured that the solid area

was as wide as possible, and cystic necrosis and calcification was
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avoided as much as possible. Any obvious differences between the

radiologists’ evaluations were resolved by consensus.
2.4 Region of interest segmentation and
feature extraction

2.4.1 ROI segmentation
Two experienced radiologists (Doctor A and B) used ITK-SNAP

(www.itksnap.org) software to delineate the lymph node edges layer

by layer on the arterial- and venous-phase CT images to synthesize a

3-dimensional (3D) ROI. Doctor A performed two delineations, 1-2

weeks apart; Doctor B performed one.
FIGURE 2

Schematic diagram of model construction.
FIGURE 1

Patient enrollment process.
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2.4.2 Radiomics feature screening and
establishment of the radiomics model

The arterial- and venous-phase images were standardized using

A.K software (version: 3.2.0.r, Artificial Intelligence Ki, GE

Healthcare), and then, the radiomics features were extracted from

the 3D ROIs using PyRadiomics. We used R software (http://www.

Rproject.org, version 3.4.4) to analyze the data. After lymph node

segmentation, the software automatically obtained 14 shape features,

18 first-order features, and 68 texture features. We first performed

consistency tests within and between the observer datasets; that is, we

calculated the intraclass correlation coefficient (ICC) between the

features extracted from the two ROIs constructed by Radiologist A as

well as the ICC between the features extracted from the first ROI

constructed by Radiologist A and that constructed by Radiologist B.

Features with an ICC>0.75 in both calculations were retained, and the

features extracted from the first ROI constructed by Radiologist A

were used for subsequent analysis.

We used the stratified random sampling method to divide

patients into training and test groups at a 7:3 ratio. The training

group data were used for feature screening and model construction.

First, maximum relevance and minimum redundancy (mRMR) were

used to remove redundant and irrelevant features, ultimately

retaining 30 features, which were then imported into the least

absolute shrinkage and selection operator (LASSO) regression

model. Ten-fold cross-validation was used to identify the

hyperparameter l of the LASSO regression model; the value

corresponding to the minimum model error was selected to retain

features with nonzero coefficients (Figures 3, 4). Regression and

dimensionality reduction were used to further select features with

good generalizability, which were then used to establish a prediction

model. Each lymph node was scored according to the weights of the

screening features. A diagnostic model was established by machine
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learning using the subset of the data screened by the feature variables,

and the validity and reliability of the diagnostic model were evaluated

by using the area under the receiver operating characteristic (ROC)

curve (AUC). The characteristics of good repeatability and stability

were used to build the radiomics model. Linear fusion of the selected

features was performed to calculate the radiomics score.
2.5 Construction and evaluation of the
radiomics nomogram

In the training group, the clinical risk factors were screened by

one-way ANOVA and then were further analyzed by multivariate

logistic regression analysis to finally determine the independent

clinical risk factors (P< 0.05), which were then used to construct

the clinical models. A nomogram was established by combining the

radiomics signature and the clinical risk factors.

The predictive efficacy of the nomogram was assessed using ROC

and calibration curve analysis. The DeLong test was used to compare

the AUCs between different variables. The calibration curve reflects the

agreement of the predicted probability of the nomogram with the

pathological diagnosis; the closer the calibration curve is to the diagonal

line, the closer the predicted value of the model is to the true value, and

thus the better the calibration is. Decision curve analysis (DCA) was

used to evaluate the potential net clinical benefit and utility of the

prediction model and to validate it in the test group.
2.6 Statistical analysis

All data were statistically analyzed using SPSS 24.0 and R3.4.4

software (https://www.Rproject.org). Single-factor ANOVA was used

to compare patient age between the 3 groups, the LSD method was
FIGURE 3

The optimal tuning parameter (l) was selected using ten-fold cross-
validation with the LASSO regression model. The horizontal axis
represents the log value of the best l, and the vertical axis represents
the corresponding binomial deviation value. The red dots represent
the average deviation of a given l value, the corresponding vertical
line represents the upper and lower limits, and the dotted lines
represent the selected optimal log(l) values.
FIGURE 4

A LASSO regression model was used to screen out the profile of
radiomics feature coefficients in each model. The horizontal axis
represents log(l), and the vertical axis represents the selected
characteristic coefficients. Each line represents the trend for
each feature.
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used for two-way comparisons, and the c² test was used to compare

differences in sex distributions. Otherwise, the Mann-Whitney U test

was used for variable comparison. A two-sided P value<0.05 was

considered significant.
3 Results

3.1 Feature extraction and model
construction of Models 1-3

3.1.1 General patient information
The difference in age between the 3 groups was statistically

significant, and two-by-two ANOVA showed that the average age

of the MLN group [(41.8 ± 12.2)] was significantly lower than that of

the HLN group [(49.9 ± 11.7)] and non-MLN group [(46.9 ± 11.2)]

(P=0.003, P<0.001). The difference in the age between the HLN and

non-MLN groups was not statistically significant (P=0.064). There

was a statistically significant difference in the sex distribution among

all 3 groups (c²=19.838, P<0.001), a statistically significant difference
in the sex distribution between the MLN and HLN groups

(c²=15.635, P=0.015), and no statistically significant difference in

the sex distribution between the HLN and non-MLN groups

(c²=8.634, P= 0.064). In this study, lymph nodes were included

with a short diameter of 5.0 mm to 16.3 mm and a long diameter

of 5.2 mm to 19.3 mm.

We used the stratified random sampling method to divide

patients into training and test groups at a 7:3 ratio. In model 1,

there were 115 patients in the training group (MLN group: 48

patients; HLN group: 67 patients) and 49 patients in the test group

(MLN group: 23 patients; HLN group: 26 patients). In model 2, there
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were 125 patients in the training group (48 patients in the MLN group

and 77 patients in the non-MLN group) and 53 patients in the test

group (23 patients in the MLN group and 30 patients in the non-MLN

group). In model 3, there were 140 patients in the training group (72

patients in the non-MLN group and 68 patients in the HLN group)

and 60 patients in the test group (35 patients in the non-MLN group

and 25 patients in the HLN group).

In the training group, there were statistically significant

differences in age, CT value of the arterial phase and CT value

difference between the venous phase and arterial phase in model 1.

In model 2, there were statistically significant differences in age, sex

distribution, short and long diameter of the lymph nodes, CT value of

the arterial phase, CT value of the venous phase, CT value difference

between venous phase and arterial phase and lymph node shape. In

model 3, there were statistically significant differences in the long

diameter of the lymph node, CT value of the venous phase, CT value

difference between the venous phase and arterial phase and lymph

node shape, as shown in Table 1.

3.1.2 Radiomics feature extraction and selection
and radiomics model establishment

Eight optimal features were selected from model 1, all of which

were from the arterial phase. There were 3 first-order statistical

features, 2 gray level cooccurrence matrix (GLCM) features and 3

gray level dependence matrix (GLDM) features. Eleven features were

screened from model 2, among which 9 were from the arterial phase

and 2 were from the venous phase. There were 3 first-order statistical

features, 5 gray level size zone matrix (GLSZM) features and 3 GLCM

features. Sixteen features were screened from model 3, of which 9

were from the arterial phase and 7 were from the venous phase

(Figure 5). There was 1 first-order statistical feature, 3 GLCM
TABLE 1 Comparison of clinical characteristics of the three models in the training group.

Variable Model 1 Model 2 Model 3

MLN
(n=48)

HLN
(n=67)

P
value

MLN
(n=48)

non-MLN
(n=77)

P
value

non-MLN
(n=72)

HLN
(n=68)

P
value

Age(mean±SD) 41.3±11.9 49.2±12. <0.001 40.9±12.7 46.6±11.0 0.008 47.2±10.6 49.2±12.2 0.196

Sex(n, %) 0.065 0.016 0.693

Male 14 (29.2) 9(13.4) 13(27.1) 7(9.1) 6(8.3) 8(11.8)

Female 34 (70.8) 58(86.6) 35(72.9) 70(90.9) 66(91.7) 60(88.2)

Short diameter of lymph node(mm) 6.4 ± 2.3 5.8 ± 1.1 0.051 6.4 ± 2.3 5.8 ± 1.1 0.036 5.5 ± 0.6 5.7 ± 1.1 0.109

Long diameter of lymph node(mm) 9.0 ± 4.1 8.4 ± 2.1 0.366 9.0 ± 4.1 7.8 ± 2.1 0.029 7.4 ± 1.7 8.3 ± 2.1 0.004

CT value of arterial phase 118.2 ±
49.7

84.5 ±
16.3

<0.001 119.0 ±
52.7

81.0 ± 18.9 <0.001 81.3 ± 18.5 86.6 ±
16.9

0.079

CT value of venous phase 122.7 ±
36.8

114.7 ±
22.2

0.147 123.8 ±
37.6

101.8 ± 20.4 <0.001 102.9 ± 19.9 116.4 ±
21.9

<0.001

CT difference between venous phase and
arterial phase

4.5 ± 30.5 30.2 ±
17.7

<0.001 4.9 ± 31.7 20.8 ± 14.7 <0.001 21.6 ± 14.1 29.8 ±
17.5

0.002

Shape 0.594 0.033 0.009

Regular 36(75.0) 46(68.7) 37(77.1) 71(92.2) 66(91.7) 50(73.5)

Irregular 12(25.0) 21(31.3) 11(22.9) 6(7.8) 6(8.3) 18(26.5)
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features, 4 GLSZM features, 2 GLDM features and 6 gray level run

length matrix (GLRLM) features. Based on these features and their

corresponding regression coefficients, the radiomics model was

constructed, and the Radscore was formulated as follows:

Radscore =o1
nfeaturei*coefficienti+Compensation coefficient

Model 1: Radscore=0.839*log_sigma_4_0_mm_3D_firstorder

_10Percentile. A+ -0.031*log_sigma_4_0_mm_3D_gldm_Small

DependenceEmphasis.A+0.393*original_firstorder_Uniformity.A

+-0.1*log_ sigma_3_0_mm_ 3D_glcm_Imc2. A+ 0.163*log_sigma

_1_0_mm_3D_gldm_LargeDependenceLowGrayLevelEmphasis.A

+0.028*log_sigma_5_0_mm_3D_firstorder_Median.A+0.265*log

_s igma_3_0_mm_3D_g ldm_LargeDependenceLowGray

LevelEmphasis.A+-0.142*log_sigma_2_0_ mm_ 3D_glcm_

Imc2.A+0.443
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Model 2: Radscore=-0.78*wavelet_HHH_glszm_SizeZoneNon

Uniformity. A+ 0.472*log_sigma_3_0_mm_3D_firstorder

_Minimum.A+0.158*wavelet_HHH_glszm_ZoneEntropy.A

+-1.531*original_firstorder_RobustMeanAbsoluteDeviation. A+

0.201*wave let_HHH_glszm_GrayLevelNonUniformity .A

+0.039* log_s igma_3_0_mm_3D_fi rs torder_Minimum.A

+-0.763*log_ sigma_4_0_mm_3D_ firstorder_ Variance. V

+0.518*original_glcm_MaximumProbability.A+-0.727*log_

s igma_5_0_ mm_3D_glszm_SizeZoneNonUni formity .A

+0 . 072*wave l e t _HHH_g l s zm_ZoneEn t r opy .V+-0 . 284*

original_glcm_SumEntropy.A+1.013

Model 3: Radscore=-0.822*wavelet_LLL_glszm_SmallArea

LowGrayLevel -Emphasis .A+0.718*wavelet_HHH_glszm

_GrayLevelVariance.A+0.443*wavelet_LLL_glcm_ClusterShade.A

+-0.73*original_glrlm_ LongRunLowGrayLevelEmphasis. A+-1.132*
A

B

C

FIGURE 5

Radiomic features screened by models 1-3 and their weights. (A) model 1; (B) model 2; (C) model 3 (The letters A and V in the feature names indicate
that the feature was extracted from the arterial phase and the venous phase, respectively).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1060674
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kong et al. 10.3389/fonc.2023.1060674
l og_s igma_ 4_0_mm_3D_gl szm_ ZonePercentage . A+

0.388*wavelet_ HLH_glrlm_LongRunHighGrayLevelEmphasis.A

+0 .31*wave le t_HHH_gldm_DependenceNonUni formity

Normalized.V+-0.209* wavelet_LHH_glrlm_ ShortRunLow

GrayLevelEmphasis.A+0.176*wavelet_HLH_glrlm_RunEntropy.V

+0 .705*or ig ina l_g lcm_Corre la t ion .V+-0 .444* log_s igma

_ 4 _ 0 _mm_3D_ g l s zm_ S i z e Z o n eN on Un i f o rm i t y . A

+0.585*wavelet_LLL_glrlm_LongRunLowGrayLevelEmphasis.A

+-0.43*wavelet_LHH_firstorder_Minimum.V+0.28*wavelet_

HHH_glrlm_LongRunLowGrayLevelEmphasis.V+0.634*original

_glcm_SumEntropy.V+-0.465

The diagnostic efficacy of radiomics models 1-3 is shown

in Table 2.

3.1.3 Clinical feature screening and
nomogram construction

Multivariate logistic regression analysis showed that the CT value

in the arterial phase (OR=1.05, 95% CI: 1.02~1.09) was an

independent clinical risk factor for model 1. Sex (OR=0.1, 95% CI:
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0.01-0.67) and CT value in the arterial phase (OR=0.96, 95% CI 0.94-

0.98) were independent clinical risk factors for model 2. Combining

the clinical risk factors and radiomics labels, a nomogram was

established, and the corresponding scores of each predictive index

were obtained, which were then summed and finally reflected by the

total score. The constructed nomogram is shown in Figure 6. There

were no statistically significant clinically relevant risk factors in model

3, so no nomogram was constructed.
3.2 Feature extraction and model
construction of model 4

In the training group, after feature extraction with mRMR and

LASSO, 5 radiomics features with strong correlations were ultimately

identified (Figure 7). Four features were from the arterial phase, and

one was from the venous phase. Based on these features and their

corresponding regression coefficients, a radiomics model was

constructed. There were 3 first-order statistical features, 1 GLSZM
TABLE 2 Diagnostic efficacy of the radiomics models of models 1-4.

Evaluation
indicators

Model 1 Model 2 Model 3 Model 4

Training
group

Test
group

Training
group

Test
group

Training
group

Test
group

Training
group

Test
group

AUC 0.97 97.92 0.97 0.85 0.93 0.74 0.94 0.93

Accuracy (%) 0.93 91.30 88.00 67.92 88.57 71.67 89.47 87.65

Sensitivity (%) 93.91 98.39 80.52 70.00 92.65 76.00 89.78 90.48

Specificity (%) 89.79 92.00 93.75 86.96 84.72 68.57 88.68 77.78

Positive predictive value
(%)

91.04 88.68 100.00 84.21 85.14 63.33 95.35 93.44

Negative predictive value
(%)

88.46 87.50 76.19 58.82 92.42 80.00 77.05 70.00
f

A

B

FIGURE 6

Nomogram of the prediction model combining clinical risk factors and CT radiomics features. (A) Model 1; (B) Model 2.
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feature and 1 GLRLM feature. The box diagram shows that in the

training group and the test group, the difference in the radiomics

score between patients in the MLN group and in the non-MLN +

HLN) was statistically significant (Figure 8).

Model 4: Radscore=0.773*original_firstorder_Uniformity.A

+0.539*log_sigma_ 5_0_mm_3D_firstorder_10Percentile.A

+-0.226*log_ sigma_2_0_mm_3D_ glszm_ GrayLevelVariance.A

+-0.089*original_ firstorder_ RobustMeanAbsolute Deviation. A

+-0.282*log_ sigma_2_0_mm_ 3D_glrlm_Long RunHighGrayLevel

Emphasis. V+ 1.279

The diagnostic efficacy of radiomics model 4 is shown in Table 2.

Multivariate logistic regression analysis revealed that sex

(OR=0.21, 95% CI: 0.05-0.93), CT value in the arterial phase

(OR=0.96, 95% CI: 0.93-0.99) and CT value in the venous phase

(OR=1.03, 95% CI of 1.00-1.05) were independent clinical risk factors

for discriminating between the MLN and (HLN+ non-MLN) groups.

A nomogram was established combining the clinical risk factors and

radiomic features (Figure 9).
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3.3 ROC curve analysis, calibration curve
analysis and DCA for evaluating the efficacy
and value of the nomograms

ROC curve analysis was used to assess the diagnostic efficacy of

the three models (Figure 10). In the training group, the AUC values of

the nomogram model were higher than those of the radiomics model

and clinical model. DeLong’s test showed that there were no

significant differences in the AUC values between the nomogram

model and the radiomics model for models 1, 2, and 4 (model 1:

Z=2.1482, P=0.062; model 2: Z=1.637, P=0.102; model 4: Z=7.463,

P=0.132). The differences between the nomogram model and clinical

model were statistically significant (model 1: Z=4.491, P< 0.001;

model 2: Z=10.376, P<0.001; model 4: Z=3.140, P=0.002). In the

test group, the diagnostic efficacy of the nomogram model was higher

than that of the radiomics model and clinical model. DeLong’s test

showed that there were no significant differences between the

nomogram and radiomics model for model 1, model 2, and model
FIGURE 8

Box plot of the radiomics scores of the training group and the test group in model 4. Blue (Label 0) represents the MLN group, and yellow (Label 1)
represents the HLN and non-MLN group. The difference between the two groups was statistically significant (P< 2.2e-16).
FIGURE 7

Radiomic features screen by model 4 and their weights.
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A

B

C

FIGURE 10

ROC curves of models 1, 2, and 4 for the corresponding classification efficacy of the radiomics models, clinical features, and nomogram models in the
training group and test group. (A are the training group and test group of model 1, respectively; B are the training group and test group of model 2; and
C are the training group and test group of model 4).
FIGURE 9

Nomogram of model 4 constructed by combining clinical risk factors and CT radiomics features.
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4 (model 1: Z=2.945, P=0.179; model 2: Z=3.599, P=0.086; model 4:

Z= 8.051, P=0.142), and the differences between the nomogram and

clinical model were statistically significant (model 1: Z=1.448,

P=0.033; model 2: Z=1.345, P=0.019; model 4: Z=3.943, P< 0.001).

The diagnostic efficacy of the radiomics model, clinical model and

nomogram model for models 1, 2 and 4 are shown in Table 3.

The calibration curves of nomogram prediction models 1, 2, and 4

in the training group and test group showed good predictive efficacy

(Figure 11). The calibration curve of model 4 is closer and better fits to

the corresponding diagonal line than that of models 1 and 2. DCA

showed that the nomograms of the 3 models outperformed the

clinical model across all assessed risk thresholds (Figure 12).
4 Discussion

Currently, noninvasive assessment of the nature of lymph nodes

mainly relies on imaging features. Ultrasound, as the main imaging

method for examining the thyroid, has important value in the

diagnosis of thyroid diseases and cervical lymph nodes (13, 14).

However, its diagnostic accuracy is affected by the sonographer’s

subjectivity and diagnostic experience. CT has advantages in the

evaluation of central and superior mediastinal lymph nodes, but it is

limited by the need for morphological changes in the lymph nodes to

diagnose metastasis. It has been reported that both ultrasound and CT

have a sensitivity below 50% in diagnosing central lymph node

metastasis (15). The diffusion-weighted MR imaging sequence has

certain value in judging the condition of the lymph nodes, but for

smaller lymph nodes, the misdiagnosis and missed diagnosis rates are

high, especially when the short diameter is less than 10 mm. In recent

years, many studies have demonstrated the increasing value of

radiomics in determining the condition of lymph nodes. Onoue

et al. (16) showed that radiomics based on CT can distinguish

metastatic lymph nodes from PTC, tuberculosis, and oropharyngeal

squamous cell carcinoma with significantly higher diagnostic

accuracy than two neuroradiologists. Seidler et al. (17) found that
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machine learning texture analysis based on dual-energy CT helped to

distinguish different pathological lymph nodes (metastatic head and

neck squamous cell carcinoma lymph nodes, lymphoma,

inflammation) and normal lymph nodes with higher accuracy. This

study investigated the stratified predictive value of a radiomics model

based on CT images for metastatic lymph nodes, nonmetastatic

lymph nodes, and reactive hyperplastic lymph nodes of benign

lesions among patients with PTC to provide guidance for treatment.

In this study, patient age, sex, and lymph node CT signs (long

diameter, short diameter, arterial phase CT value, venous phase CT

value, arterial and venous phase CT difference value, and lymph node

morphology) were statistically different across multiple models

through one-way ANOVA, indicating that clinical features and

conventional CT images are of value in the identification of lymph

nodes with PTC metastasis. However, the morphological signs of

early metastatic lymph nodes are often atypical, and the sensitivity in

diagnosis is relatively low. The interpretation of image features

depends on the clinical experience of the radiologist and is

subjective, and thus there is a need to incorporate objective,

quantitative indicators to assist in diagnosis. Therefore, the

nomogram combines clinical features with objective radiomics

features to improve diagnostic efficacy.

The best feature sets identified by the four models in this study all

included first-order statistical features and texture features, the latter

of which accounted for the higher proportion. The first-order features

can quantitatively reflect the global voxel intensity distribution of the

ROI and then evaluate the overall information of the lymph nodes.

Texture features can describe the spatial distribution of pixel intensity

in images and reflect the histological types and pathological properties

of lesions with high sensitivity (18). The combination of the two can

help comprehensively evaluate the heterogeneity of lymph nodes

from different perspectives. Compared with nonmalignant lymph

nodes, malignant lymph nodes have more abnormal new blood

vessels, increased cell permeability and internal necrosis, which will

change the roughness of lymph nodes, resulting in heterogeneity. The

above changes are not easily detected by the naked eye but can be
TABLE 3 Diagnostic efficacy of radiomics model, clinical model, nomogram model of model 1, 2, 4.

model 1 Training group Test group

AUC Accuracy (%) Sensitivity (%) Specificity (%) AUC Accuracy (%) Sensitivity (%) Specificity (%)

radiomics model 0.97 94.91 91.04 97.92 0.93 89.8 88.46 91.3

clinical model 0.77 78.26 98.51 50 0.75 63.27 76.58 30.43

nomogram model 0.98 93.04 92.54 93.75 0.95 89.8 88.89 90.91

model 2

radiomics model 0.97 88.00 80.52 93.75 0.85 67.92 70 86.96

clinical model 0.59 66.4 90.91 27.08 0.64 67.92 96.67 30.43

nomogram model 0.97 92 88.31 97.92 0.87 75.47 84 67.86

model 4

radiomics model 0.94 89.47 89.78 88.68 0.93 87.65 90.48 77.78

clinical model 0.81 81.58 88.32 64.15 0.72 72.84 84.13 33.33

nomogram model 0.96 90 91.24 86.79 0.94 92.59 95.24 83.33
frontiersin.org

https://doi.org/10.3389/fonc.2023.1060674
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kong et al. 10.3389/fonc.2023.1060674
reflected by texture features, which are not affected by subjective

factors (19).

In this study, 8, 11, 16 and 5 of the best radiomics features were

selected for the 4 models by LASSO regression analysis. Among them,

the all features of model 1 (PTC metastatic lymph nodes and

nonmetastatic lymph nodes), nine of the features of model 2 (PTC

metastatic lymph nodes and nonmetastatic lymph nodes), and four of

the features of model 4 (PTC metastatic lymph nodes and

nonmalignant lymph nodes) were from the arterial phase,

suggesting that compared with those of the venous phase, the

radiomics features of the arterial phase have higher diagnostic value

in distinguishing malignant lymph nodes from nonmalignant lymph

nodes of PTC. Xu et al. (20) found that radiomics features extracted

from dual-energy CT arterial phase-weighted fusion images can

effectively diagnose PTC cervical lymph node metastasis, and the

three radiomics features screened were all from the arterial phase.

Zhao et al. (21) found that the model based on texture features
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extracted from arterial-phase CT images was more advantageous in

evaluating the lymph node metastasis in PTC, with a higher

diagnostic coincidence rate (75.47%) than the model built from the

features extracted from the venous phase (71.69%). Consistent with

the results of this study, the reason may be that metastatic lymph

nodes have a more abundant blood supply and more obvious early

enhancement among patients with PTC (22). Unlike other models, 9

of the 16 features in model 3 (PTC nonmetastatic lymph nodes and

reactive hyperplastic lymph nodes in benign lesions) were from the

arterial phase, and 7 were from the venous phase. The reason may be

that the blood supply of nonmalignant lymph nodes in the venous

phase is enhanced, while the enhancement in the arterial phase is

relatively weaken. Therefore, the number of venous phase features

extracted for the lymph nodes in model 3 was substantially increased.

Park et al. (12) confirmed that arterial phase CT scans can improve

the diagnostic accuracy for PTC lymph node metastasis compared

with venous phase CT, which is often used to evaluate lymph nodes of
A

B

C

FIGURE 11

Calibration curves of the nomograms in the training group and test group of models 1, 2 and 4. (A are the training group and test group of model 1,
respectively; B are the training group and test group of model 2; and C are the training group and test group of model 4) In the calibration curve, the
horizontal axis represents the predicted model value, and the vertical axis represents the real value. The prediction efficacy is better if the red line is
closer to the gray line.
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other pathological types, such as squamous cell carcinoma and

tuberculosis lymph nodes.

A larger short lymph node diameter and central necrosis are

usually considered indications for malignant transformation, while

the short diameter is proportional to the rate of metastasis. The
Frontiers in Oncology 12
differences between metastatic lymph nodes and nonmalignant

lymph nodes and the differences between nonmetastatic lymph

nodes and benign reactive lymph nodes in the models in this study

were not related to the short lymph node diameter, which is

consistent with the research results of Li et al. (23). Ren et al. (24)

found that the difference in the short diameter between positive and

negative lymph nodes in early tongue cancer pathological metastasis

was statistically significant, suggesting that the short diameter of the

lymph nodes has a certain reference value for the diagnosis of occult

metastasis. In this study, the short lymph node diameter was

statistically significant in one-way ANOVA but not in multivariate

logistic regression analysis. This suggests that the short diameter of

the lymph nodes may be valuable in distinguishing metastatic and

nonmetastatic lymph nodes, but not to a significant degree; the reason

may be that the nonmalignant lymph node group in our study

included nonmetastatic lymph nodes and reactive hyperplastic

lymph nodes. Reactive hyperplastic lymph nodes may be

significantly enlarged, which reduces the difference in lymph node

diameter between the nonmalignant and metastatic groups.

The nomogram in this study was established based on radiomics

features and clinical data. Nomograms can more intuitively and

individually evaluate the nature of lymph nodes than their

corresponding models. Verification of the effectiveness of the

models in this study revealed a number of findings. In the first part,

the nomograms of models 1 and 2 show high diagnostic performance

in both the training and test groups, higher than the performance of

the models built from radiomics labels or CT imaging features alone.

Our study showed that the nomograms had high predictive efficacy

and encompassed the advantages of integrating CT image features

and radiomics. In this study, the arterial phase CT enhancement

values of models 1 and 2 were independent clinical risk factors for

judging the nature of lymph nodes, suggesting that there are certain

differences in early enhancement between metastatic lymph nodes,

nonmetastatic lymph nodes, and reactive hyperplastic lymph nodes.

The degree of enhancement in the arterial phase has a certain value in

differentiating the groups. Radiomics model 3 also showed high

diagnostic performance in the training group and test group. After

univariate and multivariate analyses, there were no clinically relevant

risk factors between the two groups of lymph nodes in model 3,

suggesting that there may be some heterogeneity in the internal

radiomics characteristics of the two groups; however, this

heterogeneity is low and cannot be detected with clinical and

routine imaging examinations. The second part of this study

summarized PTC nonmetastatic lymph nodes and benign reactive

hyperplastic lymph nodes and built a predictive model for

differentiating the two groups. The predictive model showed high

discriminative ability, similar to the diagnostic value between separate

groups. This indicates that there is no significant difference between

the nonmetastatic lymph nodes of PTC and reactive hyperplastic

lymph nodes, and simple binary classification can also achieve high

diagnostic performance. In model 4, the CT value in the arterial phase

was also an independent clinical risk factor, consistent with the results

of models 1 and 2, suggesting that early lymph node enhancement

plays an important role in distinguishing benign and malignant

lymph nodes. As in models 1 and 2, the CT value in the venous

phase was also an independent risk factor in model 4. The reason may

be that the proportion of blood supply in the venous phase of
A

B

C

FIGURE 12

(A-C) are the decision curves of nomogram models 1, 2, and 4 for the
corresponding lymph node classification in the test group,
respectively. The red line in the figure represents the diagnostic
nomogram model built from the imaging features, and the blue line
represents the diagnostic nomogram model built from the clinical
features. The green line represents the hypothesis that all patients had
lymph node metastasis; the black lines running across the bottom are
assuming that none of the patients had lymph node metastasis. The
potential clinical benefits of the radiomics-based models are
consistently higher than those of the other three models.
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nonmalignant lymph nodes is higher than that in the arterial phase.

In this model, the proportion of nonmalignant lymph nodes

increased, so the weight of the venous phase in the identification of

the two groups increased.

ROC curve and calibration curve analyses reflect the diagnostic

value of the model, and DCA reflects its clinical value (25). In this

study, DCA was used to evaluate the clinical effectiveness of the

model, which increased its credibility. Models 1, 2 and 4 provided a

clear net benefit over the entire risk threshold range, suggesting that

the models have certain clinical value.

The limitations of this study are as follows. (1) In this study, the

ROIs were manually outlined by doctors with high accuracy, but due

to subjectivity, the repeatability of these segmentations could be poor.

Although we used a high ICC as a criterion for improving the

consistency of the features, this low repeatability inevitably

impacted the results. To make the model more robust and more

suitable for clinical application, we will attempt to solve this problem

by using semiautomatic or fully automatic segmentation using

consensus contours in subsequent studies. (2) The sample size was

small and drawn from a single center. The sample size will be

expanded, and multicenter research and external validation research

will be carried out in the future to improve the efficacy of the model.

(3) In this study, only solitary thyroid nodules with a pathological

result of PTC or adenoma were included. The pathological types were

relatively singular; subsequent studies on the lymph nodes of lesions

with different pathological types are needed to expand the scope of

adaptation. Since we could not accurately judge the status of each

lymph node before surgery, we adopted an all-or-nothing approach to

select target lymph nodes according to postoperative pathological

results. This method of lymph node selection is accurate, but due to

the strict inclusion criteria, the sample size of the included lymph

nodes is reduced.

In conclusion, the CT-enhanced nomogram performed well in

predicting metastatic lymph nodes in the central cervical region and

nonmalignant lymph nodes in patients with thyroid nodules and can

provide guidance for clinical decision-making. The radiomics model

showed high diagnostic efficacy in distinguishing nonmetastatic lymph

nodes from benign lymph nodes, but there was no significant difference

in the clinical features between the groups. There may be some

heterogeneity between the two groups of lesions, but its degree was

insufficient to produce significant differences on the basis of radiomics.

Further experimental studies are needed.
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