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Pilot study for generating and
assessing nomograms and
decision curves analysis to
predict clinically significant
prostate cancer using only
spatially registered multi-
parametric MRI

Rulon Mayer1,2*, Baris Turkbey3, Peter Choyke3

and Charles B. SimoneII4

1Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania,
Philadelphia, PA, United States, 2OncoScore, Garrett Park, MD, United States, 3Molecular Imaging
Branch, National Institutes of Health (NIH), Bethesda, MD, United States, 4Department of Radiation
Oncology, New York Proton Center, New York, NY, United States
Background: Current prostate cancer evaluation can be inaccurate and

burdensome. To help non-invasive prostate tumor assessment, recent

algorithms applied to spatially registered multi-parametric (SRMP) MRI extracted

novel clinically relevant metrics, namely the tumor’s eccentricity (shape), signal-to-

clutter ratio (SCR), and volume.

Purpose: Conduct a pilot study to predict the risk of developing clinically

significant prostate cancer using nomograms and employing Decision Curves

Analysis (DCA) from the SRMPMRI-based features to help clinicians non-invasively

manage prostate cancer.

Methods: This study retrospectively analyzed 25 prostate cancer patients. MP-MRI

(T1, T2, diffusion, dynamic contrast-enhanced) were resized, translated, and

stitched to form SRMP MRI. Target detection algorithm [adaptive cosine

estimator (ACE)] applied to SRMP MRI determines tumor’s eccentricity, noise

reduced SCR (by regularizing or eliminating principal components (PC) from the

covariance matrix), and volume. Pathology assessed wholemount prostatectomy

for Gleason score (GS). Tumors with GS >=4+3 (<=3+4) were judged as “Clinically

Significant” (“Insignificant”). Logistic regression combined eccentricity, SCR,

volume to generate probability distribution. Nomograms, DCA used all patients

plus training (13 patients) and test (12 patients) sets. Area Under the Curves for

(AUC) for Receiver Operator Curves (ROC) and p-values evaluated

the performance.

Results: Combining eccentricity (0.45 ACE threshold), SCR (3, 4 PCs), SCR

(regularized, modified regularization) with tumor volume (0.65 ACE threshold)

improved AUC (>0.70) for ROC curves and p-values (<0.05) for logistic fit. DCA
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showed greater net benefit from model fit than univariate analysis, treating “all,” or

“none.” Training/test sets achieved comparable AUC but with higher p-values.

Conclusions: Performance of nomograms and DCA based on metrics derived

from SRMP-MRI in this pilot study were comparable to those using prostate serum

antigen, age, and PI-RADS.
KEYWORDS

prostate cancer, multi-parametric magnetic resonance imaging (MP-MRI), Gleason score

(GS), signal-to-clutter ratio (SCR), regularization, nomograms, decision curve analysis,
multiple variable regression
Introduction

For prostate cancer, deciding to treat clinically significant disease

or to monitor benign lesions or low risk invasive disease (1) requires

correct assessment in order to properly manage the disease. A large

number of factors, such as Gleason score, prostate serum antigen

(PSA) (2–4), metadata (5) such as patient age, family history, tumor

size (6), clinical stage and visual inspection of images of the lesion (7–

11), etc. contribute to a patient’s evaluation, but they vary in their

correlation to disease status. The large number and variation of

contributing factors among patients can complicate cancer

management and confuse the clinician and patient. A nomogram

(12–14) is a graphical depiction that quantitatively combines a

number of factors to help summarize a patient’s status and simplify

the assessment. The nomogram produces a probability distribution

for the likelihood of serious disease that is tailored for each individual

patient. Along with a nomogram, a Decision Curve Analysis (DCA)

(15) can refine and enhance the management of the patient by

providing a graph to suggest when or if to apply certain procedures.

Further complicating patient management, the factors that contribute

to patient evaluation can also potentially discomfort the patient and

produce side effects (16). Specifically, a prostate biopsy, currently the

standard assessment, can cause hemorrhaging, pain, and infection, and it

can possibly miss properly sampling the tumor (17). To elevate patient

assessment, imaging, such as MRI, can non-invasively display the entire

image and tumor withminimal patient discomfort. Specifically, qualitative

assessment of multiple modalities of MRI or Multi-Parametric MRI (MP-

MRI) employ trained radiologists who follow the Prostate Imaging

Reporting and Data System (PI-RADS) protocol (7). Recently, PI-

RADS assessments have been incorporated into nomograms and

achieved significant accuracy in predicted disease outcomes (18–23).

However, the quality of the PI-RADS assessment can vary depending

on the training or experience of the radiologist examining a patient’s

image (24). A more quantitative, robust approach is desired.

Recently (25–30), algorithms have been applied to spatially

registered MP-MRI to assess prostate tumors. These algorithms

exploit the vectoral nature of each voxel in the prostate organ,

unlike others that process individual modalities. Each voxel is

treated as a vector, not a scalar. The recent studies determined the

prostate tumor’s Gleason score (25–30), tumor volume (26),

eccentricity (shape) (27), and Signal-to-Clutter Ratio (SCR) (29).
02
This study is the first to use spatially registered MP-MRI as input

information for a nomogram and for DCA. This study used patient data

from The Cancer Imaging Archive (TCIA) (37, 38) that is composed of

twenty-six consecutive patients who had biopsy proven adenocarcinoma

of the prostate, had undergone MRI scan, and histological examination

of wholemount prostatectomy. For this study, clinically significant

(insignificant) prostate cancer was defined by the pathology

assessment of Gleason scores >=4+3 (<=3+4). The present

retrospective work does not use other clinical data (18–23) such as

age, PSA nor use PI-RADS as input for the nomogram. Instead, the

nomograms use various combinations of eccentricity, filtered and

regularized SCR, and tumor volume indicators to find the probability

that the prostate tumor is highly aggressive. This study extends and

builds upon earlier work (28, 30) that examined multivariable regression

fits to Gleason scores in order to generate a clinical tool to aid in the

management of prostate cancer. The nomogram and decision curve

analysis were quantitatively assessed by computing the Area Under the

Curve (AUC) for the Receiver Operator Characteristic (ROC), p-values.

Methods

Overall description

Figure 1 provides an overview of the methodology to generate a

nomogram from metrics derived from spatially registered MP-MRI

(25–30) along with accompanying performance evaluations. The

main components in the summary are described in greater detail

below. The independent variable for the multivariable fit originates

from spatially registered MP-MRI and the dependent categorical

variable Clinically Significant Prostate Cancer derived from Gleason

score and pathology exam of histology of the resected prostate.

Sequences of MRI (T1, T2, Dynamic Contrast Enhancement,

Diffusion) were collected from each patient. The images were rescaled,

cropped, translated, and resampled to form spatially registered

multispectral cubes. These cubes were then stitched together to form

spatially registered hypercubes. From visual inspection, the normal

prostate was digitally outlined using an axial view to form the normal

tissue or background. A vector tumor signature was taken from certain

voxels identified in the colorized registered hypercube (25–30) and

inserted into the Adaptive Cosine Estimator, and a threshold (25–30)

was applied to find the tumor volume and eccentricity.
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The nomogram (text box colored as baby blue in Figure 1) receives

input from amulti-variable fit (yellow text box). Multivariable regression

fits independent variables from spatially registered MP-MRI to the

independent variable Gleason score. The independent variables are

Regularized SCR (green), SCR with principal component filtering

(red), tumor eccentricity (blue), tumor volume (purple) and combined

in a variety of permutations to achieve an optimal fit. The dependent

variable is categorical Clinically Significant Prostate Cancer, related to

the Gleason score and is derived from pathology, notMRI. A pathologist

determines the Gleason score from microscopic inspection of histology

slides of wholemount prostatectomy.

To assess the multivariable regression fit and the nomogram,

Receiver Operator Characteristic curves were generated and the Area

Under the Curve (AUC) was computed. The coefficient of

determination (R2) between the independent and dependent

variables was computed along with the probability for the null

hypothesis (p-value). To further assess and extend the clinical

application of the nomogram, a Decision Curve Analysis was

computed to find the net benefit for applying the nomogram.

The Methods qualitatively describes the individual components of

anomaly detector generator and assessment. The Appendix

summarizes the mathematics used to generate the components.

More details can be found in the cited references.
Study design and population

Patient data from prostate tumor MRI and histology from whole

mount prostatectomy specimens were collected and stored through The

Cancer Imaging Archive (TCIA) (37, 38), affiliated with The National

Institutes of Health (NIH). This study followed the Declaration of

Helsinki (as revised in 2013). This study is compliant with the Health

Insurance Portability and Accountability Act. The NIH Institutional

Review Board approved this retrospectively designed single institution

study and determined that individual consent for this retrospective

analysis was not required. Twenty-six consecutive patients in the TCIA
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database were assessed. All patients had biopsy proven adenocarcinoma

of the prostate, withmedian patient age of 60 years (range, 49 to 75 years),

with a median PSA of 5.8 ng/mL (range, 2.3 to 23.7 ng/mL) and with

medianGS of 7 (range, 6 to 9). Eighteen of the 26 patients had tumor sizes

>1 cc. One patient did not uptake the contrastmaterial used for Dynamic

Contrast Enhancement. This study did not place restrictions on tumor

location within the prostate. Robotic assisted radical prostatectomy was

performed following MRI without any intervening treatment. All cases

were anonymized for subsequent analysis.
Whole mount prostatectomy and histology

The whole mount prostatectomy histology has previously been

described (39–41). Following radical prostatectomy, the specimen was

fixed at room temperature in formalin for 2 to 24 hours, placed in the

customized 3D mold, and sliced in sections with a separation of

6 mm. in the axial direction (corresponding to the MRI axial plane

section). The individual tumor foci, dimensions, and GSs from the

histology slides were independently determined by two experienced

pathologists blinded to the MRI results. As in earlier studies (25–30)

and to better reflect the patient’s status, a patient’s GS was a weighted

average (based on histology blob size) of the GSs assessed by

the pathologists.
Magnetic resonance imaging

The MRI collection was composed of diffusion weighted images

(DWIs), dynamic contrast enhanced (DCE), and structural (T1, T2)

images. The pulse sequences were described in earlier studies (39–41).

Triplanar T2W turbo spin echo, DWMRI, and axial pre-contrast T1-

weighted axial 3D fast field echo DCEMRI sequences were part of this

MRI protocol. The detailed sequence parameters were described in a

prior study (41). The mean interval between MRI and radical

prostatectomy was 60 days (range, 3 to 180 days).
FIGURE 1

provides an overview of the methodology to generate a nomogram from metrics derived from spatially registered MP-MRI (25–30) along with
accompanying performance evaluations. The main components in the summary are described in greater detail below. The independent variable for the
multivariable fit originates from spatially registered MP-MRI and the dependent categorical variable Clinically Significant Prostate Cancer derived from
Gleason score and pathology exam of histology of the resected prostate.
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Image processing, pre-analysis

The DCE are a time series of images follow contrast material in

tissues over several hundred seconds following injection. A portion of

tumors may be identified through analysis of DCE and exploiting the

unique tumor physiology. The tracer concentration in the tissue that

supplies and empties through the tumor vasculature is described by a

simple two compartment model (25, 42, 43). For longer times (>50

seconds) than the time to reach the contrast material peak uptake in a

tumor, every voxel was fitted with an exponentially decay function to

form the washout (kep).

The MRI images were digitally resized (25–30) to 1 mm

resolution in the transverse direction. In the axial direction, the

slices were resized to 6 mm spacing and aligned using resampling

based on the known location of patient’s table position. Due to the

short time interval between scans (<20 minutes), only small rigid

adjustments (minor transverse translation) were applied to the

structural, diffusion, and DCE images. A “cube” was formed from

stacked individual slices that were scaled, translated, resliced and were

thereby spatially registered at the voxel level. These “three

dimensional” (two transverse directions plus spectral composed of

MP-MRI modalities) cubes were then “stitched” together into a

narrow three-dimensional hypercube in order to depict the entire

MRI scan. The spectral content of the hypercube had 7 components

(25–30) [T1 (pre-contrast), T1 (maximum contrast), T2, ADC, DWI-

high B (B=1,000 s/mm2), Washout or kep from DCE].
Eccentricity calculation

Custom software (coded in Python 3) was used to calculate the

eccentricity (27, 28) for every labeled blob. The moment of inertia

matrix I for the kth blob was computed. From the eigenvalues of the

moment of inertia I, the largest eigenvalue was assigned to the large axis

lk and the second eigenvalue was assigned to the transverse moment sk.

The eccentricity Ek for the kth blob is a weighted difference of the major

axis and minor axis. Eccentricity values Ek range from 0 (spherical

shape) to 1 (line). For more details see References (27, 28).
Overall quantitative metrics description: SCR

Instead of relying on trained radiologists to visually inspect multiple

MRI images, the Signal to Clutter Ratio quantitatively assesses tumors

departure from normal prostate tissue. The SCR formulation combines

all components of the MP-MRI. But in addition, the SCR formulation

uses the covariance matrix, to correct and account for correlations

among the different components (for example, the correlation between

ADC and DWI) to get a true measure of the aggregate contribution of

each. The Appendix summarizes some of the mathematics behind the

SCR algorithm. For more details see (29, 31, 34–36).
SCR: Filtering noise

Computing the SCR covariance matrix generates principal

components (34). Principal component are linear combinations of
Frontiers in Oncology 04
all MRI components but are orthogonal or totally decorrelated from

each other. The principal components are ordered based on their

eigenvalue or statistical variation. Well resolved images have

eigenvalue and high variation. In contrast, the noisy principal

components have small eigenvalues. Noise is reduced by filtering

and eliminating the noisy (low eigenvalue) principal components

resulting in a more accurate RX calculation. The Appendix

summarizes some of the mathematics behind the filtering of

principal components. For more details see (29, 31, 35).
Regularization and shrinkage

Regularization is another way to correct for the imperfections of the

computed covariance matrix. The statistics describing the background

(normal prostate) should follow a normal distribution. However, the

analytic formula for the covariance matrix results in only an

approximation. The goal of shrinkage regularization (29, 36) is to

perturb the original covariance matrix CM(g) by mixing in a diagonal

matrix with a mixing parameter g to generate a regularized or modified

regularized covariance matrix. The appropriate g is chosen to maximize

the normal distribution. Regularized ormodified regularized covariance

matrix generation follow the same procedure but differ in the mixing

diagonal matrix. The Appendix summarizes some of the mathematics

behind regularization. For more details see (29, 36).
Tumor volume measurements, supervised
target detection

The Supervised target detection algorithm or ACE was applied to

the spatially registered MRI (26) and was used to determine the tumor

volume. Voxels exceeding a threshold for ACE scores are assigned to

tumor and normal tissue are assigned to ACE scores residing below

the threshold. The number of voxels exceeding the threshold (tumor)

were counted and converted to volume based on the MRI spatial

resolution The Appendix summarizes some of the mathematics

behind tumor volume computation. For more details see (26).
Logistic regression

A logistic regression fit (44, 45) was applied to the dependent

categorial variable CsPCa, using all combinations of the continuous

independent variables (eccentricity, SCR, volume). The GS derived

from the pathological assessment of histology slides from

prostatectomy. The clinically significant PCa (CsPCa) was assigned

to Gleason score >=4+3 and the clinically insignificant PCa (CiPCa) is

assigned to<=3+4 This study only reports the combination of

independent variables that achieved the highest performance in

earlier studies (27–30). The eccentricity from the largest blob used

ACE threshold 0.45. SCR includes cutoff from three and four principal

components, regularized SCR and modified regularization. The

volume derived from MP-MRI used ACE threshold 0.65.

The coefficient of determination R2 assesses the fit. In addition, the

quality of fit was assessed by computing the F-value and affiliated P

value (44, 45).
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Receiver operator characteristic

The Receiver Operator Characteristic curve summarizes (46) and

helps assess a binary classifier by plotting the probability of target

detection (or sensitivity) against the false alarm probability (or 1-

specificity) for all threshold settings. The classifier’s accuracy is

assessed by comparing the multivariable logistic regression fitted

results with the pathologist’s Gleason score determination for

each patient.

The ROC vertical axis (Sensitivity) surveys the patients with

clinically significant prostate cancer (CsPCa) and determines

whether the patient’s prostate cancer status is correctly identified by

the logistic regression for a given threshold. The horizontal axis (False

Alarm probability or 1-Specificity) displays the relative accuracy for

determining the status of patients with clinically identified as

insignificant prostate cancer (CiPCa) for a given probability

threshold. The ROC curve is monotonically increasing. If feasible,

the best ROC curve value would be 100% target detection and 0%

False Alarm probability (upper left corner for the ROC curve). The

Area Under the Curve (AUC) is used to assess classifier and ranges

from 0 (poor performance) to 1 (optimal performance).
Nomogram and decision curve analysis

A nomogram (12–14) is a two-dimensional calculating device

designed to graphically depict a statistical prognostic model that

generates a probability of a clinical event. Nomograms use biologic

and clinical variables. In this study, the nomograms employ a

logistic regression to model the probability that a prostate tumor is

clinically significant. Each variable is listed separately, with a

corresponding number of points assigned to a given magnitude

of the variable. The individual points are summed from each
Frontiers in Oncology 05
variable to generate the total number of points for all variables.

The total point score is projected onto the scale of outcome.

Nomograms can be tailored to an individual patient and

potentially reduce biopsies and their morbidity. They are widely

used for cancer prediction.

Decision Curve Analysis (15) plots the net benefit associated with

a model against the model’s threshold probability. Net benefit is a

weighted difference combination of True and False identifications of

cl inical ly s ignificant prostate cancer , weighted by the

threshold probability.

Alternatively, the threshold probability is the minimum probability

of an event at which a decision-maker would take a given action, i.e. the

probability of cancer at which a doctor would order a SRMP MRI scan.

A lower threshold probability means a patient’s greater concern about

cancer, while a higher threshold reflects greater concern about a patient’s

aversion to SRMP-MRI. A positive classification is defined by whether

predicted probability is at least as great as the threshold probability. As a

reference (and by convention), the display includes the results of the

default strategies of assuming that all or no observations are positive as a

function of threshold probability.

Decision Curve Analysis assesses the clinical value of a predictor,

unlike other evaluation statistical methods. Applying decision curve

analysis can determine whether using a predictor to make clinical

decisions like performing a SRMP MRI scan will provide benefit over

alternative decision criteria, given a specified threshold probability
Results

Table 1 summarizes the assessments of 25 consecutive patients with

contrast enhanced MRIs. Patients were assessed for the best fitting

combinations of metrics derived from spatially registered MP-MRI to

the Risk of PCa categorical variable. The independent variables include
TABLE 1 Summary of Logistic Regression fits for All patients.

Independent Variables # Variables F Value p-value R2 AUC [95% LL, 95% UL]

3PC+Vol 2 16.08 0.0003 0.664 0.912 [0.792, 1.00]

Ecc+3PC 2 14.43 0.0007 0.614 0.882 [0.719, 1.00]

Ecc+Mod Reg+3PC 3 14.47 0.0023 0.615 0.882 [0.719, 1.00]

Ecc+ Reg+3PC 3 14.99 0.0018 0.631 0.882 [0.719, 1.00]

Ecc+3PC+Vol 3 16.87 0.0008 0.687 0.919 [0.799,1.00]

Ecc+ Reg+3PC+Vol 4 17.03 0.0019 0.691 0.919 [0.799,1.00]

Ecc+Mod Reg+3PC+Vol 4 17.02 0.0019 0.691 0.926 [0.804,1.00]
Analyzing all patients, Summary of Best Regression fits of combinations eccentricity, SCR, and Volume to Gleason score. AUC, Area Under Curve; R2, coefficient of determination; LL, Lower Limit
Confidence Interval; UL Upper Limit 95% Confidence Interval; ECC, eccentricity(0.45 ACE Threshold); Mod_Reg, Modified Regularization; SCR, Reg, Regularized SCR; Vol, Volume (0.65 ACE
threshold).
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tumor eccentricity using an ACE threshold of 0.45 (Ecc), SCR using

regularization (Reg), SCR using Modified SCR (Mod_Reg), SCR after

filtering out 3 PC (3PC), and tumor volume (Vol) using 0.65 for the

ACE threshold. The dependent categorical variable (Risk of PCa) was

taken from the pathology determined Gleason Scores. The number of

variables identified for each fit. Tables 1, 2 lists each fit’s F values and

associated probability of null hypothesis p-values, coefficient of

determination (R2), Area Under the Curve (AUC) for the Receiver

Operator curves and the AUC’s 95% Confidence intervals Lower Level

(LL) and Upper Level (UL). The fits have statistical significance (p-

values<0.01), achieve high coefficient of determination (R2>0.60), high

AUC (>0.85) but large confidence interval (0.20).

Table 2 replicates Table 1 except using a greater number of

independent variables(eccentricity, SCR, volume) and the analysis

follows a test set (12 consecutive odd numbered patients) that used

the fitted parameters from training 13 consecutive even numbered

patient. Like Table 1, high AUC scores (>0.85) are achieved. However,

p-values were higher, and the coefficients of determination were lower.

Figure 2A shows a nomogram resulting from logistic regression

fits using Eccentricity (0.45 ACE threshold), SCR after regularization,

and SCR after filtering by removing 3 principal components. For a

given patient, each component’s contribution is determined by

projecting their values onto the “Points.” The total points are

computed by summing each of the contributions. “Total points” is

projected onto the “Risk of PCa” axis to determine the probability that

a given patient suffers from clinically relevant prostate cancer.

Figure 2B shows an example of a ROC curve (shown as a bold

black line) that displays the Sensitivity plotted against (1-Specificity)

(the Specificity value is decreasing along the axis). The bold black line

corresponding to the AUC (0.882) and the vertical lines in the ROC

curve correspond to the 95% Confidence interval for the AUC. This

particular ROC evaluates the logistic fit to Eccentricity, regularized

SCR, and SCR filtered by deleting 3 principal components.

Associated with the nomogram is the Decision Curve Analysis

(Figure 2C). Figure 2C shows the net benefit from using each

component (eccentricity, regularized SCR, SCR after removing 3

principal components), all components in the regression fit, as a

function of Threshold Probability or expected likelihood that the

patient has clinically significant prostate cancer. In addition, the net

benefit of treating all patient and treating no patients are shown as a

standard reference. Applying the regression fit generates the highest

net benefit for all threshold probability values relative to applying the

individual components (eccentricity, SCR).
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Similarly, Figures 3A–C show a nomogram, ROC curve, and a

Decision Curve Analysis resulting from fitting Eccentricity (0.45

ACE threshold), SCR after regularization, and SCR after filtering

by removing 3 principal components, Volume (0.65 ACE

threshold). Again, applying the regression fit generates the

highest net benefit for all threshold probability values relative

to app ly ing the indiv idua l components (eccentr i c i ty ,

SCR, volume).
Discussion

This study is the first to generate a nomogram using features

derived from algorithms applied to spatially registered MP-MRI (25–

30). Previous studies formed a foundation for the present study,

although this study is novel and extended the findings to generate and

evaluate the probability for tumor aggressiveness. In addition, the

DCA provides an additional tool for guiding application of the

nomogram, guiding which input and fits should be employed, and

under what conditions. From the high AUC (>0.85), high R2 (>0.70),

and low p-values (<0.05), this pilot study found that nomograms can

accurately predict the probability of prostate tumor aggressiveness.

The nomogram performance as described by AUC from ROC curves

is comparable with other studies (18–23) that use metadata such age,

clinical data such as PSA, and PI-RADS and that achieve AUC

ranging from 0.8 to 0.90.

The transformation of remote sensing-based approaches and

algorithms for prostate cancer evaluation discussed in this

manuscript forms only a part of the research constellation. There

has been considerable progress and research in using biomarkers (47)

and multi-parametric MRI (48) to determine the possible presence of

prostate cancer and their role in disease management. Companies

have translated bench research (47) in biomarkers into clinical tests

for their efficacy and offer promising alternatives to the standard

prostate serum antigen. Studies investigated the effectiveness of how

multi-parametric MRI is employed (49) in the clinic and alternative,

simpler configurations and approaches (50) that may eventually make

MP-MRI more accommodating for patients and the clinic. Future

research may combine the approaches applied to spatially registered

hyperspectral hypercubes discussed in this study with biomarkers

(47) and may also be modified with the aid of insights gained from

MP-MRI implementation (48).
TABLE 2 Summary of Logistic Regression fits for Training, Test Sets.

Independent Variables # Variables F Value p-value R2 AUC (Train) AUC (Test) [95% LL, 95%UL]

3PC+Vol, Train-Test 2 5.63 0.0598 0.496 0.861 0.969 [0.882-1.00]

Ecc+ Reg+3PC, Train+Test 3 6.29 0.0984 0.541 0.889 0.906 [0.702-1.00]

Ecc+ Reg+3PC+Vol, Train+Test 4 6.98 0.137 0.586 0.944 0.938 [0.791-1.00]
Analysis of Training and Test Cases, Summary of Best Regression fits of combinations of eccentricity, SCR, and Volume to Gleason score. AUC, Area Under Curve; R2, coefficient of determination; LL,
Lower Limit Confidence Interval; UL Upper Limit 95% Confidence Interval; ECC, eccentricity(0.45 ACE Threshold); Mod_Reg, Modified Regularization SCR; Reg, Regularized SCR; Vol, Volume
(0.65 ACE threshold).
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The metrics (AUC, p-value) that assess the accuracy of the

nomogram for this study were confined to employing features from

spatially registered MP-MRIs. The restricted composition of features

nevertheless performed as well or better than studies (18–23) that

employed more conventional features such as PSA, age, PI-RADS.

Adding extra features from the clinic such as age, PSA etc. to the

inputs from spatially registered MP-MRI may further increase the

accuracy of the prediction for tumor aggressiveness, as in studies that

use PI-RADS data.

Logistic Regression fits the input variables to a binary or a

categorical variable, in this case the “Risk of PCa,” which can only

be 0 (non-clinically relevant PCa) or 1 (clinically relevant PCa).

Earlier multi-variable fitting studies treated the Gleason score as a

continuous variable. Better fits for each of the independent variables
Frontiers in Oncology 07
(p<0.03) were achieved in univariable and multivariable fitting when

the Gleason score was treated as continuous. Although the overall

fitting (shown in Tables 1, 2) achieves high correlation, assessment of

a larger number of samples should improve the univariable fitting

using the categorical dependent variable, especially for training/

test analysis.

The performance of the multivariable fits diminishes slightly when

dividing the patients into training and test sets, as is common in most

studies. Due to the limited size of this data set, other combinations of

training and testing sets were not feasible. Future analyses using larger

patientnumbers could reduce confidence intervals andbolster confidence

in this study’s findings. Nevertheless, the results described in this

manuscript merit further studies that employ larger patient sample

sizes that may successfully predict prostate tumor aggressiveness.
B

C

A

FIGURE 3

(A) is a nomogram resulting from logistic fit to Gleason score with eccentricity, tumor volume, and SCR with 3 PC removed. (B) Receiver Operator Curve
applied to Logistic Regression for eccentricity, 3 PCs removed from SCR, tumor volume. Area Under the Curve (AUC) and 95% Confidence Limits shown
as bold and lighter line with vertical bars. Area Under the Curve (AUC) and 95% Confidence Limits shown as bold and lighter line with vertical bars (C).
Decision Curve Analysis for (A) nomogram.
BA

C

FIGURE 2

(A) is a nomogram resulting from logistic fit to Gleason score with eccentricity, regularized SCR, and SCR with 3 PC removed. (B). ROC curve for fitting
eccentricity, regularized SCR and SCR after 3 PC removed, Area Under the Curve (AUC) and 95% Confidence Limits shown as bold and lighter line with
vertical bars (C). Decision Curve Analysis for (A) nomogram.
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There is a question of whether the results are robust or

fundamentally unchanged upon using differing target signatures

and normal prostate outlines. For a number (but not all) of

patients, calculations were rerun with different choice of signatures

and different contouring of the normal prostate. The resulting

calculations generated virtually the same as those using initial input

data. However, a more definitive study is merited.

This study has some limitations. The patients in this study all

originated from a single institution (NIH), potentially limiting

generalizability. Furthermore, although all patients were prospectively

enrolled, this is a retrospective analysis of the data andmay be subject to

biases. Furthermore, the dataset comprised only 25 patients. Although a

small number of patients were assessed, consecutive patients were

analyzed to minimize potential bias. Despite this being a pilot analysis

with a limited dataset, highly statistically significant P values, highAUC,

high coefficient of determination values, and high net benefits in the

decision analysis curves were achieved, showing potential clinical value

of this approach.
Conclusions

This retrospective pilot study shows that nomograms that only

use metrics from spatially registered MP-MRI achieve comparable

performance relative to nomograms that use prostate serum antigen,

age, PI-RADS. Validation of these finds from larger and multicenter

cohorts are needed before clinical implementation.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Frontiers in Oncology 08
Ethics statement

Ethical review and approval was not required for the study on

human participants in accordance with the local legislation and

institutional requirements. The patients/participants provided their

written informed consent to participate in this study.
Author contributions

(I) Conception and design: RM. (II) Administrative support: RM,

CS, PC. (III) Provision of study materials or patients: BT, PC. (IV)

Collection and assembly of data: RM, BT, PC. (V) Data analysis and

interpretation: RM. (VI) Manuscript writing: All authors. (VII) Final

approval of manuscript: All authors.
Conflict of interest

RM works for Oncoscore.

The remaining authors declare that the research was conducted in

the absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Dall’Era MA, Albertsen PC, Bangma C, Carroll PR, Carter HB, Cooperberg MR,
et al. Active surveillance for prostate cancer: a systematic review of the literature. Eur Urol
(2012) 62:976–83. doi: 10.1016/j.eururo.2012.05.072

2. Gurumurthy D, Maggad R, Patel S. Prostate carcinoma: correlation of
histopathology with serum prostate specific antigen. Sci J Clin Med (2015) 4:1–5. doi:
10.11648/j.sjcm.s.2015040401.11

3. Ngwu PE, Achor GO, Eziefule VU, Orji JI, Alozie FT. Correlation between prostate
specific antigen and prostate biopsy Gleason score. Ann Health Res (2019) 5(2):243–8.
doi: 10.30442/ahr.0502-26-56

4. Zivkovic S. Correlation between prostate-specific antigen and histopathological
difference of prostate carcinoma. Arch Oncol (2004) 12:148–51. doi: 10.2298/
AOO0403148Z

5. Poulakis V, Witzsch U, de Vries R, Emmerlich V, Meves M, Altmannsberger HM,
et al. Preoperative neural network using combined magnetic resonance imaging variables,
prostate-specific antigen, and gleason score for predicting prostate cancer biochemical
recurrence after radical prostatectomy. Urology (2004) 64:1165–70. doi: 10.1016/
j.urology.2004.06.030

6. Eichelberger LE, Michael Koch MO, Eble JN, Ulbright TM, Juliar BE, Cheng L.
Maximum tumor diameter is an independent predictor of prostate-specific antigen
recurrence in prostate cancer. Mod Pathol (2005) 18:886–90. doi: 10.1038/
modpathol.3800405

7. Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, et al. PI-
RADS prostate imaging - reporting and data system: 2015, version 2. Eur Urol (2016)
69:16–40. doi: 10.1016/j.eururo.2015.08.052
8. Wang L, Hricak H, Kattan MW, Chen HN, Kuroiwa K, Eisenberg HF, et al.
Prediction of seminal vesicle invasion in prostate cancer: incremental value of adding
endorectal MR imaging to the kattan nomogram. Radiology (2007) 242:182–8. doi:
10.1148/radiol.2421051254
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Appendix

Overall quantitative metrics description: SCR

The SCR (30–33) is given by

SCR = (S − m)TCM−1(S − m)      (1)

that is a matrix multiplication over MP-MRI modalities. The

superscript T denotes a vector transpose operation, CM is the covariance

matrix, and the superscript -1 denotes a matrix inverse operation, where S

is the vector tumor signature or mean over the identified tumor voxels.

Vector m is the mean value for normal prostate or background.
SCR: Filtering noise

The filtered SCRFiltered is given by

SCRFiltered = (S − m)TCM−1
Filtered(S − m)     (2)

where the inverse covariance matrix CM�1
Filteredis a square

symmetrical matrix and decomposes into three parts (34),

CM−1
Filtered = LTl−1

FilteredL     (3)

l−1
Filtered =

1
l2
1
0 0 0

0 1
l2
2

0

… … …

0 0 0

0 0 … 0 0

2
666666664

3
777777775
    (4)

The eigenvalues are ordered according to size ranging from the

largest L1 to the smallest LM. For unfiltered processing, the images

corresponding to the eigenvalues and eigenvectors range from high

signal and variation (1, 2) to low variation and very noisy (M-1, M.

Filtering out the noisy eigenvectors (29, 31, 35) means removing or

deleting the lowest valued eigenvalues (3 or 4 in this study) (Eq 3,4)

from the inverse matrix (see Eq 4).
Regularization and shrinkage

Shrinkage and regularization (29, 36) perturbs the covariance

matrix CM(g) to maximize the normal distribution, or equivalently

minimize the discriminant function d(g) [=-ln(normal distribution)]

by adding a diagonal component that is controlled by the parameter g.
This study examines two types of regularization: regularization and

modified regularization. Both follow the same procedure but differ in

the mixture component. Specifically, the modified regularized

SCRMod_reg

SCRmod _ Re g (g = gmin) = (S − m)TCM−1
mod _ Re g(g

= gmin)(S − m)   (5)
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where CMmod_Reg(g) is

CMmod _ Re g(g ) = (1 − g )CM + gV    (6)

and V is a diagonal matrix filled up with the square of the

standard deviations from M modalities and is given by

V =

s 2
1 0 0 0

0 s 2
2 0

… … …

0 s 2
M−1 0

0 0 … 0 s 2
M

2
666666664

3
777777775
   (7)

Using Eqs. [6,7] the modified discriminant function dmod_Reg (g)

dmod _ Re g(g ) =o
N

i=1
(xi − m)TCM−1

mod _ Re g(g )(xi − m)

+ ln ( det (CMmod _ Re g(g )))   (8)

is computed for 0<g<1 and a minimum dmod(gmin) is found at gmin

resulting in a SCRMod_Reg (Eq. [5]) using a modified regularization

procedure (using Eqs. [6,7]).

For SCRReg, the CMReg uses a matrix containing identical

components (proportional to the identity matrix and is simply the

average standard deviation s.

CMRe g(g ) = (1 − g )CM +
g Tra(CM)

M
I   (9)

by control value g where Tra denotes the trace operator and I is

the identity matrix. g ranges from g=0.0 or no CM modification to

g=1.0 or CM is proportional to the identity matrix. Again, the

covariance matrix CMReg(g) is perturbed to maximize the normal

distribution, or equivalently minimize the discriminant function d(g)
(=-ln(normal distribution)) by using CMReg (Eq 9) i.e.

dRe g(g ) =o
N

i
(xi − m)TCMRe g(g )

−1(xi − m)

+ ln ( det (CMRe g (g )))  (11)

The SCReg is given by

SCRRe g(g = gmin) = (S − m)TCM−1
Re g(g = gmin)(S − m)   (9)
Tumor volume measurements, supervised
target detection

The procedure for estimating the tumor volume using the

supervised target detection algorithm or ACE has been previously

described (26). For spatially-registered MP-MRI, threshold is applied to

the ACE map. Voxels exceeding a threshold for ACE scores are

assigned to tumor and normal tissue are assigned to ACE scores

residing below the threshold. Earlier study (26) examined thresholds

0.40 to 0.85 assessed in 0.05 increments and found that 0.65 was

optimal. The number of tumor voxels are converted to volume based on

the MRI spatial resolution (1 mm × 1 mm) and slice separation (6 mm)

resulting in a voxel volume (r=0.006 cm3). Each blob’s volume Vk is
frontiersin.org

https://doi.org/10.3389/fonc.2023.1066498
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mayer et al. 10.3389/fonc.2023.1066498
given by a total number of pixels within each blob and corrected by the

voxel volume r (assuming density of unity for each voxel),

Vk = rN = ro
N

i=1

xi
abs(xi)

 (12)
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