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Background: There is growing evidence that immune cells are strongly

associated with the prognosis and treatment of clear cell renal cell carcinoma

(ccRCC). Our aim is to construct an immune subtype-related model to predict

the prognosis of ccRCC patients and to provide guidance for finding appropriate

treatment strategies.

Methods: Based on single-cell analysis of the GSE152938 dataset from the GEO

database, we defined the immune subtype-related genes in ccRCC. Immediately

afterwards, we used Cox regression and Lasso regression to build a prognostic

model based on TCGA database. Then, we carried out a series of evaluation

analyses around the model. Finally, we proved the role of VMP1 in ccRCC by

cellular assays.

Result: Initially, based on TCGA ccRCC patient data and GEO ccRCC single-cell

data, we successfully constructed a prognostic model consisting of five genes.

Survival analysis showed that the higher the risk score, the worse the prognosis.

We also found that the model had high predictive accuracy for patient prognosis

through ROC analysis. In addition, we found that patients in the high-risk group

had stronger immune cell infiltration and higher levels of immune checkpoint

gene expression. Finally, cellular experiments demonstrated that when the VMP1

gene was knocked down, 786-O cells showed reduced proliferation, migration,

and invasion ability and increased levels of apoptosis.

Conclusion: Our study can provide a reference for the diagnosis and treatment

of patients with ccRCC.
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1 Introduction

Renal cell carcinoma (RCC) is one of the most common and

deadly malignancies of the urinary tract, with an annual morbidity

rate of 2.2% and a mortality rate of 1.8% (1). Clear cell renal cell

carcinoma (ccRCC) is the most common histological type of RCC,

making up about 80% of all cases (2, 3). Currently, the preferred

clinical treatment is partial or radical nephrectomy for patients with

stage I or II renal cell carcinoma (4). However, about 30% of

patients have metastasized at first diagnosis and the 5 years survival

rate for this group of patients is low because ccRCC is not sensitive

to radiotherapy and chemotherapy (5, 6). Therefore, it is important

to find new therapeutic tactics to improve the prognosis of ccRCC.

The tumor microenvironment (TME) is a complex dynamic

multicellular ecosystem consisting of a variety of components such

as immune cells, stromal cells, cancer cells, neuronal cells, blood

vessels, and various growth factors (7, 8). Immune cells in the TME

have been considered a key and central area of oncology research,

playing a valuable role in the prognosis of malignancies, and in

treatment resistance (9). Obradovic et al. demonstrated that

TREM2/APOE/C1Q-positive macrophage infiltration is a

potential prognostic biomarker for ccRCC recurrence, as well as a

candidate therapeutic target (10), and Errarte et al. proved the

implication of CAF (cancer-associated fibroblasts) in the

proliferation, angiogenesis, metastasis development and drug

resistance during RCC tumourigenesis. This fact assumes that

CAF is a potential clinical tool for the diagnosis, prognosis and

treatment of ccRCC (11). Furthermore, TME-related biomarkers

were found to predict prognosis for ccRCC patients as novel targets

fo r immunothe rapy (12 ) . In r ec en t yea r s , va r i ou s

immunotherapeutic strategies, comprising anti-PD-1, anti-PD-L1

and anti-CTLA-4, are recommended as the mainstay of treatment

for advanced RCC. However, the majority of patients who receive

immunotherapy experience primary and acquired drug resistance,

which ultimately causes treatment failure (13, 14). Therefore, the

discovery of new targets for immunotherapy is of great importance.

Single-cell RNA sequencing (SCQ) is used to study cell

heterogeneity and to identify different cell types within

heterogeneous cell populations. Unlike traditional RNA

sequencing, SCQ will help to understand the differences between

different cells at the gene and gene expression levels during disease

progression (15, 16). SCQ is now widely used in the study of various

diseases, and results have been achieved (17, 18).

In our study, we first performed dimensionality reduction,

clustering and cell type annotation analysis on the SCQ data of

ccRCC. Through these analyses, we classified the different tumor
Abbreviations: ccRCC, Clear cell renal cell carcinoma; RCC, Renal cell

carcinoma; TME, The tumor microenvironment; SCQ, Single-cell RNA

sequencing; TCGA, The Cancer Genome Atlas; PCA, principal component

analysis; WGCNA, Weighted gene co-expression network analysis; TOM,

topological overlap matrix; AUC, area under the curve; ROC, receiver

operating characteristic curve; VMP1, vacuole membrane protein 1; IFI30,

Interferon g-inducible protein 30; CEBPB, CCAAT/enhancer-binding protein

B; FKBP11, FK506 binding protein 11; ATP1B1, ATPase Na/K transporting

subunit beta 1.
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cells as immune and non-immune components and successfully

obtained marker genes for cells in the immune group. A prognostic

model for ccRCC patients was constructed based on these genes and

clinical information and transcriptome sequencing of ccRCC

patients from the The Cancer Genome Atlas (TCGA) database.

This model precisely assesses the prognosis of ccRCC patients and is

associated with the immune microenvironment. Finally, we

validated the role of VMP1, the important gene in the model,

through cellular experiments. Our study offers novel ideas for the

diagnosis and treatment of ccRCC.
2 Methods

A flowchart of our work was shown in Figure 1.
2.1 Data source and preprocessing

The ccRCC SCQ dataset GSE152938 was downloaded from the

GEO database, including 1 normal kidney sample, 2 ccRCC

samples, 1 chromophobe renal cell carcinoma sample and 1

papillary renal cell carcinoma sample. Because this article was

designed to study the prognosis of patients with ccRCC, we

removed other types of samples. Next, we perform quality control

on the SCQ data, we selected genes expressed in at least three cells

and cells with total gene expression between 300 and 3000 for the

next analysis. And, cells with mitochondrial gene expression greater

than 5% of total gene expression were also excluded. The

transcriptome RNA-seq data and its corresponding clinical

information were acquired from the TCGA database, comprising

539 ccRCC data and 72 normal data. And, to ensure the accuracy of

the study, 530 ccRCC samples that included complete clinical

information were selected for further analysis.
2.2 SCQ data analysis

First, we normalized the ccRCC SCQ data filtered in the previous

step by the method of “LogNormalize”. Then, due to the sheer

volume of cells, we classified them by the marker genes expressed

by each cell, and merged the similar categories, through the method

of principal component analysis (PCA) dimension reduction. Finally,

with the help of the function of “SingleR”, we annotated cell types

according to their marker genes, and we used the “FindAllMarkers”

function to obtain marker genes for different cell types.
2.3 Weighted gene co-expression
network analysis

WGCNA is a systematic statistical approach that can group genes

with analogous expression patterns and illustrate the relationship

between genes of a particular group and specific traits (19). In our

study, we used this method to obtain the set of genes associated with

clinical traits. First, we performed an initial screening of the samples,
frontiersin.org
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excluding non-renal cancer patients and genes with small

fluctuations. Then, to improve the accuracy of the screening, we

transformed the adjacency matrix into a topological overlap matrix

(TOM) and set the minimum group size to 30. Finally, we merge

similar groups and output the resulting graph and data.
2.4 Construction of the immune
subtype-related prognostic model

Firstly, we combined the above-obtained genes with TCGA

transcriptome data to obtain the immune subtype-related gene

expression data. Subsequently, we merged the expression data with

their survival status and performed a univariate Cox analysis to

identify genes associated with prognosis. Then, the genes were further

selected by the way of Lasso regression analysis, and through this we

can get the model genes. Finally, we calculated the risk score for each

ccRCC patient based on the formula and with the help of the median

risk score, we were able to classify the patients into two risk groups.
2.5 Evaluation of the model

We analyzed whether the risk score was an independent

prognostic factor by the measure of Cox analysis. Then, we

assessed the predictive effect of the model by plotting the survival

curves of the ccRCC patients, and we make the most of the ROC

curve to evaluate the accuracy and sensitivity of this model. In the
Frontiers in Oncology 03
last, we plot the patient’s survival status on an axis with the risk

score as the horizontal coordinate to give a better visualisation of

each patient’s survival status.
2.6 Analysis of immune function

With the help of the results of 7 kinds of immune infiltration in

ccRCC downloaded from the TIMER database, we showed the

difference in the level of immune infiltration between ccRCC

patients in two groups. Meanwhile, we also investigated the

difference in the expression level of immune checkpoint-related

genes between ccRCC patients in two groups.
2.7 Construction of the nomogram

In our study, by combining each patient’s risk score of our

model with clinical information, we successfully constructed a

nomogram that can predict the patient’s risk of death. Then we

used ROC to assess the accuracy of nomogram in predicting

patient outcomes
2.8 Cell culture and transfection

CcRCC cell-lines 786-O was purchased from the Chinese

Academy of Sciences Committee on Type Culture Collection Cell
FIGURE 1

The flowchart of data collection and analysis in this study.
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Bank (Shanghai, China) and were cultured in RPMI-1640 medium

(Gibco, USA) supplemented with 10% FBS (Gibco, USA). siRNA

VMP1 and siRNA negative control were purchased from RiboBio

(Guangzhou, China), and transfected with Lipofectamine 2000

reagent (Invitrogen, CA, USA).
2.9 RNA extraction and quantitative
real-time polymerase chain reaction

Total RNAs of 786-O were extracted using the TRIzol reagent.

Then, we made use of a reverse transcription kit from (vazyme,

China) to obtain cDNA. We detected the relative expression

level of the target gene by the measure of qRT-PCR based on the

2-DDCt method.
2.10 Cell proliferation analysis

5-ethynyl-29-deoxyuridine (EdU) assay was performed based on

the manufacturer’s instructions (RiboBio, Guangzhou, China). The

786-O cells were first inoculated in 24-well plates, followed by

incubation with EdU reagent for 2h. Finally, after labelling the

DNA with 2-(4-Amidinophenyl)-6-indolecarbamidine

dihydrochloride (DAPI), the cell images were inspected under a

fluorescent microscope.
2.11 Transwell assay

To assess the migratory capacity of the cells, we adjusted the 24-

well plates (Nset, China) by transwell culture chambers (Corning,

USA). Cells were inoculated into 200mL of the medium in the upper

chambers without serum. The lower layer of the chamber is 700mL
of medium containing 10%FBS. For cell invasion ability, pre-lay a

layer of Matrigel over the chambers, the rest of the steps are the

same as above. After 24h incubation in the cell incubator, the

medium was discarded and the cells were wiped from the inside of

the bottom of the chambers using a cotton swab. Finally, after fixing

them with methanol and staining the cells at the bottom of the

chamber with crystal violet, images of the cells were taken using

a microscope.
2.12 Scratch wound healing assay

Cells in logarithmic growth phase were inoculated in 6-well

plates. When the cells reached about 90%, 200mL tips were used to

draw 2 vertical lines along the vertical direction, and after washing

out the cell debris, the complete medium was replaced with a

medium containing 1% FBS. After 24 hours, the distance the cells

migrated to the scratched area was carefully observed under the

microscope and this was used to test the migration ability of

the cells.
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2.13 Apoptosis detection using
flow cytometry

Cells were first digested with trypsin and washed twice with PBS.

Then, according to the Annexin V-FITC/PI Apoptosis Detection Kit

(vazyme, China) guidelines, cells were incubated with Annexin V-

FITC and PI in a dark environment for 10minutes. Finally, the rate of

apoptosis was measured using flow cytometry.
2.14 Statistical analysis

Bioinformatics analysis was conducted using the R software (V.

4.1.2). The quantification and graphing of the experiment data was

conducted using Image J software (V.1.8.0) and GraphPad Prism

(V.9.0). All measurement data are shown as the mean ± SD. The data

differences between the two groups were analyzed by Student’s t-test

and P-values less than 0.05 were considered significant in all tests.
3 Results

3.1 SCQ data analysis and identification of
immune-related genes

As illustrated in Figure 2A, we found a relatively even

distribution of cells with gene expression levels between 300 and

3000, and the mitochondrial genes of the majority of cells were <5%.

Using the above criteria to screen the cells, we successfully obtained

1759 cells. Figure 2B showed that these cells were uniformly

distributed in the ccRCC samples and that the gene expression

levels were positively associated with the amount of gene expression

(0.88). This indicated that the screened cells are suitable for further

analysis. Figure 2C showed the ten most variable genes in selected

cells, including JCHAIN, RGS5, ENPP2 and MZB1.

After PCA descending treatment, these cells were divided into

11 clusters. In Figure 3A, we could find 10 highest expressed genes

in each cluster. In Figure 3B, we could find the distribution of these

11 clusters. With the help of the function of “SingleR”, we annotated

cell types according to their marker genes, and the clusters

associated with immune cells are 0, 1, 4, 6, 7, 9 (Figure 3C). We

then used the “FindAllMarkers” function to acquire 858 immune

subtype-related genes.
3.2 Weighted gene co-expression
network analysis

In TCGA cohort, with the help of WGCNA, we got the gene

modules related to the patient’s survival status. By using a soft

threshold of 4 and a minimum module gene count of 30, we

succeeded in obtaining 3 modules related to clinical traits

(Figures 3D, E). Because we wanted to analyze patients’

prognosis, we selected genes associated with the patients’ survival

status for further analysis.
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3.3 Construction of the immune subtype-
related prognostic model

First, a differential analysis was performed based on genes

obtained in the previous step in the TCGA cohort to obtain the

differential genes in the tumor and normal groups. Then, as shown in

Figure 4A, we succeeded in obtaining 66 genes related to the prognosis

of ccRCC patients through univariate Cox analysis, 63 of which had a

hazard ratio (HR) > 1. In the last, after randomizing patients into the
Frontiers in Oncology 05
training and validation set, we carried out Lasso regression analysis on

these 64 genes, and the result showed when the number of genes

included is 5, the gene contraction tended to be stabilized and the

partial likelihood deviation was minimized (Figures 4B, C). We finally

obtained 5 model genes, including IFI30, CEBPB, VMP1, ATP1B1,

and FKBP11, andwe found that gene ATP1B1 was highly expressed in

normal patients, while IFI30, CEBPB, VMP1, and FKBP11 were

highly expressed in ccRCC patients (Figure 4D). The names and the

coefficients of the prognostic genes were listed in Table 1. Risk score =
A B C

FIGURE 2

Quality control. (A) When gene expression levels in cells of ccRCC samples were in the range of 300-3000, the distribution of each cell was relatively
even. At the same time, we also found the mitochondrial genes of the majority of cells were <5%. (B) The cells were uniformly distributed in the ccRCC
samples and the gene expression levels were positively associated with the amount of gene expression (0.88). (C) 10 hypervariable genes.
A B

D E

C

FIGURE 3

Single-cell sequencing analysis. (A) 10 highest expressed genes in each cluster. (B, C) the distribution and annotations of these 11 clusters. (D, E)WGCNA
found that MEblue was closely related to the score of survival status.
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IFI30*0.252 + CEBPB *0.050 + VMP1*0.041 + ATP1B1*(-0.007) +

FKBP11*0.302. We then used median patient risk values to classify

patients into two groups for further analysis.
3.4 Validation of the immune
subtype-related prognostic model

First, to explore whether risk scores were an independent factor of

influence for ccRCCpatients, we performed univariate andmultivariate

Cox regression on age, gender, grade, stage and risk score in ccRCC

patients. The presentation of the results showed that in both the training
A B

C

D

FIGURE 4

Construction of the prognostic model. (A) We succeeded in obtaining 66 genes associated with the prognosis of the patients through the univariate
Cox analysis, 63 of which had a hazard ratio (HR) > 1. (B, C) 5 genes were selected to construct the prognostic model by Lasso regression.
(D) Expression of 5 model genes in the transcriptome sequencing of normal and ccRCC patients.
TABLE 1 Genes used for model building and their Coefficients.

Gene Coefficients

IFI30 0.251764

CEBPB 0.049804

VMP1 0.041372

ATP1B1 -0.007404

FKBP11 0.301602
Genes and their coefficients used to construct prognostic models. The risk score =
IFI30*0.251764 + CEBPB *0.049804 + VMP1*0.041372 + ATP1B1*(-0.007404) +
FKBP11*0.301602.
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and validation sets, the risk score was an independent prognostic factor

(Figure 5). We then examined the relationship between patients’ risk

scores and survival status. In Figures 6A, B, we could find the

distribution of patients’ risk scores in ccRCC patients. And, with

increasing risk scores, the chance of patient death increased

(Figures 6C, D). Next, to validate the accuracy of the model, we

plotted ROC curves for 1, 2, 3, 4 and 5 years for both datasets. We

found the area under the curve (AUC) was found to be almost greater

than 0.7 for both datasets from 1 to 5 years, suggesting that the model

had good stability and accuracy in predicting patient prognosis

(Figures 6E, F). Finally, to further test the credibility of the model, we

performed a survival analysis in the ccRCC patients (Figures 7A, B). At

the same time, a further, more specific categorical survival analysis was

carried out for all ccRCC patients. The results showed a more rapid

decline in survival of ccRCCpatients in the high-risk group, irrespective

of age, gender grade and stage (Figures 7C–J).
3.5 Evaluation of immune infiltration and
immune checkpoint

As shown in the above analysis, patients in the high-risk group

had significantly poorer survival. We therefore wanted to

investigate whether there were differences in immune function in

order to guide the treatment of the disease in some sense. The

results showed more immune cell infiltration in the high-risk group,

consisting of T cells, B cells and macrophage cells (Figure 8A).
Frontiers in Oncology 07
Furthermore, almost all immune checkpoint genes were also more

highly expressed in the high-risk group (Figure 8B), indicating that

it is possible that high-risk group ccRCC patients may receive more

benefit from immunotherapy.
3.6 Construction of the nomogram

In order to better predict the prognosis of ccRCC patients, a

nomogram was constructed including clinical information and risk

score. In Figure 9A, with the use of gender, age, total stage, M stage,

grade and risk score values for the patient “TCGA-CZ-4853”, we

predicted his mortality rates of 0.0804, 0.207 and 0.325 at 1, 3 and 5

years. Next, we constructed a calibration curve (Figure 9B) and

found that the nomogram was a good predictor of prognosis at 1, 3

and 5 years for ccRCC patients. In addition, ROC analysis was

carried out to better assess the accuracy of the nomogram. The

results showed that both the 1 year, 3 year, and 5 years, nomogram

was more accurate than clinical information (Figures 9C–E).
3.7 Effect of VMP1 knockdown on the
proliferation of ccRCC cells

To assess the knockdown efficiency of the VMP1 in 786-O cells,

we examined the expression of the VMP1 in the 786-O cell line by

qRT-PCR. Figure 10A showed significant downregulation of VMP1
A B

C D

FIGURE 5

Independent prognostic analysis of the signature. (A, B) Cox regression revealed that the risk score was an independent prognostic factor in ccRCC
patients in training group. (C, D) Cox regression revealed that the risk score was an independent prognostic factor in ccRCC patients in validation group.
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A B

C D

E F

FIGURE 6

Assessment of the model. (A, B) The distribution of patients’ risk scores in the training and validation groups. (C, D) With increasing risk scores, the
chance of patient death increased. (E, F) The ROC curves for 1, 2, 3, 4 and 5 years for both datasets.
A B

C D E F

G H I J

FIGURE 7

The survival analysis. (A, B) The survival analysis between high-risk groups and low risk groups between the training cohort and the validation cohort.
(C–J) A more rapid decline in survival in the high-risk group than in the low-risk group, irrespective of age, gender grade and stage.
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expression levels in the 786-O cells after siRNA transfection,

suggesting that further studies are feasible and meaningful. The

EdU assay was used to test whether VMP1 knockdown had an effect

on the proliferation of 786-O cells, which showed that the

proliferation of cells was suppressed after the vmp1 gene was

knocked down (Figure 10B).
3.8 Effect of VMP1 knockdown on the
migration and invasion of ccRCC cells

The effect of decreased VMP1 expression on cell migration and

invasion was examined by the transwell method. Results displayed

that the decreased expression of VMP1 also impaired cell migration

and invasion (Figures 10C, D). Scratch healing assays also showed a
Frontiers in Oncology 09
significantly slower wound healing rate in 786-O cells with a

decreased expression of the VMP1 (Figures 10E, F).

3.9 Effect of VMP1 knockdown on the
apoptosis of ccRCC cells

We analyzed the influence of VMP1 on the apoptosis of 786-O cells.

The results indicated that the apoptosis level in the lowVMP1 expression

group was significantly higher compared to NC group (Figures 10G, H).

4 Discussion

As the most common and malignant subtype of RCC, the main

treatment options for advanced ccRCC consist of palliative tumor
A

B

FIGURE 8

Analysis of immune infiltration and immune checkpoint. (A) Heatmap of immune cell infiltration in high-risk group and low-risk group. (B) Differential
expression of immune checkpoint genes in high-risk group and low-risk group. *p<0.05, **p<0.01, ***p<0.001.
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resection, targeted therapy and immunotherapy due to its

insensitivity to radiotherapy and chemotherapy (20). Although a

large number of ccRCC patients currently have improved overall

survival rates as a result of immunotherapy, there are still some

patients who have poor outcomes (21). These suggest that our

understanding of the immune microenvironment of ccRCC is far

from adequate and we need to continue to explore its mechanisms

and find new prognostic markers and therapeutic targets.

In this study, we analyzed SCQ data from ccRCC to classify cells

into immune and non-immune groups and extracted marker genes

from the immune group. We then performed Cox and Lasson

regression analyses based on these marker genes and constructed an

immune subtype-related prognostic model. Each patient was then

divided into two groups by calculating risk scores, and the model

was found to be an accurate predictor of patient prognosis through

survival analysis, AUC and other analyses. We next found higher

levels of immune infiltration and immune checkpoint genes

expression in the high-risk group, indicating that patients in the

high-risk group are able to receive more benefits from

immunotherapy. Finally, our cellular experiments displayed that

the proliferation and migration of kidney cancer cells were reduced

and apoptosis levels were increased after vacuole membrane protein

1 (VMP1) knockdown, revealing that it may be a key oncogene and

a possible breakthrough point for treatment.

Our risk model includes 5 genes, all of which take part in the

regulation of cancer. Interferon g-inducible protein 30 (IFI30) is a

reductase localized in lysosomes and expressed mainly in antigen-

presenting cells, including B cells, T cells and macrophages, that
Frontiers in Oncology 10
catalyzes the reduction of disulfide bonds (22, 23). IFI30 can

promote breast cancer proliferation, migration and invasion

through cellular autophagy, and promote melanoma development

by modulating tolerance to autoantigens (23, 24). CCAAT/

enhancer-binding protein B (CEBPB)is a member of the family of

transcription factors of the basic-leucine zipper class. When

subjected to external stimuli, its expression can be increased,

promoting the expression of downstream inflammatory factors

and thus promoting the proliferation and migration of

glioblastoma cells (25). FK506 binding protein 11 (FKBP11) has

been reported to be highly expressed in melanoma, hepatocellular

carcinoma and oral cancer and to promote the development of oral

cancer by regulating the cell cycle and apoptosis through the P53

pathway (26–28). As ccRCC progresses, increased methylation of

the promoter of ATPase Na/K transporting subunit beta 1

(ATP1B1) decreases its expression in cancer, thereby inhibiting

tumor progression and acting as a cancer suppressor (29, 30).

VMP1, previously thought to be a pancreatitis-associated protein

(31), has recently been demonstrated to promote glioma

development and Kras-mediated pancreatic cancer initiation by

regulating cellular autophagy (32, 33). In addition, in acute myeloid

leukemia, HER2 positive breast cancer and ovarian cancer, the poor

prognosis of patients is strongly associated with high expression of

VMP1 (34–36). However, overexpression of VMP1 inhibited the

metastasis, proliferation and increased their sensitivity to

chemotherapeutic drug, 5-fluorouracil, in colorectal cancer cells

(37). There are no similar studies in ccRCC patients, so this paper

focused on VMP1. We found that poor prognosis in ccRCC patients
A B

C D E

FIGURE 9

Construction of the nomogram. (A) Nomogram to predict the probability of mortality at 1, 3, and 5 years. (B) The C-index of the nomogram.
(C–E) ROC curve of the nomogram in 1, 3 and 5 years were 0.857, 0.815 and 0.780 respectively. **p<0.01, ***p<0.001.
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was related to high VMP1 expression and that knockdown of VMP1

inhibited cell growth and induced apoptosis.

CcRCC is one of the most immunologically infiltrative tumors of

the urinary tract and immunotherapy is the main treatment option

for advanced kidney cancer (38). Therefore, it is important to know

the immune function of each patient to control the progression of the

tumor and prolong the prognosis of the patient and to look for new

prognostic markers to extend the survival time of patients. We

propose a new model for immune subtypes with the help of SCQ

analysis of ccRCC. Patients in the high-risk group have higher levels

of immune infiltration, which has implications for guiding treatment.

In summary, we have developed a new prognostic model based

on the results of single-cell analysis, which can accurately predict

the survival time of ccRCC patients and has implications for

guiding immunotherapy. We have initially validated the effect of

VMP1 on ccRCC cell function, and we will further explore the

specific mechanisms of VMP1 at the cellular level to provide new

targets for the diagnosis and treatment of ccRCC.
Frontiers in Oncology 11
5 Conclusions

Weconstructed an immune subtype-related prognostic signature

of ccRCC, and demonstrated the role of VMP1 in ccRCC by cellular

assays. These can accurately assess the prognosis of patients with

ccRCC and provide a new target for treatment.
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