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Theranostic approaches with positron emission tomography/computed

tomography (PET/CT) or PET/magnetic resonance imaging (PET/MRI) molecular

imaging probes are being implemented clinically in prostate cancer (PCa) diagnosis

and imaging-guided precision surgery. This review article provides a

comprehensive summary of the rapidly expanding list of molecular imaging

probes in this field, including their applications in early diagnosis of primary

prostate lesions; detection of lymph node, skeletal and visceral metastases in

biochemical relapsed patients; and intraoperative guidance for tumor margin

detection and nerve preservation. Although each imaging probe shows preferred

efficacy in some applications and limitations in others, the exploration and

research efforts in this field will eventually lead to improved precision

theranostics of PCa.
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1 Introduction

Prostate cancer (PCa) is the most frequently occurring cancer in men worldwide, with a

continuously increasing incidence (1). Traditional methods for PCa diagnosis, including the

digital rectal examination (DRE) and serum prostate-specific antigen (PSA) evaluation,

cannot fully meet the diagnostic needs due to low accuracy and sensitivity (2). Novel

methods, such as integrated positron emission tomography/computed tomography (PET/

CT) or PET/magnetic resonance imaging (PET/MRI), to image 68Gallium(68Ga)-labeled

prostate-specific membrane antigen (PSMA), which is exclusively overexpressed on clinical

PCa cells, have brought great precision diagnostic capability. In addition to diagnosis, the

major treatment strategy for PCa, prostatectomy, has entered the era of “precision surgery”,

which requires a precise marking of the malignant tissue as intraoperative guidance.

Identifying the actual position of the tumor, nerve, and lymph node has become more and

more important during prostatectomy surgery. Novel intraoperative molecular imaging

methods with high sensitivity, specificity, distinguishability, and safety, such as 111In labeled

PSMA, have been shown to locate the PCa lesions precisely (3); indocyanine green (ICG), a
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USA Food and Drug Administration (FDA)-approved near-infrared

(NIR) fluorescent agent for highlighting tissue, has been combined

with 99mTc to directly and accurately recognize malignant PCa tissue

and metastases to assist decision making by surgeons during

operations (4). In this article, we focus on providing a

comprehensive summary of all novel molecular imaging probes in

PCa diagnosis and intraoperative guidance for tumor detection and

nerve preservation.
2 Novel Molecular imaging methods
for PCa diagnosis

2.1 Prostate-specific membrane antigen

Prostate-specific membrane antigen (PSMA) is a type II

transmembrane glycoprotein encoded by the folate hydrolase 1

(FOLH1) gene. Compared with other non-specific PET tracers, PET/

CT imaging targeting PSMA has important clinical value in the

diagnosis and staging of PCa. PSMA is highly expressed on the

surface of PCa cells and is closely correlated with tumor grade, PSA

value, and prognosis. So far, two PSMA agents (68Ga-PSMA11 and 18F

DCFPyL) have been approved by the FDA for clinical application (5).

Other PSMA tracers are also commonly used in preclinical studies and

clinical trials, such as 68Ga-PSMA617 and 18F-PSMA-1007. A meta-

analysis based on 37 studies with 4,790 patients was conducted by Perera

et al. and showed that the overall sensitivity and specificity of 68Ga-

PSMA PET/CT for initial staging of advanced PCa were 77% and 97%,

respectively (6). According to a meta-analysis by Huang, an overall

pooled detection rate of 94% for 18F-PSMA-1007 was demonstrated in

PCa patients (7). With a combined median maximum standard uptake

value (SUVmax) of 16 (3.7-77.7) for primary prostate lesions, 18F-

PSMA-1007 had positive predictive values of 0.90, 0.94, and 0.84 with

the identification of lesions, regional lymph node metastases, and

localized prostate tumors, respectively. With the comparison of

regular CT imaging and bone scanning, the accuracy of PET imaging

with PSMA as the target was 27% higher (92% vs 65%), as were

sensitivity and specificity (85% vs 38%, 98% vs 91%) (8). Zhou et al.

made a critical comparison of 18F-PSMA-1007 PET/CT and 18F-FDG

PET/CT, which were both performed on 21 PCa patients (9). The

SUVmax, mean standard uptake value (SUVmean), and tumor-to-

background ratio (TBR) of 18F-PSMA-1007 PET/CT were higher than

those of 18F-FDG PET/CT in the primary lesions and metastases,

leading to a superior detection rate in the primary PCa lesions and

more significant differentiations between benign lesions and metastases.

In addition, the multifocality of primary PCa lesions was presented

under the 18F-PSMA-1007 PET/CT rather 18F-FDGPET/CT, suggesting

the excellent PCa lession localization the PSMA tracer

provides (Figure 1).

PSMA PET/CT imaging makes a contribution to the diagnosis of

PCa metastases. A prospective single-center study demonstrated that

PSMA PET/CT imaging has modest sensitivity (71.4%) and exceptional

specificity (88.9%) in detecting pelvic lymph node involvement (10). In

addition, PSMA PET/CT imaging combined with sentinel lymph node

biopsy in primary-identified medium to high-risk PCa resulted in 94%

accuracy in original lymph node staging of PCa. This cross-validation

could increase the overall sensitivity of lymph node metastasis to 100%
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(11). To assess the diagnostic efficacy of PSMA imaging for PCa bone

metastases, a network meta-analysis that involved 45 studies with a total

of 2,843 patients and 4,263 lesions was completed by Liu et al. (12). It

evinced that 68Ga-PSMA PET/CT had an incredible ability to visualize

bonemetastases, with a superiority index of 7.3, which is higher than18F-

NaF, 11C-choline, 18F-choline, 18F-fluorodeoxyglucose (FDG), and 18F-

fluciclovir PET/CT. Harmon et al. compared the application of 18F-

PSMA-PET/CT and 18F-NaF in bone metastases, and 185 bone lesions

were recognized by 18F-NaF and/or 18F-PSMA in 26 patients, in which
18F-NaF significantly works better (p<0.001) (13). Van Damme et al.

conducted a study on 134 PCa patients, including newly diagnosed and

relapsing patients, to make a comparison between PSMA imaging and

whole-body magnetic resonance imaging (WB-MRI) for metastases

diagnosis (14). PSMA imaging and WB-MRI were found to have no

significant difference among identifying PCa patients with metastases

when lymph node, skeletal, and visceral metastases were considered as a

whole. However, in the subgroup of newly diagnosed PCa patients,

PSMA PET/CT was better than WB-MRI for the detection of lymph

node metastases, suggesting PSMA PET/CT is superior to WB-MRI for

the recognition of lymph node metastasis in early PCa.

Although there are superior advantages of PSMA PET-CT

imaging ascribed to the high expression of PSMA in PCa, some

limitations exist. High uptake of radionuclide has been found in some

benign lesions and other non-PCa malignant tumors in clinical

applications (15, 16). In addition, the efficacy of PSMA PET/CT

imaging is highly susceptible to the PSA level. The PSA level was

positively associated with the SUV value of 18F-PSMA imaging in

patients with androgen deprivation therapy (ADT) (13). Combining

PSA levels and treatment status, ADT patients (n=11) with a PSA

below 2 ng/ml showed more lesions on 18F-NaF than on 18F-PSMA

(p=0.02). Among patients with PSA > 2 ng/ml, ADT patients (n=8)

showed the same or more lesions on 18F-PSMA than on 18F-NaF. In

efficacy monitoring, 18F-PSMA-1007-PET/CT has a good localization

function for the biochemical recurrence (BCR) of PCa patients with a

detection rate of 75% (17). Even small lymph node metastases less

than 8 mm in diameter were imaged clearly. However, the remaining

25% of patients with a low level of PSA were not recognized by 18F-

PSMA imaging. Similar to 18F-PSMA PET/CT in the relationship

between the detection rate of BCR and PSA level, 68Ga-PSMA PET/

CT had this limitation in some studies (18, 19). Rauscher et al.

analyzed subgroups of patients with very low (0.2-0.5 ng/ml) and low

(0.5-1.0 ng/ml) PSA values and found that the detection rates of

lesions in patients with recurred PCa were 55% (74/134) and 74%

(102/138), respectively (18). Derlin et al. investigated the imaging

efficacy of the 68Ga-PSMA PET/CT with more PSA level

stratifications and presented much lower detection rates in patients

with low PSA (< 2 ng/ml) (19). However, this limitation could be

overlooked in castration-resistant prostate cancer (CRPC), which is

characterized by a rising PSA. Fourquet et al. performed PSMA-PET/

CT imaging in incomplete CRPC patients, which were defined as

non-metastatic PCa patients after ADT treatment (20). Even for

patients with PSA serum levels less than 2 ng/ml, the positive rate

of PSMA PET/CT imaging could reach 70%, suggesting the high

effectiveness of PSMA PET/CT imaging for CRPC-relevant diseases.

In addition, PSMA PET/CT imaging works well with the prognosis

of PCa. Liu et al. used 68Ga-PSMA-617 PET/CT imaging semi-

quantitative analysis indicators as “imaging markers” to predict risk
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stratification and metastasis risk of PCa (21). Univariate logistic

regression models established by SUVmax, intraprostatic PSMA-

derived tumor volume (iPSMA-TV), and intraprostatic total lesion

PSMA (iTL-PSMA) could be able to efficiently previse high-risk PCa

with the sensitivity and specificity of 87.5% and 50%, 62.5% and 100%,

and 87.5% and 100%, respectively. A study performed by Roberts that

included 848 patients after radical prostatectomy found that the

SUVmax value of PSMA imaging lesions was remarkably negatively

correlated with biochemical recurrence-free survival (BRFS) (22).

Gleason score (GS) was also negatively correlated with BRF, and

SUVmax value was an independent predictor of BRFS in patients.

Roberts et al. found that increased 68Ga-PSMA-11 uptake is often

associated with poor pathological outcomes and provides prognostic

information for progression-free survival (23). Changes in PSMA

expression could be a predictive biomarker for overall survival, which

may assist in personalizing therapy for PCa patients (24). 68Ga-PSMA-

11 PET/CT has a potential impact in guiding local lesion radiotherapy

planning, which can improve the survival of castration-resistant PCa

patients by adjusting the extent of radiotherapy (25). Under the

guidance of PSMA PET, the mean time to PSA progression or last

follow-up was 17.9 months with radiation therapy, compared with 2.9

months for patients without PSMA PET-guided local ablation radiation

therapy (26). Shagera’s retrospective evaluation of 37 patients with

metastatic hormone-sensitive or castration-resistant prostate cancer

(mHSPC or mCRPC) by testing the biochemical association between

responses and different PET parameters showed that 68Ga-PSMA-11

PET/CT imaging could be an effective tool for evaluating the response of

metastatic PCa to taxane chemotherapy (27).
2.2 Neurotensin receptor 1

In addition to the specific molecular markers mentioned above, G

protein-coupled neurotensin receptor (NTR) and its ligand

neurotensin peptide (NT) have been suggested to play an important
Frontiers in Oncology 03
role in PCa. Inhibiting the pathway of NTR1 has been suggested as a

possible strategy to prevent the pathogenesis of this disease (28).

Morgat et al. performed a pilot study of the NTR1 expression in 12

samples of normal prostate, 11 samples of benign prostatic

hyperplasia (BPH), 44 samples of PCa, and 15 samples of

metastatic lymph nodes (29). Compared with the negative NTR1

staining in normal prostate and BPH samples, 4 of the 44 primary

tumors (9.1%) and 5 of 15 metastatic lymph nodes (33.3%)

overexpressed NTR1, suggesting that NTR 1 may be a potential

biomarker of PCa, especially for metastatic lymph nodes. However,

the limited sample series seriously affects the reliability of this

conclusion, and a larger sample size is needed in future studies.

Nevertheless, studies have suggested that NTR1 may be another

molecular target that could complement PSMA imaging. Ma et al.

developed novel heterodimeric probes that targeted both PSMA and

NTR1 and showed significant uptake in both NTR1-positive/PSMA-

negative PC-3 tumors and PSMA-positive/NTR1-negative LnCap

tumors (two androgen-sensitive PCa xenografts) at the animal level

(30). Zhang et al. used 68Ga-DOTA-NT-20.3 animal PET imaging to

scan the mice that were xenografted with PC-3, an androgen-receptor

(AR)-positive, PCa cell line with no PSMA expression, suggesting that

NTR1 may be a critical target for diagnosis or treatment of PCa

applications with limited PSMA expression levels (31). However, the

research of this tracer is still in the preclinical stage, and more

preclinical and clinical studies are necessary for the exploration of

its potential.
2.3 Fibroblast activation protein

First described as a cell surface antigen F19 in 1986, fibroblast

activation protein (FAP) is a 760 amino acid (AA)-glycoprotein and a

member of the dipeptidyl peptidase (DPP) family (32, 33). FAP shares

a high AA sequence homology with DPP4, leading to its high DPP

activity (34). In addition, endopeptidase activity for cleavage of
FIGURE 1

Maximum-intensity projections of PET examinations using 18F-PSMA-1007 (A) and 18F-FDG (B). Axial PET/CT for 18F-PSMA-1007 (C) and 18F-FDG (D).
Reprinted with permission from Zhou et al. (9). Copyright © 2021 Zhou, Li, Jiang, Wang, Chen, Shen, You, Lu, Liao, Li and Cheng.
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benzyloxycarbonyl-glycine-proline-7-amino-4-methylcoumarin was

also found in FAP (33). Just as it initially caught people’s attention

for its existence in the mesenchyme of multiple cancers rather than

epithelial cells, FAP was found to be overexpressed in most epithelial

cancers and participate in the regulation of tumor growth and

metastasis, suggesting that FAP is a potential target for tumor

theranostic (35, 36). Currently, FAP inhibitors (FAPI) are mainly

used for FAP-targeted PET/CT imaging (37). In 2018, Loktev et al.

first reported that 68Ga-FAPI-02 was used for the imaging of multiple

human malignant tumors and achieved good imaging results (38).

Kratochwil et al. tested the 68Ga-FAPI-04 on 80 patients with 28 kinds

of tumors, in which PCa patients showed intermediate uptake of
68Ga-FAPI-04 with SUV of 6-12 and TBR of 3-fold (39).

Kesch et al. developed tissue microarrays (TMAs) of prostate

tissues from 94 PCa patients at various stages, including primary PCa,

PCa receiving ADT, CRPC, and neuroendocrine prostate cancer

(NEPC), with anti-FAP antibody staining, and found the positive

correlation between FAP expression and disease advancement (40).

The tissues with the highest FAP expression were from CRPC

patients, suggesting the potential of FAPI imaging in advanced PCa,

especially CRPC. A series of case studies for the FAPI PET/CT

imaging on PSMA-negative CRPC also confirmed FAPI PET/CT

imaging’s ability to visualize the metabolic lesions and complement

the PSMA imaging (41–43). However, the issue of low sample size

should be improved by large-scale clinical trials in the future.

The other weakness of FAPI PET/CT imaging is its specificity on

tumor lesions. Xu et al. reported a case study of 68Ga-DOTA-FAPI-04

on a PCa patient with arthritis. Compared with the prostate lesions,

the arthritis site presented higher uptake of FAPI, suggesting that
68Ga-DOTA-FAPI-04 may also be visualized in inflammation,

possibly reducing its value in tumor diagnosis (44).
3 Additional PET agents for PCa
diagnosis

3.1 18F-fluorodeoxyglucose

For tumor PET imaging, 18F-fluorodeoxyglucose (18F-FDG) is

one of the most frequently used radiotracers. Fluorodeoxyglucose

(FDG) is a glucose analogue, which is highly absorbed in tumor

lesions mainly through glucose transporter-1 (GLUT1) because of its

involvement in tumor cell metabolism. It has been broadly applicated

in clinical diagnosis, staging analysis, prognosis prediction, and

treatment response monitoring of various tumors as a PET imaging

agent (45). However, some patients with well-differentiated PCa had

false negatives during clinical imaging (46). In addition, some benign

lesions, such as inflammation, can also take up 18F-FDG. Since the

prostate is close to the bladder and 18F-FDG is mostly egested through

the urinary tract, this limits its application in the primary tumor of

PCa due to the bladder urinalysis activity (9).

Although 18F-FDG imaging possesses limited accuracy on

primary PCa diagnosis and staging, high-grade PCa (GS= 8-10) and

more aggressive metastatic PCa showed higher glycolytic activity. In a

study of 148 PCa patients with biopsy GS ≥ 8, 18F-FDG PET/CT

imaging detected lesions with high intraprostatic FDG uptake in 66%

of patients (47). Intraprostatic FDG uptake was positively correlated
Frontiers in Oncology 04
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lymph node metastasis, and risk of BCR, suggesting that preoperative

intraprostatic FDG uptake is a composite factor for poor pathological

prognostic factors. In addition, 18F-FDG has a certain value in the

detection of primary lesions of CRPC. Chen et al. studied 56 cases of

CRPC with 68Ga-PSMA and 18F-FDG PET/CT examinations (48).

Although overall the 68Ga-PSMA is significantly better than 18F-FDG

PET/CT with a higher detection rate of 75.0% vs 51.8%, and more

positive lesions of 135 vs 95, the incidence of patients with 68Ga-

PSMA−, 18F-FDG+ lesions was 23.2% (13/56), which could not be

ignored in the clinic. The PSA level and GS of patients with 68Ga-

PSMA−, 18F-FDG+ lesions were higher than those of patients without
68Ga-PSMA−, 18F-FDG+ lesions, that 61.5% of patients with GS ≥ 8

and PSA ≥ 7.9 ng/mL carried the special lesions, suggesting that

CRPC patients with high GS and PSA may take advantage of 18F-

FDG PET/CT imaging. 18F-FDG-PET/CT is also of great value in the

diagnosis of bone metastases in high-grade PCa patients (GS≥8). In

comparison with the bone scan, 18F-FDG PET/CT is sensitive and

accurate in detecting bone metastases (sensitivity:100% vs 78.8%,

specificity: 98.7% vs 98.2%) (49).
18F-FDG PET imaging also has the ability to assess prognosis in

PCa patients. In the study of 94 patients with primary PCa who

underwent 18F-FDG imaging previous to the radical prostatectomy,

patients with higher SUVmax had poorer long-term survival (50).

Higher intensity tracer uptake is positively associated with GLUT1

expression, stage, pathological grade, and disease progression. 18F-

FDG PET whole-body total lesion glycolysis (TLG) is independently

associated with overall survival as a quantitative prognostic imaging

biomarker in mCRPC patients receiving abiraterone or enzalutamide

as first-line therapy (51). Studies have shown that SUV value and the

number of lesions are also independently associated with time to

hormonal therapy failure (THTF). When the sum of SUVs was

divided into quartile ranges, patients in the fourth quartile had

significantly lower odds of survival than patients in the first

quartile. Both SUV and 18F-FDG PET/CT-derived lesions provide

independent prognostic information for THTF in patients with

metastatic castration-sensitive PCa (52).
3.2 Choline

FDA approved the application of choline-based radiotracers (11C

and 18F- choline) in 2012 for patients with biochemically relapsed

PCa. Now both 11C and 18F- choline have been applied to monitor the

curative effect in PCa patients. Wang et al. analyzed 46 studies and

found that the combined sensitivity and specificity of 18F-choline for

the detection of BCR of PCa were 0.93 (95% CI, 0.85-0.98) and 0.91

(95% CI, 0.73-0.97) (53). The combined detection rate was 66%, but

when PSA is in the ranges of <0.5, 0.5-0.99, 1.0-1.99, and ≥2 ng/ml,

the detection rates were 35%, 41%, 62%, 80%, respectively. Therefore,

although the choline tracer is suitable for the detection of BCR of PCa,

the detection rate is not ideal when the PSA value is very low.
11C and 18F- choline also have implications in assessing prognosis

in PCa. Jimbo et al. showed that 11C-choline PET/CT assessment in

mCRPC patients receiving primary docetaxel chemotherapy could

predict overall treatment response and progression-free survival with

blood pool-corrected SUVmax during treatment (Figure 2) (54). The
frontiersin.org
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percent change in SUVmax was a significant predictor of complete

response, with a greater than 20% reduction in SUVmax in 57 of 77

patients (74%), who were 3.6 times more likely to have complete

remission than those patients with a reduction of SUVmax <20% after

6 cycles of primary docetaxel chemotherapy. Zhang et al. used 11C-

choline-PET to identify 89 patients with oligometastatic CRPC,

providing a better target for stereotactic ablative radiotherapy

(SABR) to improve the outcome with a median overall survival of

29.3 months (55). Garcıá Vicente et al. conducted interim and end-of-

treatment 18F-Fluorocholine (FCH) PET/CT imaging in 223Ra-treated

CRPC and bone metastases patients, and the results were significantly

associated with both progression-free survival and overall survival,

suggesting that interim and end-of-treatment 18F-FCH PET/CT

imaging could be applied as predictors and even guidance during

the 223Ra therapy (56).
3.3 18F- Fluciclovine

18F-fluciclovine (18F-FACBC) was first reported by Shoup in 1999

for brain tumor imaging (57). Based on the encouraging diagnostic

presentation and histologically confirmed data in patients with

biochemical recurrence PCa, the FDA and European Commission

(EC) approved 18F-FACBC for diagnostic imaging in PCa patients

with elevated PSA after pre-treatment (58), and until recently, 18F-

FACBC imaging has been included in the National Comprehensive

Cancer Network (NCCN) guidelines for the management of BCR of

PCa. A previous phase II clinical trial found the sensitivity and

specificity of the scan to be 92.5% and 90.1%, respectively, for

primary PCa lesions (59). Uptake of 18F-FACBC was significantly

increased in PCa primary lesions, and lesions with high GS (>3+4)

tended to show higher uptake rates compared with low GS lesions and

benign prostatic hyperplasia (60). In the diagnosis of lymph node
Frontiers in Oncology 05
metastases, this study found that only 1 in 7 patients with metastatic

lymph nodes showed true positive results on 18F-FACBC PET/CT and

PET/MRI. Another multicenter phase II study of 40 regional lymph

nodes in 28 patients found that the sensitivity, specificity, diagnostic

accuracy, positive predictive value, and negative predictive value of 18F-

FACBC imaging in lymph node analysis were 57.1% (4/7), 84.8% (28/

33), 80.0% (32/40), 44.4% (4/9) and 90.3% (28/31), respectively (61).
18F-FACBC PET/CT imaging has no advantage in the diagnosis of bone

metastases either, possibly due to the low spatial resolution and partial

volume effects caused by necrotic and mucinous components in the

metastatic foci (62). A meta-analysis included 9 studies and found that

the pooled sensitivity and specificity of 18F-FACBC imaging of aged

PCa patients (including both primary and recurrent PCa) were 86.3%

and 75.9%, respectively, with a combined diagnostic odds ratio of

16.453 and heterogeneity of 30% (63). In the regional analysis, 18F-

FACBC-PET/CT owned a higher sensitivity and a lower specificity for

the assessment of tumors in the prostate bed than in the extraprostatic

region (90.4% vs 76.5%, 89% vs 45%, respectively). Filippi et al. studied

the clinical data of 81 patients who underwent 18F-FACBC PET/CT for

BCR of PCa (64). The detection rate of 18F-FACBC PET/CT in the

entire cohort accounted for 76.9%, and the positive predictive value was

96.7%. This modality played an impact on the clinical management in

33 of 81 patients (40.7%), resulting in a critical amendment in

treatment strategy in 30 subjects (90.9%). Like PSMA imaging, the

detection rate of FACBC imaging is positively correlated with the PSA

levels. When the PSA levels are in the range of 0.2-0.57, 0.58-0.99, 1-1.5

and >1.5 ng/ml, the detection rates of 18F-FACBC PET/CT were 66.7%,

71.4%, 78.9% and 90, respectively. However, even at a low PSA level,
18F-FACBC PET/CT imaging preserves a much higher detection rate

than PSMA imaging, which is meaningful for the localization and

diagnosis of les ions and has a s ignificant impact on

clinical management.
FIGURE 2
11C‐choline PET/CT imaging during the docetaxel chemotherapy for a good responder. Baseline (A), mid‐course (B), and posttherapy (C) axial fused 11C‐
choline PET/CT images demonstrating markedly choline‐avid right posterior iliac bone metastasis at baseline (arrow), while nearly none at mid-course
and posttherapy. Reprinted with permission from Jimbo et al. (54). Copyright ©2021 Wiley Periodicals LLC.
frontiersin.org
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4 Other experimental radiotracers

4.1 Gastrin-releasing peptide receptor

Gastrin-releasing peptide receptor (GRPR) is a G protein-coupled

receptor that is overexpressed in a variety of malignancies, such as

breast cancer, PCa, and small cell lung cancer (65). GRPR is one of the

subtypes of the bombesin (BBN) receptor, also called BB2r. As a

bombesin analog, gastrin-releasing peptide (GRP) spreads over the

peripheral nervous system and organs and primarily works in the

gastrointestinal system through GRPR (66). As mentioned, the critical

feature of GRPR is its overexpression in prostate tumor cells and

underexpression in normal prostate tissue. Therefore, multiple

radionuclides have been used to label bombesin analogs (GRPR

agonists and antagonists), which preserve the high affinity for

GRPR, to image tumors with high GRPR expressions (67, 68). At

present, a variety of GRPR agonists and antagonists have emerged

and been tagged with multiple radioisotopes. However, the GRPR

agonists induce some gastrointestinal side effects due to the activation

of GRPR. Compared with agonists, GRPR antagonists could provide

better visualization with high value in the diagnosis and staging of

PCa with less undesirable effects (69).

As one of the GRPR antagonists, RM26 was radiolabeled to trace the

GRPR in prostate tumor tissues. In Zhang’s study, both NOTA-RM26

and agonist BBN were labeled with 68Ga to image the lesions in 22 PCa

patients (70). The results showed that the 68Ga-RM26 tracer visualized

much more primary lesions and metastases with significantly higher

SUVmax than 68Ga-BBN PET/CT (Figure 3). Bakker et al. performed
68Ga-SB3 PET/CT imaging on 10 PCa patients before radical resection

with a sensitivity of 88% and a specificity of 88% in 16 lesions detected

by prostatectomy pathology, suggesting that 68Ga-SB3 PET/CT could be

used for the detection and localization of primary PCa (71). Duan et al.

compared 68Ga-RM2 PET imaging with multiparametric magnetic

resonance imaging (mpMRI) and 68Ga-PSMA-11 PET on 41 patients

with the initial diagnosis of intermediate and high-risk PCa. 68Ga-RM2

and 68Ga-PSMA11 had similar sensitivity and accuracy of 98%, 89% and

95%, 89%, respectively, which are significantly higher than mpMRI with

77% and 77%, for the detection of intraprostatic lesions (72). The post-

prostatectomy histopathology also affirmed the ability of 68Ga-RM2 PET

imaging with a detection rate of 93%.

Not only for the initial diagnosis of PCa, but GRPR-targeted PET

imaging could also take a role in the follow-up with the detection of

BCR. Minamimoto et al. conducted a prospective study of 32 patients

with BRC of PCa but negative imaging results on multiple

conventional imaging modalities (CT, MRI, and 99mTc-MDP bone

scan) (73). Among the 32 participants, 23 individuals were recognized

through the 68Ga-RM2 PET imaging, suggesting a detection rate of

71.8% in these patients without positive findings on conventional

imaging tools. Wieser et al. also collected 16 choline-PET/CT-

negative/indeterminate biochemically recurrent PCa patients to

evaluate the imaging ability of 68Ga-RM2-PET/CT in detecting

metastatic tumors and found that tumors in 10 out of 16 patients

(62.5%) could be recognized by the 68Ga-RM2-PET/CT imaging (74).

In addition, the expression of GRPR appears to be unassociated with

PSMA, suggesting that GRPR and PSMA-targeted PET imaging could

be complementary (75). Therefore, GRPR-targeted imaging could
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complement other conventional modalities. Thus, GRPR tracer

imaging is a promising tool for diagnosing and surveillance PCa

with its high detection rate. However, the low sample size in these

clinical trials critically affects the credibility of the evaluation of GRPR

tracer imaging. More clinical trials with larger sample sizes are

necessary for the future.

In conclusion, various imaging agents for the precision diagnosis

of primary and metastatic PCa are under study, with both advantages

and disadvantages (Table 1). Although there is no 100% satisfactory

imaging agent for PCa at present, with the in-depth research on

current imaging agents and the development of new imaging agents,

multi-target combined imaging or individualized imaging may bring

better clinical value to PCa patients.
5 Novel methods for intraoperative
guidance of PCa precision surgery

Compared to diagnostic imaging tracers, there are fewer tracers

available for guidance during PCa surgery. Herein, we present some

novel intraoperative tracers, which are promising methods for PCa

precision surgery in the future.
5.1 Novel methods for intraoperative tumor
lesion tracing

Indocyanine green (ICG), one of the most common near-infrared

(NIR) fluorophores for fluorescence-guided surgery (FGS), has been

approved by the FDA for more than 60 years. It is a 776 Da,

amphiphilic tricarbocyanine, water-soluble, and anionic probe. It

binds to protein quickly and is confined to the intravascular

compartment through intravenous injection (76). The half-life of

ICG is 150-180 seconds, and it has low toxicity. Glutathione S-

transferase, a transport protein, is able to make ICG through the

liver and excrete into bile totally; thus, ICG can be administered

repeatedly every 15 minutes during surgery to label the tissue (77).

Due to its relatively low cost and widespread availability, ICG is

widely used in urologic surgery, including laparoscopic and robotic

adrenalectomy procedures (78, 79). In laparoscopic robot-assisted

radical prostatectomy (RARP), Mangano et al. used ICG with NIR

fluorescence to guide the preservation of the neurovascular bundle

(80). Tobis et al. adopted ICG to highlight the renal vasculature and

distinguish between normal and malignant tissue (81). Rho et al. used

CT to guide the penetration of ICG through fluorescence

thoracoscopy, precise location and margin resection of the

radiopaque lesions were confirmed via C-arm fluoroscopy, and

pulmonary nodules were resected with an endostapler (82). As a

result, the ICG imaging guided pulmonary nodule removal was 100%

in the 24 patients. However, due to the nature that ICG is a non-

targeted probe with suboptimal emission characteristics for NIR-II

detection, it cannot distinguish between benign and malignant

tumors and can be accumulated by other tissues, which may cause

false positives (83). This disadvantage was shown by Tummers et al.

in a study on oncologic procedures of fluorescence-guided surgery

with a high false-positive rate (62%) for the application of ICG (84).
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As mentioned, PSMA is a type II integral membrane glycoprotein

that shows elevated expression in the majority of PCa cells (85). It is a

marvelous target for image-based intraoperative guidance for

accurate tumor identification due to three reasons. First, PSMA is

exclusively overexpressed on tumor cells of primary PCa lesions,

while its expression is consistently low in healthy prostate tissues.

Second, the expression level of PSMA correlates with the Gleason

grading of PCa lesions. Last, binding with the extracellular domain of

PSMA normally induces internalization of the imaging agents,

resulting in substantial retention of the labeling inside the tumor

lesions (86). PSMA radio-guided surgery (PSMA-RGS) has been

approved to be an efficient method for resecting primary tumors

and metastatic lymph nodes (87).

Intravenous injection of 111In-labeled PSMA-I&T to PCa patients

during surgery has enabled the visualization of metastatic lymph

nodes, which are normally unobtrusive and unrecognizable (88).

Clinically, in patients undergoing salvage lymphadenectomy, the
111In-PSMA-RGS allows intraoperative detection of small lymph

node metastases with high specificity and sensitivity (89). In

addition, the 111In-PSMA-617 tracer also helped surgeons deal with

unidentified pelvic lymph node metastases in situ during the surgery

and resected ex vivo tissue samples to prove the successful removal

(90). Except for 111In-labeled PSMA ligands for detecting metastases

of PCa, Robu et al. explored another ligand named 99mTc-mas3-y-nal-

k(Sub-KuE) for PCa imaging (91). Clinically, 99mTc is preferable to
111In, as it provides low-energy gamma rays that are more suitable for

RGS due to the high sensitivity of gamma probes for collimation, and
99mTc has a much shorter half-life (6 hours) than 111In (2.8 days),

resulting in faster pharmacokinetics and lower radiation exposure for

both patients and nuclear medical professionals (92).
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The hybrid tracer ICG-99mTc-nanocolloid combining fluorescent

dye ICG with the radioactive 99mTc-nanocolloid, not only offers

preoperative sentinel node (SN) mapping, but also provides better

optical surgical guidance (93). The tracer shows no leakage into the

surgical field and provides a depth estimation (>0.5–1 cm) of the

nodal location, which helps to prevent surgery-related side effects

(94). Another study also approved the value of the hybrid tracer in the

surgical identification of lymph nodes (95). Overall, one obvious

advantage of the ICG-99mTc-nanocolloid tracer is that it can enable

visualization of any tumor lesion or SN in their anatomical context

during surgery, and its application is independent of the order of

resection (primary tumor or metastasis) or the surgical setting (open

or laparoscopic) (94).
5.2 Novel methods for nerve protection in
PCa surgery

Iatrogenic nerve injuries are common in prostatectomy, 20% of

postoperative patients suffer from urinary incontinence, and many

patients experience erectile dysfunction, which can only be partially

mitigated by existing nerve-sparing surgical techniques. It is

challenging to intraoperatively identify the specific location of

buried small peripheral nerves (PNs), but the endeavor to find new

ways to protect PNs is significant (96, 97). To meet the clinical need,

an ideal method for imaging PNs during the intraoperative procedure

should possess the following features. First, a high specificity and a

good signal-to-noise ratio are essential. Second, real-time and long-

term imaging is vital for PNs to be recognized and retained during
A

B

FIGURE 3

Comparison of 68Ga-RM26 PET/CT (A), and 68Ga-BBN PET/CT (B) in a 73-y-old man diagnosed as having PCa (white arrow) with lymph node
involvement (red arrow) and bone metastasis (yellow arrow) before prostatectomy. 68Ga-RM26 PET/CT detected primary tumors, multiple lymph node
involvement, and bone metastasis lesion, whereas those lesions showed much lower uptake on 68Ga-BBN PET/CT. Reprinted with permission from
Zhang et al. (70). Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
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surgery (98). Third, the imaging probes should have good biosafety.

Last, the cost should be low enough for clinical use (97).

Neurovascular dyes such as ICG and fluorescein have been used to

highlight PNs in clinical settings (96). It has been shown that

fluorescein was applied to visualize abnormal peroneal nerves in

ganglion cyst excision procedures (99). Recently, ICG has been used

to help protect critical functional structures in prostatectomy by

enabling the identification of all neurovascular bundles without
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increasing the operative time or complications (Figure 4) (80).

These promising data indicate that iatrogenic injury can be

prevented, and the operative time can be shortened with the help of

fluorescence-guided imaging. According to the clinical study

performed by Jin et al., in patients with ICG injected 24 hours prior

to surgery, the pelvic autonomic nerves can be intraoperatively seen

clearly under a NIR ray (Figure 5) (100). Due to the ubiquity of such

fluorophores, it is foreseeable that surgeons will attempt the
TABLE 1 Pros and cons of PET imaging agents for prostate cancer.

Tracers Applications Advantages Limitations

PSMA Diagnosis and staging 1. Excellent TBR;
2. High sensitivity and specificity to the primary tumor and lymph
node metastases;
3. Combined with MRI has a good advantage in identifying CRPC;
4. FDA approved.

1. The detection of lesions is affected by the GS;
2. Imaging of non-metastatic CRPC patients is greatly
affected by PSA level;
3. Sensitivity for the diagnosis of bone metastases is affected
by PSA;
4. Positive on some benign lesions and non-PCa tumors.

Curative effect
monitoring and prognosis
evaluation

1. A good localization function on recurrent PCa;
2. A valuable predictive biomarker for risk stratification and
metastasis;
3. Be good at predicting overall survival and BRFS;
4. An excellent guidance for local lesion radiotherapy plan;
5. Works well in chemotherapy evaluation.

The detection rate for patients with BCR is affected by PSA
level and GS.

NTR1 Preclinical studies 1. Clearly expressed in NEPC with low PSMA expression, that could
be another molecular target that may complement PSMA imaging;
2. Works well on lymph node metastases.

A start-up tracer only for preclinical studies.

FAPI Diagnosis and staging 1. Independent from blood glucose level, no need for prior rest, and
fast image acquisition;
2. FAP imaging has the potential to guide the treatment of mCRPC;
3. Highly positive in patients with advanced CRPC

False positives due to the uptake of FAPI in benign lesions.

FDG Diagnosis and staging 1. Wide range of clinical applications and easy to access;
2. High detection rate for CRPC.

1. False negatives with well-differentiated PCa;
2. False positive on some benign tissues;
3. Short half-life;
4. Low efficiency in primary PCa diagnosis;
5. Low sensitivity for lymph node metastases.

Curative effect
monitoring and prognosis
evaluation

Preoperative intraprostatic FDG uptake is a good prognostic factor
for poor pathology

Choline Diagnosis and staging 1. High specificity for the diagnosis of lymph node metastases;
2. More specific to bone metastases than bone scans.

1. Much affected by neoadjuvant ADT;
2. Low sensitivity to lymph node metastases (but better than
traditional MRI);
3. Poor imaging of osteogenic bone metastases;
4. Less sensitive to bone metastases than bone scans

Curative effect
monitoring and prognosis
evaluation

Well prognose mCRPC patients during chemotherapy or 223Ra
treatment.

Not suitable for localization of lymph node metastases in
patients with BCR, especially in the setting of low PSA
values.

FACBC Diagnosis and staging 1. The diagnosis of lymph node metastases is superior to choline
PET imaging;
2. The overall sensitivity is higher in the prostate bed than in the
extraprostatic region.

1. Limited role in local staging of PCa
2. False positive due to being non-specifically absorbed by
benign prostatitis tissue;
3. The uptake was affected by GS;
4. Not suitable for bone metastases.

Curative effect
monitoring and prognosis
evaluation

1. Little affected by clinicopathological parameters;
2. Works well for PCa restaging.

The localization and diagnosis of lesions in patients with
BCR are affected by the level of PSA

GRPR Diagnosis and staging 1. High detection sensitivity, specificity, and accuracy;
2. Independent of PSMA expression.

1. Low sensitivity to lymph node metastases;
2. Poor detection of bone metastases.

Curative effect
monitoring and prognosis
evaluation

Lesion detection in patients with BCR of PCa is better than
traditional imaging and choline PET/CT.

Affected by PSA growth rate.
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fluorescent nerve-targeting agents more frequently in their clinical

practice (96). However, the agents can have light penetrance through

the tissue of greater than 5-6 mm. Such a deep penetration causes

increased light scatter, thus obscuring the specific location of PNs. In

addition, ICG is not a targeted dye, and it is not able to distinguish the

nerve bundle from other tissues. For example, in the surgery for deep

endometriosis, the ischemic lesion, the hypogastric nerve, the pelvic

plexus, and the ureter were all dyed by ICG (101).

Extensive studies have reported that PCa tumor progression is

favored by innervation. Magnon et al. reported that the formation of

autonomic nerve fibers in the prostate gland regulates the development

and dissemination of PCa (102). Therefore, biomarkers for innervation

and effective visualization methods are necessary to assess nerve density

in PCa. Nerve peptide 41 (NP41) has been found as a marker to

highlight peripheral nerve tissue, and fluorescent-labeled NP41 can be

visualized through its binding to the motor and sensory nerves in live

mice (103, 104). Hingorani et al. reported that NP41 had the best nerve-

to-non-nerve contrast compared to other peptides like NP38, 40, and 42,

and the average nerve-to-non-nerve signal ratio increases by 17% under

fluorescent imaging compared to white light (105). NP41 is considered

an excellent agent for in vivo tracking of nerves in rodents. Since NP41

specifically targets nerves in PCa, it has the potential for visualizing

nerve density and tumor innervation in PCa. The nanoprobes

named propranolol-loaded-superparamagnetic iron oxide (SPIO)-

NP41 nanoparticles (PSN NPs) have been used to assess the nerve

density of PCa with high sensitivity and high specificity in mice

(106). Since PSN NPs had an exclusive accumulation at the tumor

site, benefiting the targeted delivery of propranolol, this study

showed that PSN NPs inhibited PCa tumor growth by blocking

the interaction between tumor cells and sympathetic nerves in the

neural tumor microenvironment.

Nevertheless, existing data on applying NP41 to ex vivo human

nerve tissue provided little contrast compared to muscle (105). Hence,

human NP401 (HNP401), a peptide that binds to and highlights

human autonomic and motor/sensory nerves, was identified for

improving the labeling of human nerves, especially for the human

prostate gland, suggesting its potential guidance role in the

prostatectomy for PCa patients.
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6 Expectation

Accurate and sensitive imaging using molecular probes is a

promising and impactful method for early diagnosis of PCa. In

addition, with molecular imaging-based intraoperative guidance,

surgeons can achieve precise resection of the malignant PCa tumor

as well as the metastatic lymph node, which is the trend in precision

medicine. During prostatectomy, including robot-assisted radical

prostatectomy (RARP), to maintain the function of the urinary

system and erection postoperatively, fluorescent dye or labeled

peptide hold great value in enabling visualization and protecting

nerve bundles. Although each has disadvantages and limitations, all

the novel methods discussed above are essential for developing early

diagnosis and effective therapy of PCa. With endless exploration and

research, more tracers with higher efficiency will appear to improve

the precision theranostic of PCa.
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Glossary

AA Amino acid

ADT Androgen deprivation therapy

AR Androgen-receptor

BCR Biochemical recurrence

BPH Benign prostatic hyperplasia

BRFS Biochemical recurrence-free survival

CRPC Castration-resistant prostate cancer

DPP Dipeptidyl peptidase

DRE Digital rectal examination

FACBC Fluciclovine

FAP Fibroblast activation protein

FAPI FAP inhibitors

FCH Fluorocholine

FDA Food and Drug Administration

FDG Fluorodeoxyglucose

FGS Fluorescence-guided surgery

FOLH1 Folate hydrolase 1

Ga Gallium

GLUT1 Glucose transporter-1

GS Gleason score

GRPR Gastrin-releasing peptide receptor

HNP401 Human NP401

ICG Indocyanine green

iPSMA-TV Intraprostatic PSMA-derived tumor volume

iTL-PSMA Intraprostatic total lesion PSMA

mHSPC or
mCRPC

Metastatic hormone-sensitive or castration-resistant prostate
cancer

mpMRI Multiparametric magnetic resonance imaging

SUVmax Maximum standard uptake value

SUVmean Mean standard uptake value

NCCN National Comprehensive Cancer Network

NEPC Neuroendocrine prostate cancer

NIR Near-infrared

NP41 Nerve peptide 41

NPs Nanoparticles

NT Neurotensin peptide

NTR Neurotensin receptor

PCa Prostate cancer

PET/CT Positron emission tomography/computed tomography

PET/MRI PET/magnetic resonance imaging

(Continued)
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PNs Peripheral nerves

PSA Prostate-specific antigen

PSMA Prostate-specific membrane antigen

PSMA-RGS PSMA radio-guided surgery

RARP Robot-assisted radical prostatectomy

SABR Stereotactic ablative radiotherapy

SN Sentinel node

SPIO Superparamagnetic iron oxide

TBR Tumor-to-background ratio

TLG Total lesion glycolysis

THTF Time to hormonal therapy failure

TMAs Tissue microarrays

WB-MRI Whole-body magnetic resonance imaging
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