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Single-cell transcriptome
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Gastric cancer is one of the most serious malignant tumor and threatens the

health of people worldwide. Its heterogeneity leaves many clinical problems

unsolved. To treat it effectively, we need to explore its heterogeneity. Single-cell

transcriptome sequencing, or single-cell RNA sequencing (scRNA-seq), reveals

the complex biological composition and molecular characteristics of gastric

cancer at the level of individual cells, which provides a new perspective for

understanding the heterogeneity of gastric cancer. In this review, we first

introduce the current procedure of scRNA-seq, and discuss the advantages

and limitations of scRNA-seq. We then elaborate on the research carried out with

scRNA-seq in gastric cancer in recent years, and describe how it reveals cell

heterogeneity, the tumor microenvironment, oncogenesis and metastasis, as

well as drug response in to gastric cancer, to facilitate early diagnosis,

individualized therapy, and prognosis evaluation.

KEYWORDS
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1 Introduction

Gastric cancer is a type of malignant tumor of epithelial origin and ranks fourth among

all types of cancer worldwide (1). Due to its insidious early symptoms, most patients were

diagnosed at an advanced stage, and the five-year survival rate is still less than 5% for

patients with distant metastasis (2). Current treatment options, such as surgery,

radiotherapy, chemotherapy, and targeted therapy, have achieved some clinical benefits,

but still suffer from recurrence, metastasis, and drug resistance (3). Researchers are

increasingly focusing on tumor heterogeneity in addressing these questions (4). In terms

of histology, genomics, epigenetics, and other aspects, gastric cancer is increasingly

recognized as one of the most heterogeneous tumor types (5). Identifying the intrinsic

characteristics of gastric cancer tumors in different patients can help to pave the way for
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personalized therapy. However, several existing classifications,

including Lauren’s (6), The Cancer Genome Atlas (TCGA) (7),

and Asian Cancer Research Group (ACRG) (8), have contributed to

the advancement of understanding gastric cancer, but due to

numerous complex factors, it is still not enough to classify and

treat all patients precisely. Single-cell transcriptome sequencing

represents a new approach for studying the heterogeneity of

gastric cancer.

Single-cell transcriptome sequencing, or single-cell RNA

sequencing (scRNA-seq), has emerged as one of the technologies

for next-generation sequencing (9). Rather than traditional bulk

RNA sequencing (RNA-seq), which averages the gene expression

levels of all cells, scRNA-seq transcripts of each cell, enable

unprecedented recognition of the gene expression profiles of

individual cells. In addition to discovering differences in cellular

composition and characteristics, certain rare cell populations that

are obscured by bulk RNA-seq are identified by using scRNA-seq

(10). At the same time, by examining the tumor microenvironment

at the level of individual cell, scRNA-seq has helped identify the

valuable role of non-tumor cells in tumor development (11).

Moreover, metastatic samples have been used to identify intrinsic

features associated with metastatic for targeted therapy (12, 13).

Analyzing pre- and post-treatment samples assists in discovering

intrinsic mechanisms affecting drug response and paving the way

for individualized therapy (14, 15). As scRNA-seq technology

develops and costs go down, an increasing number of studies are

being conducted on the technique. Currently, studies are being

conducted on this technology in a number of tumor types, including

gastric cancer, melanoma (16), lung cancer (17), liver cancer (18),

and pancreatic cancer (19).

Here, we review and summarize the current basic procedure of

scRNA-seq and analyze its advantages and limitations. We then

present new insights into scRNA-seq in gastric cancer research, and

discuss its challenges and application prospects based on the latest

research results. Meanwhile, it is expected to provide some help in

the diagnosis, treatment, and prognosis evaluation of gastric cancer.
2 Procedure of scRNA-seq

The scRNA-seq procedure consists of the following steps: single

cell isolation, library construction, sequencing, and data analysis.

Figure 1 shows an overview procedure of scRNA-seq.
2.1 Single cell isolation

Samples of gastric cancer are typically obtained through

endoscopic or surgical resection. After mechanical fragmentation

of the tissue, enzymatic digestion was performed to obtain a single

cell suspension (20). The enzymatic digestion time must be

controlled. A short digestion time leads to incomplete digestion,

resulting in cell clumps and doublet. Overly long digestion times

can damage cells. To ensure that the analysis of sequencing results is

not affected by altered cell state, it is important to evaluate the

activity of single cell suspensions before sequencing, for example, by
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using trypan blue stain to determine cell viability. Moreover,

specific cell types can be enriched and screened. Fluorescence-

activated cell sorting (FACS) allows for the identification of

fluorescently labeled cell-specific marker genes, which can be used

for screening and enrichment of specific types of cells (20).

Additionally, to prevent experimental failures caused by cell

viability issues, sample processing and sequencing should be

completed in a short period of time to minimize damage to

cell viability.
2.2 Library construction and sequencing

RNA was obtained from cell lysis, followed by reverse

transcription to obtain cDNA. The amplification and

fragmentation of reverse transcription products are followed by

ligating adapters to form a cDNA library (21). The library is

constructed, and then is sequenced. Current sequencing methods

can be divided into microwell-based methods, such as Smart-Seq2

(22), and droplet-based methods (23, 24), such as 10X Genomics

(25). The following is a description of the most commonly used

methods, Smart-Seq2 and 10X Genomics. Smart-Seq2 improves the

capture of shorter transcripts and identifies transcriptional

modifications, such as gene shearing and allelic expression, when

full-length transcripts are sequenced (24), but the number of cells

processed is limited. The 10X Genomics system uses microfluidics-

based approaches to sequence genes by the 5’ or 3’ ends, which can

process up to thousands of single cells per second, enabling faster

sequences of samples with larger number of cells (26). It is more

suitable to sequence samples with a larger number of cells. Unique

molecular identifiers (UMIs), which are short barcodes attached to

transcripts by 10X Genomics before amplification, allow 10X

Genomics to avoid counting the same reverse transcription

products twice. The expression level can be more accurately

evaluated by reducing quantitative bias during amplification with

UMIs in the 10X Genomics method (24, 27).
2.3 Data analysis

In data analysis, raw expression matrixes are processed, as well

as downstream analysis. The processing of the original expression

matrix, includes cell filtering, normalization, dimensionality

reduction, clustering, and data integration (28). Data must be

preprocessed. The use of cell filtering can reduce the interference

caused by low-quality cells. Examples include poorly active cells

that express high levels of mitochondrial genes and the artifacts

caused by doublet. Dimensional catastrophe can be alleviated

through dimension reduction. Using clustering, cells with similar

characteristics were grouped together for annotation and further

analysis. As single-cell sequencing involves batch effects and

technical noise, integration is essential to reduce them so that

they can be distinguished from biological differences.

Annotation of cells is typically performed before downstream

analysis. Cell annotation in data analysis is a challenging task. The

large number of cells make it difficult to annotate cells one by one.
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The current cluster-based cell annotation method assumes that all

cells within a cluster are of the same type. However, annotation of

new cell types will be difficult due to the lack of a uniform standard.

Fortunately, the Human Cell Atlas provides a powerful guide for

determining cell types (29). Additionally, cell marker genes

reported in the available literature and machine learning methods

can also be used to identify cell types (30).

The downstream analysis consists of a variety of procedures,

such as cell abundance, differentiation gene expression, trajectory

analysis, copy number variation (CNV) analysis, cell-cell

interaction, and transcription factor analysis (31). For the cell

ratio, the composition varies among patients at the level of single

cells, demonstrating heterogeneity between them. Analysis of the

differentiation gene expression and functional enrichments across

each cell subpopulation showed their cell states and functions (32).

Furthermore, some analysis tools can be used to perform various

types of analyses. With tools such as Monocle (33) and Slingshot

(34), trajectory analysis can demonstrate the dynamic process of

cellular states, such as plasma cells, which have different stages of

maturation in gastric cancer (35). Biological mechanisms underlie

the transformation process and can be traced to cellular

characteristics. InferCNV (36) and copyKAT (37) analyses of
Frontiers in Oncology 03
copy number variation can provide insights into chromosomal

variation and help to determine the malignancy of tumor cells

(16). Based on the expression levels of ligands and receptors,

CellChat (38) and cellphonedb (39), for example, can assess in

the construction of intercellular communication, which is a great

resource to understand the complex interactions between cells and

the role they play. Taking an example, the stromal cells in diffuse

gastric cancer interact more frequently with other cell types (40),

which may play an important role. By screening transcription

factors and rebuilding gene regulatory networks, SCENIC (41)

can enhance our understanding of tumor molecular regulation

mechanisms at the level of individual cells.

ScRNA-seq profiles the transcriptome at the level of single cell,

uses a variety of analytical methods, and is exceptionally

advantageous for identifying gastric cancer heterogeneity. The

sequencing depth of scRNA-seq, however, limits it to detecting

only genes with relatively high expression abundance. Increased

sequencing depth will allow more genes to be detected, but the

ensuing increase in data volume and technical noise will make the

algorithm more challenging (42). Although improvements to single

cell technology are still needed, the constant development of single-

cell RNA sequencing is expected to resolve the aforementioned issues.
FIGURE 1

Procedure of single-cell RNA sequencing using microfluidics platform.
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3 ScRNA-seq reveals heterogeneity of
gastric cancer

Increasingly, scRNA-seq is being used in gastric cancer studies

due to its advantages and its achievements in other tumor studies.

Samples for scRNA-seq studies of gastric cancer are currently

available from a variety of sexes, disease stages, pathological types,

and molecular subtypes. Table 1 shows a summary of single-cell

sequencing data currently available for gastric cancer research.
3.1 Cell heterogeneity

In normal gastric mucosa, there are a variety of cells, including

pit cells, enteroendocrine cells, parietal cells, neck cells, chief cells,

goblet cells, stem cells, immune cells and stromal cells (59). More

complexity will be found in gastric cancer tissues (60). ScRNA-seq

identifies the transcriptome at the level of single cell and has

unrivaled advantages for uncovering cell heterogeneity, which

provides new insights into discovering new biomarkers, diversity

of tumors, and lineage compositions. According to the Correa

hypothesis, gastric cancer arises from chronic atrophic gastritis,

intestinal metaplasia (IM), and ultimately gastric cancer (61). Based

on the Correa hypothesis, a study of gastric lesions at different

stages found that a subpopulation of secretory pro-genitor markers

goblet cells expresses HES6 during intestinal metaplasia. A

population of these cells may represent goblet cells at an early

stage of differentiation, and HES6 will help identify precancerous

lesions in high-risk patients. For early gastric cancer (EGC), the

discovery of two new specific markers, SLC11A2 and KLK7,

provides clues for the early detection of EGC (43). Gastric cancer

cells can also be heterogeneous. The scRNA-seq discrimination of

gastric cancer cells is expected to lead to the stratification of patients

based on the characteristics of cancer cells. In the study by Zhang

et al, all malignant cells were divided into five groups: C1 is low

differentiation cells mainly from diffuse gastric cancer (DGC)

samples, C2 is high differentiation cells mainly from intestinal

gastric cancer (IGC) samples, C3 is a mixed type with medium

differentiation cells between C1 and C2, C4 is an entity fundic

gland-type GA (GA-FG-CCP), and C5 is Epstein-Barr virus-

infected type. Subgroups vary in their degree of differentiation,

which correlates with the prognosis of patients (44). Since sample

sizes are limited, scRNA-seq-based stratification of gastric cancer

remains to be confirmed in large-scale sequencing data and

evaluated for clinical value in guiding treatment and prognosis

of patients.

In addition, there is heterogeneity within subtypes of gastric

cancer. Based on cell state and characteristics, scRNA-seq provides

new insight into gastric cancer development mechanisms in

transcriptional dynamics. Lauren classifications divide gastric

cancers into intestinal, diffuse, and mixed types (62). A Lauren

classification-based study compared the trajectories of epithelial

cells in gastric cancers of the intestinal type and diffuse type, and

showed the different carcinogenesis mechanisms. IGC shows

dynamic changes from non-malignant to tumor cells, with IGC
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marker genes such as MUC13 and CDH17 expressing higher levels

over time, and the risk of tumorigenesis increased accordingly,

supporting the Correa hypothesis. In contrast, in DGC, the

expression of markers genes of IM and IGC does not change with

stage that according to cell lineage, and has no relationship with the

pathological classification. The carcinogenic mechanism of DGC is

different from IGC (45). In specific types of gastric cancer,

transcriptional dynamics differed as well. In a study of hepatoid

adenocarcinoma of the stomach (HAS), all epithelial cells from

HAS expressed cancer-related genes, and showed a significant copy

number of variations from common gastric cancer. Cancer cells of

HASmay have been derived from pluripotent precursor cells, which

then differentiated into corresponding epithelial cell lineages such

as adenocarcinoma and hepatocyte-like components (46).

Moreover, in animal models, scRNA-seq is also applicable.

Hereditary diffuse gastric cancer (HDGC) is a cancer syndrome

caused by inactivating germline mutations in CDH1, but its

mechanism remains unclear. In a mouse organoid model of

HDGC, deregulation of developmental transcriptional programs

was found at the early stage of CDH1 deletion that are associated

with differentiation of gastric squamous epithelial cells in mouse

(47). All these studies demonstrate that scRNA-seq provides a

powerful tool for research on the transcriptional dynamics and

lineage compositions of gastric cancer.

Furthermore, new cell types were identified in large-scale

scRNA-seq data. As an example, new cell types that express both

endothelial cells and fibroblasts marker genes may be undergoing

endothelial-mesenchymal transition (EMT) (35). A variety of

gastric cancer cell lines also showed multiple clusters with

differing characteristics (48). In part, this may explain why

experimental reproducibility differs among cell lines.

In summary, gastric cancer shows cell heterogeneity. ScRNA-

seq is a powerful tool for understanding the transcriptional

dynamics and lineage compositions of gastric cancer.
3.2 Tumor microenvironment

All cells and their secretory products, along with the

extracellular matrix, make up the tumor microenvironment (63).

Immune cells and stromal cells contribute significantly to tumor

invasion, metastasis, and drug resistance as non-tumor cells in the

microenvironment (64). While bulk RNA-seq can be evaluated for

immune infiltration with deconvolution, some limitations remain

(65). In microenvironments, scRNA-seq can distinguish cell types

at the level of single cell, and it has great advantages for studying the

“dialog” and regulatory mechanisms between cells. As a major

component of the tumor microenvironment, immune cells take part

in tumor immunity response processes. In a study of ascites from

patients with advanced gastric cancer (AGC), macrophages in GC

malignant ascites have non-inflammatory characteristics compared

with in vitro macrophage transcripts. Cancer cells interact with

tumor-associated macrophages (TAMs) via IL1B-IL1R2 ligands

and receptors, thereby inhibiting inflammatory signaling, and

promoting tumor growth (49). Furthermore, tumors contain

tertiary lymphatic structures (TLSs), which function as organized
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aggregates of immune cells, involved in the immune response

process in tumors (66). A study found that tissues with mature

tertiary lymphatic structures (mTLSs) contain more types of

immune cells (67). This may result in more aggressive antitumor

responses. However, previous studies have shown that regulatory T

cells (Tregs) inhibit antitumor responses (68). ScRNA-seq also

shows that immunosuppression is associated with increased Tregs

in tumor microenvironment of gastric cancer (69). In another

study, tumor microenvironment containing TNFR2-positive Tregs

was associated with poor prognosis (50). An assessment of Tregs

levels may provide prognostic information. There is a need to pay

more attention to the interaction between tumor cells and immune

cells, which will facilitate the development of new immunotherapy
Frontiers in Oncology 05
strategies. A study by Kumar et al. found that KLF2 expressed in

epithelial cells was associated with the recruitment of plasma cells in

IGC (35). KLF2 may be a potential therapeutic target for recruiting

plasma cells in DGC based on their role in gastric cancer (70).

In the microenvironment, stromal cells produce cytokines and

chemokines, which affect tumor growth and invasion by promoting

extracellular matrix formation and angiogenesis (60). ScRNA-seq

analysis also confirmed the significance of stromal cells in tumors.

In DGC studies conducted at different sampling depths, there may

be a relationship between cell types and the depth level of tumors.

Deeper layers were enriched with endothelial, fibroblast, and

myeloid cells. In comparison with superficial tumor layers, deeper

layers have a more intense cell-cell communication (40). An
TABLE 1 A summary of the studies on gastric cancer using single-cell RNA sequencing.

Sample
Type

Data
Accession
Number

Species Contribution Reference

GC, Normal,
PC

GSE183904 Human A high level of expression of INHBA and FAP in subpopulations of cancer-associated fibroblasts is
associated with increased staging

(35)

DGC, Normal GSE167297 Human It is associated with an enrichment of CCL2 transcripts in inflammatory endothelial cells and fibroblasts in
diffuse gastric cancer between the superficial and deep layer samples

(40)

NAG, CAG,
IM, EGC

GSE134520 Human A single-cell transcriptome atlas for gastric premalignant and early-malignant lesions, which spanned the
cascade from gastritis to early gastric cancer

(43)

GC, Normal,
CG

HRA000051 Human Molecular evidences for potential transition from gastric chief cells into MUC6+TFF2+spasmolytic
polypeptide expressing metaplasia

(44)

GC, CAG,
IM, Normal

GSE150290 Human Gastric cell landscape of intestinal gastric cancer and diffuse gastric cancer (45)

HAS HRA000077 Human Adenocarcinomatous component and hepatocellular-like component of the same HAS tumor originate
monoclonally, and HAS is likely to initiate from pluripotent precursor cells

(46)

HDGC PRJEB41577 Mouse The differentiation trajectory of squamous cells was shifted in HDGCs with Cdh1 inactivation (47)

GC cell lines GSE142750 Human Heterogeneity of single cell transcriptome characteristics of gastric cancer cell lines (48)

Ascites and
cerebrospinal
fluid

GSE140182 Human Macrophages in malignant ascites of gastric cancer have strong non inflammatory properties (49)

GC, Normal,
PBMC, Blood

GSE172131 Human Tumor infiltrating Tregs exhibit activated and effector states (50)

AGC EGAS00001004443 Human Patient of gastric adenocarcinoma with peritoneal carcinomatosis was classified into two subtypes, the
gastric-dominant and GI-mixed. Survival time for the former is shorter

(51)

GC, Normal GSE158631 Human Discovered some GC lymph node metastasis marker genes as well as potential gastric cancer evolutionary
driving genes

(52)

GC, Normal,
Metastasis

GSE163558 Human Several subclusters of malignant epithelial cells were observed with invasion features, intraperitoneal
metastasis propensity, epithelial–mesenchymal transition induced tumor stem cell phenotypes, or
dormancy-like characteristics

(53)

CTCs DRA011720 Human A majority of gastric CTCs showed epithelial-mesenchymal transition (54)

GC, Normal CNP0001041 Human The cytotoxicity and proliferation of T cells were decreased, immune pathways were downregulated, and
angiogenesis pathways were activated in tumor cells and endothelial cells

(55)

GC, Normal PRJEB45598 Human TME remodeling was associated with response to first-line fluoropyrimidine and platinum chemotherapy (56)

GC, Normal PRJEB40416 Human Compared to non-responders, responders of MSI-high patients treated with pembrolizumab had higher
levels of T cells and NK cells

(57)

GC GSE152888
GSE156725

Mouse Immunotherapy for tumors can be guided by the deep immunological phenotyping (58)
f
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analysis of the microenvironment of cascade changes in gastric

cancer also confirmed the importance of these cells (71). It is

notable that the deep enrichment of CCL2-expressing stromal

cells in DGC correlates with its invasive ability (40). CCL2 may

be a potential target for DGC interference. A study by Kim et al.

differentiated tumor-associated fibroblasts (CAFs) into three types

based on gene expression profiles: inflammatory (iCAFs),

myofibroblastic (myCAFs), and intermediate (inCAFs). One of

them, iCAFs, is closely related to GC invasion and promotes the

stemness of tumor cells, which can identify patients at high-risk of

GC (45). A comprehensive study of the diversity of gastric cancer

fibroblasts would benefit from this research. Furthermore, a large-

scale sequencing study revealed that INHBA is a positive regulator

of FAP in the fibroblast population, and that high expression of

these genes in CAFs is associated with poor prognosis (45). As seen

in the microenvironment of tumors, stromal cells are also diverse,

and appear to be potent ia l therapeut ic targets and

prognostic indicators.

To conclude, scRNA-seq offers new options for understanding

the heterogeneity of tumor microenvironment, which will provide

more opportunities for targeted therapies of gastric cancer.
3.3 Oncogenesis and metastasis

In terms of the mechanism of gastric carcinogenesis, there are

still some controversies. Research suggests that long-term chronic

inflammation induces intestinal metaplasia as a precursor to gastric

cancer (72). Several studies have shown that the abnormal

differentiation of chief cells will transform into neck cells, and the

consequent development of spasmolytic polypeptide-expressing

metaplasia (SPEM), which is associated with dysplasia and cancer

(73). Using scRNA-seq, further evidence is presented for the role of

SPEM in gastric cancer development. In a study by Zhang et al.,

cells expressing MUC6, TFF2, CD44, SOX9, and major

histocompatibility complex class II genes were classified as SPEM

cells. The results confirm SPEM at the level of single cell, suggesting

a differentiation pathway between the chief cells and the neck cells,

which in turn gives rise to SPEM cells (44). However, despite this,

SPEM cells are not clearly defined. With the addition of scRNA-seq

recognition, the definition of SPEM has been expanded. A study by

Bockerstett et al. examined SPEM in a mouse model showed that

the definition of SPEM should include TFFF2+Muc6+GIFF-

metaplastic cells without mature principal cell transcripts, which

may result in the same cancer risks as standard SPEM. Considering

the complexity of the pathological mechanisms, the authors also

examined the levels of SPEM transcript in drug-induced acute

gastritis and chronic inflammation gastritis mouse models. The

results show that SPEM cells are transcriptome-conserved across

the two gastritis models (74). Another subsequent study by the same

group revealed Gastrokine-3 (Gkn3) expression in the gastric body

of chronic atrophic gastritis patients but not in healthy people. Both

mouse models and human tissues have demonstrated the specificity

of Gkn3 for SPEM recognition (75). Therefore, in chronic atrophic

gastritis, identifying SPEM cells should include GKN3-positive cells

in the gastric body, so that we can identify SPEM more accurately.
Frontiers in Oncology 06
SPEM is a type of metaplasia which associated with a risk of cancer,

and its reversal may reduce that risk. A previous study confirmed

the necessity of IL13 in metaplasia of chief cells (76). Using scRNA-

seq, researchers found that mouse with gastritis with loss of IL4/

IL13 signaling did not upregulate SPEM transcript levels. Following

this treatment, SPEM was development were significantly reduced

and reversed in mice with autoimmune gastritis treated with an

IL13 antibody (77). It is possible to prevent and/or reverse atrophic

gastritis to metaplasia through the inhibition of IL13 and its

receptors. To reverse the metaplastic state and prevent the

occurrence of gastric cancer is of great significance.

Clonal evolution suggests that tumor progression is also a

dynamic process, and each stage has its own characteristics (78).

Whether a tumor is progressing, metastasizing, or spreading to

different organs, it exhibits inherent characteristics. Using scRNA-

seq to analyze gastric cancer at different stages can reveal the

characteristics of changes related to its development and

outcome, which are critical for discovering new blocking targets

and assessing prognosis. According to the findings of a study of

peritoneal carcinoma (PC) in gastric adenocarcinoma patients, PC

malignant cells are highly heterogeneous among patients, with most

clustering by patient. Depending on the lineage status of malignant

PC cells, different oncogenic pathways are involved in patient

survival. Those tumor cells with gastric characteristics had shorter

survival times and were predominantly enriched in oncogenic

pathways, while those with enterocyte characteristics had longer

survival times and were predominantly enriched in immune

pathways (51). Hence, PCs with a variety of cellular

characteristics may be useful in determining survival prognosis.

An analysis of gastric cancer lymph node metastasis revealed the

presence of ERBB2, CLDN11 and CDK12, as markers of lymph

node metastasis, which may contribute to lymph node metastasis in

gastric cancer (52). Aside from the peritoneum and lymph nodes,

the liver, lung, and ovary are common metastatic organs for

advanced gastric cancer. According to Jiang et al., a study of

metastatic foci from different organs of gastric cancer found that

malignant cells have invasion features, organ metastasis tendency,

tumor stem cell phenotypes, and dormancy-like characteristics (53).

These characteristics of malignant cells may be associated with

metastatic propensity and recurrence. Together, scRNA-seq

demonstrates the heterogeneity of metastases from gastric cancer.

Cells found in the circulatory system of tumor patients are

known as circulating tumor cells (CTCs), which are thought to be

associated with distant metastases (79). In a scRNA-seq study of

gastric cancer CTCs, mesenchymal genes such as ZEB2 and

SERPINE1 were highly expressed, possibly suggesting that they

underwent EMT (54). Heterogeneity in gastric cancer has been

further explored in these studies. In addition, tumor stem cells have

also been implicated as a cause of progression, metastasis, and

recurrence in gastric cancer (80). The use of scRNA-seq has

provided new insights into cancer stem cells in some studies,

including bladder cancer and liver tumors (81, 82). Using scRNA-

seq, more evidence will be provide for cancer metastasis in gastric

cancer stem cells.

In summary, scRNA-seq offers more possibilities for studying

gastric cancer development and metastasis.
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3.4 Drug response
For patients with advanced gastric cancer, effective treatment is

particularly crucial given the low survival rates. A main treatment

option for advanced patients is chemotherapy, and patients respond to

drugs differently due to tumor heterogeneity (83). It is possible to

discover potential mechanisms that affect the drug response through

scRNA-seq by detecting changes in cells before and after drug

administration. This has important implications for making “cold

tumors” hot tumors. A study on neoadjuvant chemotherapy found

that chemotherapy could remodel the microenvironment. As

compared with the pre-treatment samples, the post-treatment

samples showed impaired immune cells, but increased endothelial

and fibroblast cells. The T cells demonstrated lower cytotoxicity and

proliferation characteristics than the pre-treatment tumors, along with

downregulation of immune pathways, and the angiogenesis pathway is

activated in tumor cells and endothelial cells (55). Research on

advanced gastric cancer has also shown immune remodeling during

chemotherapy. It was found that pro-inflammatory genes and MHC

class I antigen-presenting genes decreased after chemotherapy, as well

as the expression ofM2-type macrophage-related genes, indicating that

macrophages after chemotherapy transformed from M2 to M1 cells.

LAG3 was expressed by T cells in non-responders patients, which may

be associated with drug resistance (56). It was also shown that immune

remodeling occurs during the early process of chemotherapy in gastric

cancer. Despite the small sample size, this study provides a good

foundation for predicting how individual patients will respond to

chemotherapy. A greater understanding of drug resistance requires

the study of larger-scale data and the advancement of molecular

mechanism research.

An emerging cancer treatment strategy involves immunotherapy.

Several immune checkpoint blockade treatments have been approved

as third-line therapies for advanced gastric cancer due to their favorable

trends in patients, including pembrolizumab, nivolumab, avelumab,

durvalumab, and atezolizumab (3). In a large-scale clinical trial of PD-

L1 blockade therapy in metastatic gastric cancer, EBV-positive patients

showed a good clinical response to PD-L1 blockade therapy. A better

response to drugs is also observed in patients with microsatellite

instability-high (MSI-H) (84). Although PD-L1 blockade treatment

has shown promising results in clinical trials, some patients still do not

respond and develop drug resistance. The scRNA-seq approach offers a

new opportunity to discover potential mechanisms of drug resistance.

According to a study of patients with MSI-H treated with

pembrolizumab, responders had higher levels of T cells and NK cells

than non-responders. The number of T cells and NK cells decreased in

non-responders after two cycles of treatment, whereas stromal cells

increased. In further analysis, a further study of T cell subsets revealed a

significant increase in exhausted CD8+ T cells (57). Thus, failure to

mobilize the immune system is associated with the lack of response to

pembrolizumab in non-responders with MSI-H gastric cancer. The

discovery of how to activate the immune response of non-responders

will have revolutionary significance for tumor treatment.

Clinical problems associated with drug resistance can be

challenging. Testing drug sensitivity and selecting more sensitive

antitumor drugs for the treatment of gastric cancer patients is of
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great significance in improving therapeutic benefit. Cells cultured in

two dimensions have certain limitations regarding reflecting cancer

heterogeneity and the microenvironment. The emergence of the single-

cell patient derived organoids (PDOs) transcriptome not only

compensates for the deficiencies of traditional cell models, but also

provides good results for drug sensitivity tests of gastric cancer, which is

a very promising tool for drug sensitivity testing (85, 86).

In conclusion, scRNA-seq may offer an opportunity to find the

best treatment combinations based on their intrinsic characteristics

of their drug responses. It has the potential to be used for predicting

drug sensitivity and screening drugs in the future.
4 Discussion

Gastric cancer is a malignant tumor of the digestive system

whose heterogeneity has a significant impact on the clinical

outcome and prognosis of patients. With single-cell RNA

sequencing, we have gained a deeper understanding of the

complexity and diversity of gastric cancer. It is capable of

revealing cell heterogeneity, the tumor microenvironment,

oncogenesis and metastasis, as well as drug response in an

unparalleled manner (Figure 2). Even though scRNA-seq is

powerful, it can be improved. For instance, not all samples can be

processed in an optimal timeframe after being collected. The

sequencing results obtained from some frozen samples revealed

that the poor cell activity invariably affected the subsequent analysis.

Fortunately, cell fixation and preservation methods can now be used

in library construction for frozen tissues (87, 88). By using single-

nucleus transcriptome sequencing (snRNA-seq), libraries can be

constructed on frozen tissues and sequencing results are more

consistent than scRNA-seq (89, 90). Some analytical techniques

still have limitations. The method of estimating copy number

variation based on genetic variation, for instance, is not entirely

accurate. Single-cell DNA sequencing retains its irreplaceable

advantages in determining copy number variations (48).

Furthermore, the emergence of spatial transcriptomes can

compensate for the loss of spatial information caused by

dissociation of single cell (91).

In future studies, it is anticipated that different types of gastric

cancer will be investigated using scRNA-seq in terms of their

molecular characteristics, carcinogenesis mechanism, immune

response, and drug response. As a result, biomarkers and

therapeutic targets for various types of gastric cancer will be

discovered, which will facilitate more precise treatment. New

biomarkers are expected to become indicators for monitoring,

and the discovery of new targets offers more options for precisely

treating gastric cancer. Moreover, instead of conventional

sequencing analysis, scRNA-seq will probe deeper into the

molecular mechanism of gastric cancer. Further molecular and

cellular verification is required for results of scRNA-seq in gastric

cancer. As an example, the key ligand receptor pairs uncovered

through cell communication analysis, how they work, and whether

they can be used to treat cancer. New perspective on the molecular

mechanisms of gastric cancer can be gained through scRNA-seq.

With the improvement of scRNA-seq and the universal of analysis
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technology, we will see scRNA-seq sequencing used more as part of

research evidence, in determining molecular characteristics and

lineage relationship of cell populations (92), and verifying gene

expression in specific types of cells (93, 94). Additionally,

multiomics combined analysis at the level of single cell will reveal

the occurrence and evolution of gastric cancer through

transcriptomics, genomics, proteomics, and epigenetics. It will be

more feasible to support this with bioinformatics analysis

techniques (95).

Finally, although scRNA-seq will take some time to become

widely used in clinics for a variety of objective reasons, it is

extremely promising. In addition to providing more opportunities

for gastric cancer research, scRNA-seq will help solve many clinical

challenges, advancing the processions of personalized medicine.
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Glossary

scRNA-seq single-cell RNA sequencing

RNA-seq RNA sequencing

TCGA The Cancer Genome Atlas

ACRG Asian Cancer Research Group

FACS fluorescence activated cell sorting

snRNA-seq single-nucleus RNA sequencing

UMI unique molecular identifiers

CNV copy number variation

Tregs regulatory T cells

EGC early gastric cancer

EBV Epstein-Barr virus

IGC intestinal gastric cancer

DGC diffuse gastric cancer

HDGC hereditary diffuse gastric cancer

TLSs tertiary lymphatic structures

CAFs tumor-associated fibroblasts

SPEM spasmolytic polypeptide-expressing metaplasia

PC peritoneal carcinomatosis

EMT epithelial mesenchymal transition

PD-1 programmed cell death receptor 1

NAG non-atrophic gastritis

CAG chronic atrophic gastritis

CG chronic gastritis

IM intestinal metaplasia

GC gastric cancer

AGC advanced gastric cancer

PBMC peripheral blood mononuclear cells

CTCs circulating tumor cells

PDO patient-derived organoids

TAMs tumor associated macrophages

NA not available.
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