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Álvaro Arjona Sánchez

alvaroarjona@hotmail.com

Mari C. Vázquez Borrego

marvazbor@gmail.com

†These authors have contributed
equally to this work and share
first authorship

SPECIALTY SECTION

This article was submitted to
Surgical Oncology,
a section of the journal
Frontiers in Oncology

RECEIVED 21 October 2022
ACCEPTED 11 January 2023

PUBLISHED 26 January 2023

CITATION

Valenzuela-Molina F, Bura FI,
Vázquez-Borrego MC, Granados-
Rodrı́guez M, Rufián-Andujar B, Rufián-
Peña S, Casado-Adam Á, Sánchez-
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Intraoperative oxygen tension
and redox homeostasis in
Pseudomyxoma peritonei:
A short case series

Francisca Valenzuela-Molina1,2†, Florina I. Bura2†,
Mari C. Vázquez-Borrego2*, Melissa Granados-Rodrı́guez2,
Blanca Rufián-Andujar1,2, Sebastián Rufián-Peña1,2,
Ángela Casado-Adam1,2, Juan Manuel Sánchez-Hidalgo1,2,
Lidia Rodrı́guez-Ortiz1,2, Rosa Ortega-Salas2,3,
Ana Martı́nez-López2,3, Carmen Michán2, José Alhama2,
Álvaro Arjona-Sánchez1,2* and Antonio Romero-Ruiz2

1Surgical Oncology Unit, Department of Surgery, Reina Sofia University Hospital, Cordoba, Spain, 2GE09
Research in peritoneal and retroperitoneal oncological surgery, Maimonides Biomedical Research
Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain,
3Pathology Unit, Reina Sofia University Hospital, Cordoba, Spain
Introduction: Pseudomyxoma peritonei (PMP) is a rare malignant disease

characterized by a massive multifocal accumulation of mucin within the

peritoneal cavity. The current treatment option is based on complete

cytoreductive surgery combined with hyperthermic intraperitoneal

chemotherapy. However, the recurrence is frequent with subsequent

progression and death. To date, most of the studies published in PMP are related

to histological and genomic analyses. Thus, the need for further studies unveiling

the underlying PMP molecular mechanisms is urgent. In this regard, hypoxia and

oxidative stress have been extensively related to tumoral pathologies, although

their contribution to PMP has not been elucidated.

Methods: In this manuscript, we have evaluated, for the first time, the intratumoral

real-time oxygen microtension (pO2mt) in the tumor (soft and hard mucin) and

surrounding healthy tissue from five PMP patients during surgery. In addition, we

measured hypoxia (Hypoxia Inducible Factor-1a; HIF-1a) and oxidative stress

(catalase; CAT) markers in soft and hard mucin from the same five PMP patient

samples and in five control samples.

Results: The results showed low intratumoral oxygen levels, which were

associated with increased HIF-1a protein levels, suggesting the presence of a

hypoxic environment in these tumors. We also found a significant reduction in CAT

activity levels in soft and hard mucin compared with healthy tissue samples.

Discussion: In conclusion, our study provides the first evidence of low intratumoral

oxygen levels in PMP patients associated with hypoxia and oxidative stress markers.

However, further investigation is required to understand the potential role of

oxidative stress in PMP in order to find new therapeutic strategies.
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1 Introduction

Pseudomyxoma peritonei (PMP), also known as “Jelly belly”, is a

rare condition characterized by the progressive and abundant

accumulation of mucinous ascites and peritoneal implants (1–3). The

most prevalent cause of this disease is a perforated epithelial tumor of

the appendix (4). In the early stages of the disease, the absence of

symptoms promotes the accumulation of large volumes of mucin inside

the abdomen, eventually leading to severe abdominal enlargement,

pain, and malnutrition (5, 6). Intestinal obstruction occurs over time as

a consequence of compression on visceral organs, triggering an

inflammatory and fibrotic mesothelium response that can be fatal in

patients with untreated or recurrent PMP (4–6).

The Peritoneal Surface Oncology Group International (PSOGI)

classification, which has been validated on several occasions (7, 8),

divides PMP into four groups based on histological characteristics:

i) acellular mucin (AM), ii) low-grade mucinous carcinoma (LG-

PMP), iii) high-grade mucinous carcinoma (HG-PMP), and iv)

PMP with the presence of signet ring cells (SRC) (4). However,

histopathology does not completely predict tumor behavior (9). On

the other hand, mucin from PMP is classified into soft, semi-hard,

and hard mucin samples based on physical and chemical properties

as well as visual appearance (10).

Under normal cellular conditions, mitochondrial respiration and

NADPH oxidases generate reactive oxygen species (ROS), which are

scavenged by cellular non-enzymatic and enzymatic antioxidant

mechanisms such as superoxide dismutase [cytosolic (SOD1) and

mitochondrial (SOD2)] and catalase (CAT), among others (11, 12). The

imbalance between ROS production and their elimination causes oxidative

stress, which has been associated with pathogenetic mechanisms in various

diseases, including cancer (12, 13). In this sense, ROS overproduction can

lead to cellular transformation by activating a wide range of signaling

factors such as extracellular signal-regulated kinase 1/2 (ERK1/2), receptor

tyrosine kinases (RTK), vascular endothelial growth factor (VEGF) and

hypoxia inducible factor-1a (HIF-1a) to promote cellular proliferation,

invasion,metastasis, and angiogenesis (14, 15). In addition to ROS, tumoral

hypoxia is also responsible for HIF-1a upregulation, which in turn

regulates the expression of proangiogenic, antioxidant, and goblet cell-

associated factors, as well as mucin genes, allowing cancer cells to survive,

proliferate, and undergo epithelial to mesenchymal transition (EMT) (16–

18). However, the potential role of hypoxia and/or oxidative stress in PMP

remains unknown.

This study aims to demonstrate, both in vitro and in vivo, that PMP is a

tumor that grows in the absence of oxygen. Thus, we used intraoperative

micro-oximeters, which had previously been used in other surgical

disciplines (19–22) but had never been used for this purpose, to make

intratumoral measurements of the real-time oxygen levels during the

surgical procedure in PMP patients. Furthermore, we correlated the

intraoperative pressure of oxygen values with measured cellular hypoxia

and oxidative stress markers in tissue samples from these patients.

2 Material and methods

2.1 Patients and samples

This is a prospective analytic study performed in patients with

PMP who underwent cytoreductive surgery combined with
Frontiers in Oncology 02
hyperthermic intraperitoneal chemotherapy (CRS + HIPEC) in our

unit. The present study was included in the PI19/01603 study entitled

“Molecular characterization of Pseudomyxoma peritonei and

development of new therapeutic targets and biomarkers in a PMP

xenograft human model˝, funded by Carlos III Research Institute in

2019. The Cordoba Research Ethics Committee reviewed and

generated a favorable dictamen for this study on May 28th, 2019.

All the patients were informed and signed the informed consent form.

We determined the real-time oxygen microtension (pO2mt) in

tumoral and surrounding healthy tissues in five PMP (four from

appendiceal origin and one from caecum-appendiceal stump origin)

patients during the CRS + HIPEC (Table 1). Furthermore, hypoxia

and oxidative stress markers in soft and hard mucin from the same 5

patient samples and in 5 different control samples were evaluated (3

appendix samples from a prophylactic appendectomy due to another

medical condition and 2 normal colon samples from PMP patients).

Until processing, all samples were stored at -80°C. Moreover, all

samples were histologically studied by experienced pathologists to

confirm the diagnosis.

OxyLite™ monitors (Oxford Optronix Ltd. United Kingdom)

and specific probes were used to assess the pO2mt of tumor tissue

(soft and hard mucin) following the manufacturer´s instructions. This

oxygen monitors use a fluorescence-based technique to provide an

absolute measurement of dissolved oxygen in mmHg or kPa, giving a

direct readout of the balance between oxygen supply and oxygen

consumption. The oxygen sensors are based on fluorescence

quenching and fiber-optic technology. To excite a platinum-based

fluorophore linked to the sensor tip, short pulses of LED light are

transmitted along the fiber optic sensor. The instrument detects the

resulting emission of fluorescent light, which is quenched by the

presence of oxygen molecules. The instrument measures fluorescence

lifetime, which is inversely proportional to dissolved oxygen levels

and can be used to calculate absolute oxygen values in mmHg or kPa.

The oxygen microsensors are all made of optical fibers with an outer

diameter of 230mm. The sensors used have a 350mm tip diameter and

a minimally invasive ‘bare-fiber’ format (with integrated temperature

sensor). Temperatures variations have a minimum effect on

fluorescence-based oxygen detection. To achieve the highest level of

precision, we used sensors with integrated temperature detectors and
TABLE 1 Descriptive characteristics of the study population.

Variable Descriptive Results

Sex (F/M) 4 (80%)/1(20%)

Age (years) 64 (57-79)

Peritoneal Cancer Index 27 (22-31)

Histological grade • LG= Patient 3 and 5 (40%)
• HG= Patient 1and 2 (40%)

• SRC= Patient 4 (20%)

FiO2 (%) 50 (50-58)

SaO2 (%) 99.4 (96-100)

Temperature (°C) 37 (36.8-37.2)
FiO2: Fraction of inspired oxygen; SaO2: Arterial Oxygen Saturation; LG; low grade; HG: high
grade; and SRC: high grade-signet ring cells. The percentage of patients in each category or the
value range for the different parameters are indicated in brackets. The median and interquartile
range is described for continue variables.
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monitors with constant temperature input (provided by

the thermocouple).

Before performing any intratumor oxygen measurements and

after the anesthetic induction, each patient´s haemoglobin oxygen

saturation (SaO2), body temperature, and ventilator-determined

inspired fraction of oxygen (FiO2) were checked. Moreover, arterial

blood gasometry was extracted to obtain the oxygen pressure

(mmHg) values in the blood at the moment of micro-oxygenation

measurement. To acquire the pO2mt for each fraction, micro-

oxygenation probes were placed into i) soft free mucin lakes in

each of the abdominal quadrants, ii) hard mucin identified by

regions, and iii) healthy tissue, for instance, colon or abdominal

wall. The probe was placed gently inserted, trying to cover the tip of

the fiber sensor with surrounding tissue. We waited at least 15

seconds for a consistent value to be seen before deciding on it as

the pO2mt of that area. The procedure method is supported by video

media material (Supplemental videos 1-5).
2.2 Sample processing for molecular
determinations

Soft mucin samples (~2mL) were homogenized in 4mL of lysis

buffer [50mM Tris HCl pH 7.5, 1mM thylenediaminetetraacetic acid

(EDTA) and 1mM phenylmethylsulfonyl fluoride (PMSF)] and

control and hard mucin samples (~2g) were homogenized in 8mL

of lysis buffer, using Potter homogenizers kept on ice in all cases. After

homogenization, samples were vacuum filtered with Whatman filter

paper before proceeding to a centrifugation phase (16000g, 15min, 4°

C). Finally, supernatants were collected, aliquoted and stored at -20°C

until assays were performed.
2.3 Catalase enzymatic assay

A 20mM KH2PO4 buffer (pH 7) and a 1M solution of H2O2 in

KH2PO4 buffer were used to determine catalase activity (23). A water

bath set at 30°C with circulat ing water , coupled to a

spectrophotometer set at 240nm, was also required. For each

sample, 970mL of KH2PO4 buffer, 20mL of 1M H2O2 solution and

10mL of supernatant obtained after sample processing, were added to

a cuvette and mixed by inversion. The protocol established for this

assay was to measure the absorbance (in triplicate) every 5s for 60s,

yielding a unique value of DAbs/min per sample. The obtained values

were used to calculate total enzymatic activity. Then, those results

were extrapolated to get the specific catalase activity for each sample

taking into account the protein quantification.
2.4 Western blot

The protein concentration of the samples was determined using

the Bradford assay (Bio-Rad) (24). Then, 25mg of total protein was

subjected to SDS-PAGE on 12% polyacrylamide gels, electro-

transferred on polyvinylidene difluoride membranes (Millipore)
Frontiers in Oncology 03
using the Trans-Blot Turbo system (Bio-Rad), and incubated

overnight at 4°C with the corresponding primary antibody [anti-

GAPDH (1/100000; Abcam) and anti-HIF-1a (1/500; Cell

Signaling)]. After primary antibody incubation, membranes were

incubated with horseradish peroxidase-conjugated secondary

antibody [anti-rabbit (1/5000; Abcam)]. For protein detection,

chemiluminescence ECL Western Blotting Substrate (Thermo

Scientific) was used. Protein levels were normalized using TPN

(Total Protein Normalization) method, which calculates the

intensity value of total protein from each sample. Densitometric

analysis of protein bands was conducted using ImageJ.
2.5 Statistics

Statistical analyses were performed using Prism software v.7.0

(GraphPad Software, La Jolla, CA, USA). Data were assessed for

normality using Kolmogorov-Smirnov test, then evaluated using

appropriate parametric (unpaired t test or one-way ANOVA

followed by post hoc Tukey test) or nonparametric (Mann-Whitney

test) tests. P-values less than 0.05 were considered significant.

Asterisks (* p< 0.05, ** p< 0.01, *** p< 0.001) indicate statistically

significant differences.
3 Results

3.1 Intraoperative oxygen pressure in PMP

The pO2mt was measured intratumorally in soft free mucin, and

hard mucin from all the patients included in the study, as well as in

blood and surrounding healthy tissues. Interestingly, the pO2mt was

clearly reduced in soft and hard mucin tissue compared with blood

and healthy tissue in all patients. In patient 4, it was not possible to

measure the pO2mt in soft mucin since the tumor was mainly

constituted by hard mucin (Figure 1A). Additionally, the statistical

analysis of all patients showed significant differences between soft and

hard mucin compared with blood and healthy tissue (Figure 1B).

Moreover, the O2 levels were maintained under normal parameters in

all the patients as shown by FiO2 and SaO2 parameters (Table 1).
3.2 Determination of hypoxia and oxidative
stress markers

Next, we measured hypoxia and oxidative stress markers in order

to know if PMP develops not only due to the absence of oxygen but

also due to an increase in ROS. In this sense, we found a clear increase

in HIF-1a protein expression levels in soft and hard mucin compared

with healthy tissue samples (Figure 2A), which supports the reduction

of pO2mt observed in the patients. Additionally, we evaluated the

catalase enzymatic activity as an oxidative stress marker in our

patient´s samples. In this case, and in contrast with the HIF-1a
results, we observed a significant reduction of catalase activity in soft

and hard mucin compared with healthy tissue samples (Figure 2B).
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4 Discussion

The scarce research in PMP is mainly focused on the clinical

management and classification of the disease, and the small number

of articles exploring the PMP pathophysiology are based on

histological data and expression analyses of genes already described

in other types of cancer (25–27). In this context, it has been postulated

that mucinous tumors, like PMP, might use the mucin barrier to

configure a favorable local environment for tumor growth (28). In this

study, we have demonstrated for the first time that the tumor tissue in

PMP grows in hypoxic conditions increasing hypoxia markers such as

HIF-1a. This finding is consistent with the fact that most solid

malignant diseases show low oxygen levels (hypoxia) in the tumor

environment (29–31), increasing the resistance to chemotherapy

and radiotherapy.

Cellular adaptation to hypoxia is triggered by overexpression of

HIF-1a via modulation of different signaling pathways to increase
Frontiers in Oncology 04
blood vessels formation, aggressiveness, metastasis, and resistance to

treatments in numerous cancer types, such as breast, colorectal and

pancreas cancer (17, 29, 31–35). Here, we measured HIF-1a protein

levels to confirm the low levels of oxygen detected in vivo in PMP

patients. We found a significant increase in HIF-1a protein levels in

soft and hard mucin samples compared with healthy tissue samples.

In line with these findings, Dilly et al. have shown an increase in HIF-

1a protein levels in PMP tissues compared with normal colon

samples, as well as an increase in HIF-1a levels in LS174T colon

cancer cell line and PMP tissue explants following exposure to

hypoxic conditions (18).

Moreover, HIF-1a has been reported to be modulated by

hypoxia-independent factors, including ROS (29, 36). In this sense,

we evaluated the CAT enzymatic activity as an oxidative stress marker

in order to know if the hypoxic environment found in PMP is also

linked to ROS. Thus, we have described a significant reduction in

CAT enzymatic activity in soft and hard mucin compared with
A

B

FIGURE 1

Measurement of intraoperative real-time oxygen microtension (pO2mt) in blood and tissues during surgery. (A) Individual measurements of pO2mt
(mmHg) in blood (B), surrounding healthy tissue (HT), soft mucin (SM) and hard mucin (HM) in each PMP patient (n=5). Measurements are represented as
the mean ± S.E.M of all values measured per zone in each patient. (B) pO2mt (mmHg) levels per zone taking into account all patients included in the
study (n=5). One-way ANOVA analysis was carried out with multiple comparisons. *p < 0.05, ***p < 0.001.
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healthy tissue samples. Interestingly, CAT has been described as

downregulated in several tumoral pathologies (37–41) while, at the

same time, being elevated in other cancer subtypes (38, 42, 43). This

discrepancy is due to its complex regulatory process. In this regard,

CAT has been reported to be regulated at different levels:

transcriptional (high number of transcription factors that induce or

repress the transcriptional activity of CAT promoters), post-

transcriptional (mRNA stability), and post-translational

(phosphorylation and ubiquitination). Furthermore, epigenetic or

genetic changes may have a role in regulating CAT activity (44).

Due to the harsh environment developed in mucinous tumors,

which is characterized by hypoxic conditions, low pH, and no

vascularization (45), conventional chemotherapy (e.g., bleomycin or

doxorubicin, both oxygen-dependent drugs) and radiotherapy are

ineffective in most cases (46–48). As a result, several research groups

have concentrated on seeking suitable therapeutic options for

oncologic patients suffering from this type of tumor by different

means. Thus, Dilly et al. showed a reduction in MUC2 expression

levels using a HIF-1a siRNA or specific HIF-1a inhibitors (BAY 87-

2243 and YC-1) in LS174T cell line. Interestingly, chronic BAY 87-

2243 treatment also reduced mucinous tumor growth in a PMP

xenograft mouse model (18). Indeed, modulation of the HIF pathway

at different levels has been proposed as a promising cancer therapy

(49). Thus, transcription and translation have been demonstrated to

be suppressed by different compounds, including aminoflavone,
Frontiers in Oncology 05
anthracyclines, steroids, or topoisomerase inhibitors. Remarkably,

digoxigenin inhibited HIF-1a translation, increasing pancreatic

cancer cells’ sensitivity to gemcitabine (49). Moreover, several

histone deacetylase (HDAC) inhibitors, such as Panobinostat,

MPT0G157, and Vorinostat, have been reported to reduce HIF-1a
stability and induce its degradation in different tumoral pathologies

(49). In line with this, Kim et al. reported the use of trichostatin A, a

HDAC inhibitor, to downregulate HIF-1 and hypoxia-induced

angiogenesis in an in vivo Lewis lung carcinoma model (50).

Additionally, Kishimoto et al. proposed using hypoxia-activated

prodrugs such as Evofosfamide in combination with radiotherapy

and antiproliferative treatments to improve the clinical outcome of

cancer patients (48).

On the other hand, harnessing ROS-induced oxidative stress via

targeted inhibition of the cancer antioxidant defense machinery has

been proposed as a potential anticancer strategy (51). In this sense,

ATN-224 (choline tetrathiomolybdate) is an orally bioavailable

inhibitor that inhibits SOD activity via copper chelation. This

inhibitor has been used in phase I and II clinical trials and has been

related to reduced angiogenesis and tumor proliferation (52, 53). In

the same line, 4,5-dichloro-2-(3-tolyl)pyridazin3(2H)-one (LSC-1)

has been related to the reduction of lung adenocarcinoma cell

growth through SOD inhibition (54, 55). Furthermore, the

combination of Capecitabine (a prodrug that is converted to 5-FU

by thymidine phosphorylase) and Celecoxib (a Cox-2 inhibitor)
A B

FIGURE 2

Cellular hypoxia and oxidative stress markers in PMP samples. (A) HIF-1a relative protein expression levels in soft (SM; n=5) and hard mucin (HM; n=5)
compared with healthy tissues (HT; n=5; non-tumoral appendix and colon tissues) evaluated by Western Blot. The arbitrary densitometric unit (ADU) for
the protein was normalized by the Total Protein Normalization (TPN) value. (B) Catalase activity (U/mg) in soft and hard mucin (n=5) compared to healthy
control tissues (n=5; non-tumoral appendix and colon tissues) evaluated by enzymatic assay. Unpaired t test or Mann-Whitney test was used based on
Kolmogorov-Smirnov normality test. *p < 0.05, **p < 0.01.
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reduced the number of mice with pancreatic adenocarcinoma, which

was associated with a recovery of SOD and CAT activity (56).

In conclusion, this work provides the first evidence of low

intratumoral oxygen levels in PMP patients during surgery, as well

as an increase in HIF-1a protein levels together with low catalase

activity, suggesting the presence of a hypoxic environment in these

tumors. Further research is required to deeply understand the

mechanisms underlying hypoxia and the potential role of oxidative

stress in this pathology in order to identify new targets and strategies

to treat this devastating disease.
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