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Purpose: The mitogen-activated protein kinase (MAPK) signaling pathway is

often studied in oncology as the most easily mentioned signaling pathway.

This study aims to establish a new prognostic risk model of MAPK pathway

related molecules in kidney renal clear cell carcinoma (KIRC) based on genome

and transcriptome analysis.

Methods: In our study, RNA-seq data were acquired from the KIRC dataset of

The Cancer Genome Atlas (TCGA) database. MAPK signaling pathway-related

genes were obtained from the gene enrichment analysis (GSEA) database. We

used “glmnet” and the “survival” extension package for LASSO (Least absolute

shrinkage and selection operator) regression curve analysis and constructed a

prognosis-related risk model. The survival curve and the COX regression analysis

were used the “survival” expansion packages. The ROC curve was plotted using

the “survival ROC” extension package. We then used the “rms” expansion

package to construct a nomogram plot. We performed a pan-cancer analysis

of CNV (copy number variation), SNV (single nucleotide variant), drug sensitivity,

immune infiltration, and overall survival (OS) of 14 MAPK signaling pathway-

related genes using several analysis websites, such as GEPIA website and TIMER
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database. Besides, the immunohistochemistry and pathway enrichment analysis

used The Human Protein Atlas (THPA) database and the GSEA method. Finally,

the mRNA expression of risk model genes in clinical renal cancer tissues versus

adjacent normal tissues was further verified by real-time quantitative reverse

transcription (qRT-PCR).

Results: We performed Lasso regression analysis using 14 genes and created a

new KIRC prognosis-related risk model. High-risk scores suggested that KIRC

patients with lower-risk scores had a significantly worse prognosis. Based on the

multivariate Cox analysis, we found that the risk score of this model could serve

as an independent risk factor for KIRC patients. In addition, we used the THPA

database to verify the differential expression of proteins between normal kidney

tissues and KIRC tumor tissues. Finally, the results of qRT-PCR experiments

suggested large differences in the mRNA expression of risk model genes.

Conclusions: This study constructs a KIRC prognosis prediction model involving

14 MAPK signaling pathway-related genes, which is essential for exploring

potential biomarkers for KIRC diagnosis.
KEYWORDS
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1 Introduction

The mortality rate of kidney cancer ranks first among all

urological malignancies (1). Renal cell carcinoma (RCC) is the

most common type of primary renal malignancy, and about 70%

of RCC patients are diagnosed with KIRC (2). More than one-fifth of

patients with advanced kidney cancer will relapse even after radical

nephrectomy. Besides, kidney cancer patients with distant metastases

have a 1-year survival rate of only 50% and a 5-year survival rate of

only 10% (3, 4). Early diagnosis and treatment are of great

importance to improve the prognosis of kidney cancer. A growing

number of studies confirm that cancer is a human genomic disease (5,

6). Tumor progression is caused by coordinated genetic changes in

multiple signaling pathways (7). Therefore, it is important to explore

the relevant cancer-causing genes and pathways and construct risk

models based on them for early detection and treatment of KIRC.

MAPK (mitogen-activated protein kinase) signaling pathway is

one of the most extensive pathways in tumor pathway research.

Related studies in human cancers have confirmed that most of

cancers are associated with changes in the MAPK pathway. Since

the recognition of Ras small GTPases as the first oncogenes of

sarcoma viruses, research on the MAPK pathway has intensified

over the past 40 years (8). The internal signaling of the MAPK

signaling pathway is complex. Besides, this signaling pathway is

often regulated by related genes or by crosstalk with other signaling

pathways. In the physiological state, intracellular MAPK signaling is

tightly controlled. Growth factors (GFs) bind to and activate

receptor tyrosine kinases (RTKs) on the cell membrane, a critical
02
first step in initiating the classical MAPK signaling pathway (9).

Activation of RTKs drives phosphorylation of RAS superfamily

proteins represented by HRAS, KRAS, and NRAS, thereby

transducing extracellular signals to the cytoplasm (10). The

subsequent activation of intracellular cascade reactions is also

caused by the phosphorylation of molecules. Activated RAS

further activates MAPKKK (mitogen-activated protein kinase

kinase, represented by RAF and its variants), followed by MAPK

kinase (MAPKK: MEK1/2/3/4/5/6/7), and finally MAPK, resulting

in a cascade activation reaction of the intracellular MAPK signaling

pathway (11). The MAPKs mainly include the following: ERKs

(extracellular signal-regulated kinases, represented by ERK1/2/5),

JNKs(c-Jun N-terminal kinases, represented by JNK1/2/3), and p38

MAPKs(represented by p38a/b/g/d) (12–14). Numerous studies

have confirmed that the progression of most solid tumors is

associated with gene mutations in the RAS/RAF/MEK/ERK

signaling pathway (15). Approximately 30% of human solid

tumors are associated with mutations in the RAS gene (16).

Activation of Ras not only drives the MAPK cascade, but also

acts as an initiator of the PI3k/AKT/mTOR cascade to regulate cell

growth (11). In addition, ERK1/2 can regulate the activation of

transcriptional factors such as c-Myc (transcriptional regulator

Myc-like) through phosphorylation, which has received much

attention in the research of tumor-targeted therapy (12).

In recent years, studies have demonstrated that the MAPK

signaling pathway influences the prognosis of KIRC through the

regulation of HIF-1a (17). In addition, the MAPK signaling

pathway also influences the sensitivity of KIRC patients to
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targeted drugs such as sunitinib and sorafenib (17, 18). The

construction of predictive models based on genes related to the

MAPK signaling pathway and the exploration of the mechanisms

by which the MAPK signaling pathway affects prognosis and

targeted therapy resistance will be of great significance in the

future for the diagnosis and treatment of KIRC.
2 Materials and methods

2.1 Data acquisition

The mRNA expression data and clinical datasets of KIRC

patients used in this study were obtained from the TCGA

database (https://portal.gdc.cancer.gov/). The dataset we

downloaded included 539 tumor tissues and 72 normal tissues.

We then downloaded and analyzed the MAPK pathway-related

genes using the GSEA analysis website (https://www.gsea-

msigdb.org/gsea/index.jsp).
2.2 Data processing and analysis

The R language operating platform (https://www.rstudio.com/) is

one of the most influential and widely used bioinformatics operating

platforms. We used Perl and several R packages to analyze and

process data. The “heatmaps” expansion package was used to make

the heatmap. Then we used tbtools (https://github.com/CJ-Chen/

TBtools) to further beautify and process the heatmap to better display

the data. Statistical data analysis was performed using the “limma”

software package to analyze variance. Lasso regression analysis was

mainly performed using “glmnet” expansion packages. The survival

curve was plotted using the “survival” expansion packages, and the

ROC curve was analyzed and plotted using the “survival ROC”

extension package. Finally, based on the risk model, we validated it

with clinical characteristics by univariate Cox analysis and

multivariate Cox analysis using the “survival” and “forestplot”

expansion packages. Finally, we combined the predictive risk model

with various clinical features as independent risk factors to draw a

nomogram using the “rms” expansion package. P <0.05 was

considered a statistically significant difference. We used the “plyr”,

“ggplot2”, “grid” and “gridExtra” extension packages for multi-GSEA

analysis, to explore the biological pathways that risk model genes may

affect in KIRC, and to explore the correlation of the MAPK pathway

with other pathways.
2.3 GEPIA website

GEPIA (http://gepia.cancer-pku.cn/) has a robust data

aggregation function. The analysis tool includes RNA-seq

expression data from more than 9,000 tumors and 8,000 tumor

genome maps based on the TCGA database (19). Based on the

website’s online tool, the CNV and SNV of model genes were

differentially analyzed in different tumors.
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2.4 ImmuCellAI website

We analyzed the infiltration of 24 types of immune cells in pan-

cance r ba s ed on the ImmuCe l lA I webs i t e (h t tp : / /

bioinfo.life.hust.edu.cn/ImmuCel lAI/). We used the “pheatmap”

R language to draw and visualize the analysis results in the form of

heat maps. Statistical analysis was performed using the Spearman’s

correlation coefficient.
2.5 Generation of PPI networks

We draw the PPI network based on the online analysis tool

STRING (https://www.string-db.org/). To make the PPI network

more beautiful, we used the visualization software of Cystoscope.

The data in PPI were used to construct a quantization table.
2.6 TIMER website

The Tumor Immune Estimation Resource (TIMER) 2.0s (http://

cistrome.org/TIMER/) has recently been used to analyze immune cell

infiltration in the environment of tumors. This study further judged

the infiltration of immune cells in 14 genes by analyzing the

correlation between 14 genes and immune cells. Heatmaps were

drawn and visualized using the “heatmaps” expansion package.
2.7 GDSC database

Two hundred sixty-six drugs are included in the GDSC

database (20). In this study, we analyzed the relationship between

related drugs and the mRNA expression of MAPK pathway-related

genes based on the GDSC database, and then we drew a heatmap to

visualize the correlation.
2.8 The Human Protein Atlas database

The Human Protein Atlas database (http://www.proteinatlas.org/)

was a proteome analysis website of 27173 antibodies targeting 17268

unique proteins (21). In our study, we used this website to explore the

protein expression of MAPK pathway-related genes in normal kidney

tissues and ccRCC tumor tissues.
2.9 Collection of clinical tissue samples

From March to May 2022, we collected tumor and adjacent

normal kidney samples of 8 KIRC patients from Shandong Provincial

Hospital. This study was approved by the Ethics Committee of

Shandong Affiliated Hospital. Patients provided written informed

consent for all samples and information collected. The research

adhered to the principles of the Declaration of Helsinki and those

of the World Medical Association.
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2.10 Total RNA extraction
and qRT-PCR experiments

We extracted total RNA from collected KIRC tumor tissues and

paracancerous normal tissues using TRIzol reagent (Thermo Fisher

Scientific, Waltham, MA, USA). Next, we reverse-transcribed the

pre-extracted RNA into cDNA using EvoM-MLVRT master mix

(Accurate Biotechnology). We then mixed the reagents for qRT-

PCR detection according to the manufacturer’s instructions of the

SYBR® Green Premix Pro Taq HS qPCR Kit (Accurate

Biotechnology). The above process was carried out in strict

accordance with the manufacturer’s instructions.
2.11 Statistical analyses

Expression of MAPK pathway-related genes in tumor tissues

and adjacent tissues using One-way ANOVA. T-test was used to

compare the expression of MAPK pathway-related genes of

different gender, age, stage, node (N), tumor (T) and metastasis

(M) in KIRC data set. The “survminer” package was used to

determine the cut-off value of each risk score in the tumor group,

and we divided patients into a high-risk group and a low-risk group.

R Studio software package was used for all statistical analysis. P <

0.05 meant statistically significant.
3 Results

3.1 The expression of MAPK signaling
pathway-related genes in KIRC and
univariate Cox analysis

We first drew the flowchart to more conveniently show this

research process (Figure 1). Then, We constructed a heat map of the

mRNA data of the 81 MAPK signaling pathway-related genes in the

KIRC patient dataset based on the TCGA database (Figure 2A). Among

the 81 MAPK signaling pathway-related genes, nearly 80% of the genes

have statistically significant differences in expression between normal

kidney tissue and KIRC tissue, further confirming that the MAPK

signaling pathway plays an essential role in the occurrence and
Frontiers in Oncology 04
development of KIRC. We then performed the univariate Cox

analysis of MAPK signaling pathway-related genes in KIRC patients,

and drew a forest plot (Figure 2B). The potential role of each signaling

pathway-related gene in the occurrence and development of KIRC was

determined. Using the HR value of 1 as a cutoff, there are 16 genes with

HR values >1, including STAT1(signal transducer and activator of

transcription 1), MAP3K8(mitogen-activated protein kinase kinase 8),

SHC1(SHC adaptor protein 1), MAP3K9(mitogen-activated protein

kinase kinase kinase 9), TRAF2(TNF receptor associated factor 2),

RAC1(Rac family small GTPase 1), MAP3K12(mitogen-activated

protein kinase kinase kinase 12), RPS6KA4(ribosomal protein S6

kinase A4), meaning that these genes are risk factors in disease

progression. whereas 23 genes, including MAPK3(MAPK3: mitogen-

activated protein kinase 3), MAP2K6(MAP2K6: mitogen-activated

protein kinase kinase 6), MAPK13, MAP3K5(mitogen-activated

protein kinase kinase 5), RPS6KA2(ribosomal protein S6 kinase A2),

RPS6KA5(ribosomal protein S6 kinase A5), NFKB1(nuclear factor

kappa B subunit 1), whose HR values are less than 1, are protective

factors. Finally, we used the String database to analyze the PPI protein

interaction to verify the interaction and connection between the proteins

in the MAPK pathway (Figure 2C).
3.2 Construct a novel prognostic-related
survival model in KIRC

After univariate cox analysis of genes related to the MAPK

signaling pathway, we screened out genes with a P value < 0.05 for

LASSO regression analysis, and screened out 14model genes, including

RPS6KA2, MAPK3, RPS6KA5, MAP2K6, MAP3K5, NFKB1, STAT1,

RAC1, MAP3K9, TRAF2, RPS6KA4, SHC1, MAP3K12, andMAP3K8

(Figures 3A, B). A prognostic riskmodel was established based on these

model genes. KIRC patients were divided into high-risk and low-risk

groups with the median level of risk score as the optimal cutoff value.

After plotting the survival curves, we found a significant difference in

survival between the two groups (Figure 3C). Subsequently, we

validated this prognostic-related risk model using the ROC curve.

The results showed that the 5-year AUC value was 0.744 (Figure 3D)

and the 10-year AUC value was 0.825 (Figure 3E), suggesting that the

risk model is suitable for prognosis prediction of KIRC patients with

high accuracy.
3.3 The relationship between the risk
model and clinicopathological
characteristics, and draw the
corresponding nomogram in KIRC

We verified the relationship between the prognostic risk model and

the clinical characteristics of patients (Figure 3F). The prognostic risk

model was correlated with clinical characteristics including tumor

volume (T), lymph nodes (N) distant metastasis (M), stage, grade,

gender, and fustat, suggesting that the predictive model has good

clinical prognosis and diagnostic and therapeutic efficacy. Univariate

Cox analysis found that age, stage, grade tumor volume (T), distant
FIGURE 1

The flow chart of this research.
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metastasis (M), and risk score were statistically significant (Figure 4A).

Multivariate Cox analysis showed that age, stage, grade, and risk score

were independent risk factors for KIRC (Figure 4B). Subsequently, we

established a new nomogram based on the four independent risk

factors verified by multivariate Cox analysis (Figure 4C). In this

nomogram, the quantified values of each variable correspond to the

scale axis to obtain a score. Finally, the total score is obtained by

summing the scores corresponding to the four variables, so that the 5-,

7-, or 10-year survival of KIRC patients can be intuitively obtained.
3.4 OS and variation of model genes in
pan-cancer

Wemapped the mRNA expression, CNV and SNV of these genes

in 33 different tumors. First, we observed the extent to which these 14

model genes affect survival and prognosis in pan-cancer (Figure 5A).

When we explored the role of genes in different tumors, we found

that genes such as RAC1 and SHC1 were elevated in most cancers,

suggesting their role as prognostic risk factors in most tumors. For a

specific tumor pathological type, we can observe that most MAPK

signaling pathway model genes are highly expressed in KICH and

LGG, suggesting that they are associated with poor prognosis.

Notably, we found that high expression of MAP2K6, MAP3K5,
Frontiers in Oncology 05
RPS6KA5, MAPK3, NFKB1, and RPS6KA4 in KIRC tumors

suggested a better prognosis. In contrast, high expression of

MAP3K8 and MAP3K12 suggested a poorer prognosis for KIRC.

The SNV percentage heatmap (Figure 5B) and CNV percentage

(Figure 5C) heatmap show the single nucleotide variation and copy

number variation of different model genes in pan-cancer,

respectively. The SNV percentage heatmap found that MAP3K5,

STAT1, and MAP3K9 have the highest single-nucleotide mutation

rates in pan-cancer. When we explored the single-nucleotide

mutations of pathway-related genes in various pathological types of

tumors, we found that the MAPK signaling pathway prognostic

model genes had the most obvious SNV in uterine corpus

endometrial carcinoma (UCEC), skin cutaneous melanoma

(SKCM), and colon adenocarcinoma (COAD). In particular, the

single-nucleotide mutation rate of MAP3K5 in UCEC and SKCM

tumors was as high as 45% and 46%, respectively, while the single-

nucleotide mutation rate of MAP3K9 in SKCM tumors was 46%.

Nucleotide mutations played an essential role in the development of

these tumors. Next, we found copy number variations of MAP2K6,

SHC1, and RAC1 in most cancer tissues. RPS6KA2, MAP3K5,

MAP3K9, RPS6KA5, and TRAF2 had higher rates of heterozygous

deletion mutations in KIRC tissue, while STAT1, MAPK3,

MAP3K12, SHC1, and RAC1 heterozygous amplification mutations

were more prevalent. Notably, theMAPK pathwaymodel genes had a
B

C

A

FIGURE 2

The expression of genes related to the MAPK signaling pathway in KIRC and univariate Cox regression analysis. (A) The differential expression of 81
MAPK signaling pathway-related genes in cancer and normal tissue in KIRC patients. Red represents the gene that is highly expressed in the tumor.
The darker the color, the higher the expression level; blue represents the gene that is lowly expressed in the tumor, and the color the deeper it is,
the lower the expression level. (B) Perform univariate Cox regression analysis on genes related to the MAPK signaling pathway. (C) The String
database was used to analyze the protein interaction of 81 genes related to the MAPK signaling pathway, and the Cystoscope software platform was
used to visualize the analysis results. *P<0.05, **P<0.01, and ***P<0.001.
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significantly increased mutation rate in KICH, which was one of the

most common pathological types of RCC.
3.5 Immune infiltration and drug sensitivity
of model genes in pan-cancer

We verified the correlation of the risk model genes with the

infiltration of various immune cells in different types of tumors

(Figure 5D). DC, NKT, Tr1, NK, Macrophage, CD4_T, nTreg, Th1,

Tfh, and iTreg show high expression in most types of tumors,

suggesting that their infiltration potentially contributes to tumor

progression. On the contrary, Neutrophil and CD8_naive were

lowly expressed in most types of tumors. Notably, immune cells

such as NKT, Tr1, NK, macrophages, CD4_T, nTreg, Th1, Tfh, and

iTreg were more infiltrated in KIRC tissues, while neutrophils,

CD8_naive, CD4_naive, Th2, and Th17 were less infiltrated. Based

on the establishment of the previous prediction model, we analyzed

the correlation between the mRNA expression of 14 model genes

and drug sensitivity (Figure 5E). Drug sensitivity analysis showed

that MAPK3, RPS6KA4, STAT1, RAC1, RPS6KA2, SHC1 and other

model genes, especially RAC1 and SHC1 genes, were significantly

positively correlated with drug sensitivity. On the contrary, the

higher the expression of RPS6KA5, MAP2K6 and other genes, the

worse the drug sensitivity and the worse the curative effect.
Frontiers in Oncology 06
3.6 Verify the protein expression of
model genes between KIRC tissues
and normal tissues

To further understand the protein expression of 14 model genes in

KIRC tumor and normal tissues, we used the HPA website for further

analysis (Figures 6A–N). We found that MAP2K6, MAP3K5,

MAP3K9, MAP3K12, RPS6KA2, RPS6KA5, and STAT1 were lowly

expressed in tumor tissues; However, NFKB1, RAC1, SHC1, and

TRAF2 are highly expressed compared to normal tissues. The above

results are consistent with our previous verification results.
3.7 GSEA analysis in KIRC for risk
model genes

We performed GSEA pathway analysis on these risk model

genes to explore the role of MAPK-related genes in other

pathways and to establish the connection between the MAPK

pathway and other pathways (Figures 7A–N). We found that risk

model genes play different roles in different pathways, and each

gene is also involved in different signaling pathways. For example,

MAP2K6 is elevated in focal adhesion, adhesion, long-term

potentiation, vascular smooth muscle contraction, GnRH

signaling pathway, pathways in cancer, but its expression
B C

D

E

F

A

FIGURE 3

Construct a prognostic-related risk model in KIRC through LASSO regression analysis. (A, B) Results of LASSO regression analysis and cross-
validation. (C) Kaplan–Meier survival analysis between high-risk and low-risk groups according to the optimal cut-off value; (D) ROC curve for
predicting 5-year survival time; (E) ROC curve for predicting 10-year survival time; (F) Heat map based on the correlation of this risk feature with
clinical features. *P<0.05 and ***P<0.001.
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decreased in Parkinson disease, oxidative phosphorylation,

phenylalanine metabolism.
3.8 Validation of mRNA differential
expression of risk model genes in KIRC
clinical samples based on qRT-PCR

Based on the analysis of public databases, we successfully

screened out 14 risk model genes. To further verify the reliability

of the previous experimental results and evaluate the clinical

application value, we collected 8 pairs of KIRC pathological

tissues and normal control tissues. Based on qRT-PCR

experiments, we verified the samples’ relative mRNA expression

levels of 14 risk model genes (Figures 8A–N). We found that most

genes (including MAP3K5, MAP3K8, MAP3K12, MAPK3, NFKB1,

RAC1, RPS6KA4, SHC1, STAT1 and TRAF2) were increased in

KIRC pathological tissues. In contrast, the mRNA expression levels

of MAP2K6, MAP3K9 and RPS6KA5 in KIRC pathological tissues

were reduced to varying degrees compared with normal control
Frontiers in Oncology 07
tissues. The mRNA expression of RPS6KA2 was not statistically

significant in the difference analysis.
4 Discussion

In 2020, experts estimated 431,288 new kidney tumors

worldwide, and 179,368 patients worldwide died from kidney

cancer in the same year (22). Renal cell carcinoma (RCC)

originates from renal cortical or tubular epithelial cells, of which

KIRC is the most common subtype. The current treatment methods

for early KIRC are mainly limited to surgery, and patients often

have a good prognosis after surgery (23). However, although the

targeted therapies has brought the light of treatment to advanced

stage KIRC patients who are ineligible for surgery, drug resistance

and side effects have resulted in a median survival of less than 3

years (24). Precision medicine has always been the development

trend of current medical diagnosis and treatment, and the

establishment of new predictive models will have a positive effect

on the early diagnosis of cancers. To this end, we comprehensively
B

C

A

FIGURE 4

The comprehensive analysis is based on the clinical information of KIRC patients. (A) Univariate Cox analysis. (B) Multivariate Cox analysis. (C) A new
nomogram was drawn based on this prognostic risk signature. The value of each variable gets a score on the dot scale axis. The total score can be
easily calculated by adding each score and projecting the total score to a lower total score system. We can estimate the risk for predicting 5-, 7- or
10-year survival in KIRC.
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used bioinformatics analysis tools and websites to analyze MAPK

pathway-related genes in pan-cancer and establish a predictive

model in KIRC. In addition, we validated these prognostic genes

in KIRC tissues. We hope that this study will provide guidance for

the early diagnosis and targeted treatment of KIRC.

We used 14 risk model genes in pan-cancer for CNV, SNV, drug

sensitivity, immune infiltration, and overall survival analysis, and

predicted other biological pathways that these 14 MAPK pathway-

related genes may be involved in. Since the main area of focus of this

study is KIRC, we discuss KIRC in more depth. Our study first

analyzed the mRNA expression of 81 MAPK pathway-related genes

in KIRC patients and normal kidney tissues. The results indicated that

nearly 80% of the genes were differentially expressed. Research statistics

show that over 85% of cancers have overactive MAPK signaling, which

is directly caused by genetic changes in its upstream activators or key

molecules (including RTK, RAS, and BRAF) or affected by changes in

other regulatory genes (25). These results also demonstrate that altered

expression of MAPK pathway-related genes may influence KIRC

progression by affecting MAPK signaling pathway transduction.

Precision medicine has always been the development trend of
Frontiers in Oncology 08
current medical diagnosis and treatment, and the establishment of

new predictive models has led the way in the diagnosis and treatment

of cancers. After univariate COX and LASSO regression analysis, we

established a risk model consisting of 14MAPK pathway-related genes,

including RAC1, SHC1, NFKB1, MAPK3, RPS6KA2, RPS6KA4,

RPS6KA5, MAP3K5, MAP3K8, MAP3K9, MAP3K12, STAT1,

TRAF2, MAP2K6.

RAC1 belongs to the RAS superfamily of small GTP-binding

proteins. This molecule often acts as an upstream of the MAPK

signaling pathway and is often used as a target for tumor therapy

(26). RAC1 inhibitors, such as the compound GYS32661 proved to

be effective in tumor therapy. Our investigation further confirmed

that RAC1 is highly expressed in ccRCC at the mRNA and protein

levels. Further investigation of RAC1 may provide a basis for the

therapeutic application of RAC1 inhibitors in ccRCC. The role of

SHC1 in the MAPK signaling pathway is mainly to link activated

receptor tyrosine kinases to the Ras, which in turn participates in

the MAPK signaling cascade. Recent studies have confirmed that

SHC1 interacts to form protein complexes to promote the

progression of lung cancer (27). This is consistent with the trend
B

C
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E
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FIGURE 5

Overall survival analysis and variation analysis of this risk model gene in pan-cancer. (A) Overall survival analysis of this risk model gene in pan-
cancer. Red represents this risk model gene as a risk factor, and blue represents this risk model gene as a protective factor. (B) SNV levels of 14
model genes in pan-cancer, where the darker the red color, the higher the probability of SNV. (C) CNV ratio of 14 model genes in pan-cancer, Light
red hete amp represents heterozygous amplification, light green hete del represents heterozygous deletion, dark red Homo amp represents
homozygous amplification, dark green Homo del represents homozygous deletion, and gray represents no CNV. (D) The GSVA method was used to
analyze the level of immune cell infiltration in 33 different types of tumors, and the Spearman correlation coefficient was used to evaluate its
correlation. Red indicates that the level of immune cell infiltration is positively correlated with the tumor. On the contrary, blue indicates a negative
correlation. (*P-value ≤ 0.05; #FDR ≤ 0.05). (E) In a sensitivity analysis of prognostic risk model gene mRNA expression and mainstream anticancer
drugs, red represents a positive correlation, while blue represents a negative correlation.
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of elevated expression of SHC1 in ccRCC in our study. NFKB1, a

common transcription regulator, acts as a transcriptional regulator

and contributes to the infiltration of inflammatory cells by moving

to the nucleus when it is activated. The present study demonstrated

that NFKB1 mRNA was highly expressed in ccRCC. A related study

confirmed that the expression of HIF-1a decreased dramatically in

ccRCC cells due to the reduced movement of NF-kB1 to the

nucleus, which also inhibited the progression of ccRCC (28). The

above results also confirm that the decreased expression of NFKB1

in ccRCC may be associated with the inhibition of tumor

progression. MAPK3 encodes a protein that is an important

member of the MAP kinase family. MAPK3/ERK1 plays a critical

role in the MAPK/ERK cascade. As a recognized oncogene, its role

in promoting cancer progression and influencing drug resistance to

targeted drugs has been demonstrated in a variety of cancers (29,

30). Mutations in BRCA1-associated protein-1 (BAP1) are very

common in ccRCC, and Jin S et al. used PPI network analysis to

confirm that mutations in MAPK3, one of the core genes, regulated

BAP1 (31). Our study also confirmed the increased mRNA

expression of MAPK3 in ccRCC, and whether it could regulate

BAP1 to affect the prognosis of ccRCC needs to be further

investigated. RPS6KA2, RPS6KA4, and RPS6KA5 belong to the

RSK (ribosomal S6 kinase) family of serine/threonine kinases. The
Frontiers in Oncology 09
common characteristics of this family are that they all have kinase

catalytic domains, which can phosphorylate various MAPK

signaling pathway-related molecules. Milosevic N et al. showed

that RPS6KA2 acts downstream of EGFR/RAS/MEK/ERK signaling

and is activated by EGF. Inhibition of its activity could synergize

with erlotinib against pancreatic cancer cell survival (32). RPS6KA5

regulates lung tumor growth by activating the MAPK classical

signaling pathway through phosphorylation, which in turn

phosphorylates TRIM7 protein (33). RPS6KA4 is activated by the

RAS-MAPK or p38-MAPK pathway and activates histone H3 by

phosphorylation, leading to increased transcription of genes such as

proto-oncogene c-fos/FOS and c-jun/JUN (34). MAP3K5,

MAP3K8, MAP3K9, and MAP3K8 all belong to the serine/

threonine protein kinase family. The above four kinases have

been extensively studied in different types. MAP3K8 is a common

oncogene in most tumors. Our study likewise confirmed the high

expression of MAP3K8 in ccRCC. This molecule can mediate the

MAPK signaling pathway by activating MAP kinase and JNK kinase

pathways. Many studies have shown that some striking features of

the tumor microenvironment can promote immunosuppression

and limit the anticancer immune response. Among them,

immune cells infiltrating the physical barrier and causing local

inflammation play an essential role in forming and developing
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FIGURE 6

The Results of immunohistochemistry. (A–N) The Human Protein Atlas database was used to verify the proteins’ differential expression of 14 model
genes (MAP2K6, MAP3K5, MAP3K8, MAP3K9, MAP3K12, MAPK3, NFKB1, RAC1, RPS6KA2, RPS6KA4, RPS6KA5, SHC1, STAT1, TRAF2) in KIRC tumor
tissues (T) and adjacent normal tissues (N).
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tumors (35). MAP3K8 also promotes the production of TNF-alpha

and IL-2 during T-lymphocyte activation, which also links the

MAPK signaling pathway to immune cell infiltration (36–38).

STAT1 can be activated by EGF phosphorylation, thus forming a

dimer that is transferred to the nucleus to act as a transcriptional

activator. Most evidence suggests that STAT1 plays an oncogenic

role in tumor cells. However, results from several experimental and

clinical studies suggest that STAT1 also functions as a tumor

promoter under specific conditions. In ccRCC, STAT1 activation

of JAK2/STAT1/IRF-1 signaling drives the expression of PD-L1 in

ccRCC (39). TRAF2 interaction with TNF receptors is required for

TNF-alpha-mediated JNK MAP kinase signaling and NF-kappaB

activation (40). In addition, TRAF2 regulates inflammatory

signaling, thereby affecting the immune response to tumors (41,

42). MAP2K6 is one of the important mitogen-activated protein
Frontiers in Oncology 10
(MAP) kinase kinases in the MAPK signaling pathway. This protein

is involved in cell growth or apoptosis by activating p38 MAP

kinase in response to immune stimulation or stress. Our study

confirmed the differential expression of MAP2K6 in KIRC, which

suggests its possible involvement in the biological processes of

ccRCC. Recent study confirms MAP2K6 as senescence-related

genes in ccRCC may influence the efficacy of anti-PD-1 therapy

and Sunitinib/Everolimus treatment (43). Related studies have

confirmed that activation of the Ras-MAPK pathway promotes

immune evasion of tumor cells, proving that many associated

molecules of the MAPK signaling pathway are significantly

correlated with immune cell infiltration. MAPK pathway-

targeting inhibitors combined with immune drugs can enhance

anti-tumor immunity (44). Meanwhile, this study confirmed the

alteration of multiple immune cell infiltrations including CD4_T,
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FIGURE 7

GSEA in KIRC. (A) MAP2K6. (B) MAP3K5. (C) MAP3K8. (D) MAP3K9. (E) MAP3K12. (F) MAPK3. (G) NFKB1. (H) RAC1. (I) RPS6KA2. (J) RPS6KA4.
(K) RPS6KA5. (L) SHC1. (M) STAT1. (N) TRAF2.
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CD4_naive, and CD8_naive in the immune microenvironment of

KIRC. The above studies on the regulation of MAPK signaling-

related genes in different tumors for inflammatory cell infiltration

and for PD-1/PD-L1 expression seem to explain the changes in

immune cell infiltration in ccRCC.

We divided KIRC patients into high-risk and low-risk groups

based on this risk model, and KIRC patients in the high-risk group

had a lower survival rate than KIRC patients in the low-risk group.

The ROC curve calculation results proved the high accuracy of the

risk model. We validated the relationship between the risk model and

the clinical characteristics of the patients and the results suggest that

prognostic model genes influence the tumor volume (T), lymph node

(N) distant metastasis (M) of KIRC patients. After identifying age,

stage, grading and risk score as the four independent risk factors for

KIRC, we drew a nomogram based on these independent risk factors.

We could judge the 5-, 7- or 10-year survival of the KIRC patients

based on this new nomogram. Numerous studies have investigated

the role of MAPK pathway-related genes in different cancers.

In summary, the pathogenesis of KIRC and various cancers are

related to the signal changes of the MAPK signaling pathway. The

development of drugs acting on this pathway may provide new
Frontiers in Oncology 11
ideas for treating KIRC and cancer. Research in this field has

confirmed that abnormal activation of MAPK is related to tumor

cell invasion, migration, proliferation, apoptosis and degradation of

extracellular matrix (45). A deeper understanding of the mechanism

of action of the MAPK pathway on cancer, especially KIRC, may

become the direction of future basic research.
5 Conclusions

In our research, we used 14 genes related to the MAPK signaling

pathway to establish a new KIRC predictive risk model, and the role

of the ROC curve is to predict the accuracy of the model (5-year

AUC value of 0.744, 10-year AUC value of 0.825), suggesting that

the model has good predictive performance. However, it must be

acknowledged that the specific mechanism of how these 14 genes

function in KIRC is not yet clear. In addition, this prognostic risk

model needs to be further validated using large-scale multi-center

clinical data. However, we firmly believe our study can provide

valuable consultation for future scientific diagnosis and clinical

treatment of KIRC.
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FIGURE 8

Validation of mRNA differential expression of risk model genes between KIRC pathological tissues and normal control tissues based on qRT-PCR.
(A) MAP2K6. (B) MAP3K5. (C) MAP3K8. (D) MAP3K9. (E) MAP3K12. (F) MAPK3. (G) NFKB1. (H) RAC1. (I) RPS6KA2. (J) RPS6KA4. (K) RPS6KA5. (L) SHC1.
(M) STAT1. (N) TRAF2. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns means no significance.
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RTKs receptor tyrosine kinases

GEFs GTP/GDP exchange factors

CTRP The Cancer Therapeutics Response Portal

GTEx Genotype-Tissue Expression

PPI Protein-protein interaction

ERK extracellular regulated protein kinases

TGFB1 transforming growth factor-beta 1

MKNK1 MAPK interacting serine/threonine kinase 1

MAP3K10 mitogen-activated protein kinase kinase kinase 10

STAT1 signal transducer and activator of transcription 1

MAP3K8 mitogen-activated protein kinase kinase kinase 8

RPS6KB2 ribosomal protein S6 kinase B2

SHC1 SHC adaptor protein 1

TGFB3 transforming growth factor-beta 3

MAP3K9 mitogen-activated protein kinase kinase kinase 9

MAP4K1 mitogen-activated protein kinase kinase kinase kinase 1

TRAF2 TNF receptor associated factor 2

RAC1 Rac family small GTPase 1)

MAP3K12 mitogen-activated protein kinase kinase kinase 12

IKBKB inhibitor of nuclear factor kappa B kinase subunit beta

MAP2K2 mitogen-activated protein kinase kinase 2

RPS6KA4 ribosomal protein S6 kinase A4

MAPK3 mitogen-activated protein kinase 3

MAPK9 mitogen-activated protein kinase 9

MAP3K1 mitogen-activated protein kinase kinase 1

MAPK8 mitogen-activated protein kinase 8

MAPK1 mitogen-activated protein kinase 1

MAP2K6 mitogen-activated protein kinase kinase 6

MAPK13 mitogen-activated protein kinase 13

MAP3K5 mitogen-activated protein kinase kinase 5

MAP3K13 mitogen-activated protein kinase kinase kinase 13

MAP2K5 mitogen-activated protein kinase kinase 5

CHUK component of inhibitor of nuclear factor kappa B kinase complex

RAPGEF2 Rap guanine nucleotide exchange factor 2

RPS6KA2 ribosomal protein S6 kinase A2

RPS6KA5 ribosomal protein S6 kinase A5

MAP2K4 mitogen-activated protein kinase kinase 4

MAP4K1 mitogen-activated protein kinase kinase kinase kinase 1

RPS6KA3 ribosomal protein S6 kinase A3
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MAPK5 mitogen-activated protein kinase 5

MAPK7 mitogen-activated protein kinase 7

MAPK10 mitogen-activated protein kinase 10

ELK1 ETS transcription factor ELK1

CREB1 cAMP responsive element binding protein 1

NFKBIA NFKB inhibitor alpha

ATF2 activating transcription factor 2

NFKB1 nuclear factor kappa B subunit 1

ACC Adrenocortical carcinoma

BRCA Breast invasive carcinoma

BLCA Bladder Urothelial Carcinoma

KICH Kidney Chromophobe

KIRP Kidney renal papillary cell carcinoma
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