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Gastrointestinal (GI) cancers that include all cancers of the digestive tract organs

are generally associated with obesity, lack of exercising, smoking, poor diet, and

heavy alcohol consumption. Treatment of GI cancers typically involves surgery

followed by chemotherapy and/or radiation. Unfortunately, intrinsic or acquired

resistance to these therapies underscore the need for more effective targeted

therapies that have been proven in other malignancies. The aggressive features

of GI cancers share distinct signaling pathways that are connected to each other

by the overexpression and activation of AXL receptor tyrosine kinase. Several

preclinical and clinical studies involving anti-AXL antibodies and small molecule

AXL kinase inhibitors to test their efficacy in solid tumors, including GI cancers,

have been recently carried out. Therefore, AXL may be a promising therapeutic

target for overcoming the shortcomings of standard therapies in GI cancers.
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Introduction

Increasing cancer risk factors linked to emerging economy and globalization have

aggravated the global cancer burden with an expected 47% increase of incidence in 2040

relative to 2020 (1). The rising disease burden caused by the malignancies of the digestive

system has become one of the major public health challenges. Particularly, colorectal (10%)

stomach (5.6%), esophageal (3.1%), liver (8.3%), and pancreatic (4.7%) cancers are among

the most diagnosed malignancies after female breast and lung cancers (11.7% and 11.4%

accordingly) (1, 2). Therefore, there is a critical need for identifying reliable molecular

markers and targets for gastrointestinal (GI) oncotherapies. For the last decade, AXL

receptor tyrosine kinase, also known as UFO, attracted a substantial interest in cancer

biology because of the progressively accumulated data demonstrating the ability of

this protein to regulate cell survival, proliferation, and motility in normal and cancer

tissues (3–8). The selective overexpression of AXL in GI malignancies is associated with a
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poor clinical prognosis (9–11), proliferation (10, 12, 13), metastasis

(14), immunosuppressive tumor microenvironment (3, 15, 16), and

drug resistance (17, 18). This review provides a comprehensive

update on the current research initiatives highlighting AXL as a

promising therapeutic target and a novel diagnostic and prognostic

marker of GI cancers. The research findings from preclinical and

clinical studies on the evaluation of drugs in targeting the AXL-

mediated signaling pathways in GI cancers are reviewed.
AXL function and signaling

AXL protein (100 - 140 kDa) belongs to the receptor tyrosine

kinase (RTK) subfamily of transmembrane receptors TAM, which

comprises TYRO3 (19), AXL (20), and MER (21–23). Initially, AXL

was identified as a transforming gene in patients with chronic

myelogenous leukemia (24). Later, the names AXL (from the Greek

“anexelekto”, meaning “uncontrolled”) and UFO were given

concurrently to the same cDNA encoding an RTK overexpressed

in human myeloid leukemia cells (25, 26) and NIH3T3 mouse

fibroblasts transfected with DNA from a patient with a chronic

myeloproliferative disorder (20, 27). TAM family of RTKs is

characterized by a combination of two immunoglobin-like

domains and fibronectin type III domains in the extracellular (N-

terminal) region. AXL also has an intracellular (C-terminal)

tyrosine kinase domain, which plays an essential role in signal

transduction (28). The vitamin k-dependent growth arrest-specific

protein 6 (Gas6) (29) serves as a high affinity ligand for AXL (21, 30,

31). Gas6 binding to AXL primes the homodimerization of receptor

with another Gas6/AXL ligand-receptor complex and

autophosphorylation of three tyrosine residues (32). This set of

reactions initiates the recruitment of p85 subunit of

phosphoinositide-3 kinase (PI3K), phospholipase C-g (PLCg), or
growth factor receptor–bound protein 2 (Grb2) and activate the

relevant downstream signaling pathways involved in survival,

proliferation, or migration (33, 34). Notably, the activation of
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AXL is negatively regulated by the binding of its soluble form

sAXL to Gas6 (34, 35). Important physiological functions of the

Gas6/AXL pathway include cell migration and survival (36),

adhesion (37), and suppression of apoptosis (38) in inflammatory,

endothelial, and smooth muscle cells. Additionally, the Gas6/AXL

signaling plays an important role in the activation of macrophages

and phagocytosis (39).
AXL expression in GI cancers (esophagus,
stomach, pancreas, liver and colon)

Since genetic modifications ofAXL gene, such as rearrangement,

amplification, or mutations, are relatively rare (40, 41), the AXL

functions in GI cancers are likely determined by the level of its

expression. High expression of AXL has been reported in a variety of

primary GI tumors and metastases and linked to poor clinical

prognosis (Table 1) (11, 42–45). Invasive esophageal

adenocarcinoma (EAC) frequently progresses from a premalignant

condition, gastroesophageal reflux disease-associated Barrett’s

esophagus (BE). AXL expression is linked to adverse prognosis in

EAC (11) as well as poor prognosis and distant metastases in

esophageal squamous cell carcinoma (43). Particularly, serial

analysis of gene expression (SAGE) indicated a significant

upregulation of AXL “tags” in metachronous mucosal biopsy

samples obtained from a patient progressed from BE to EAC (11).

Moreover, both univariate and multivariate analyses of 92 surgically

resected sections of EAC demonstrated a positive correlation of AXL

overexpression with decreased median survival of the patients (11).

Elevated expression of AXL and p-AXL (Y779) proteins was

detected by immunoblot analysis in human EAC cell lines SK-GT-

4, FLO-1, and JH-EsoAd1 as compared to normal esophageal

squamous epithelial cell lines (18). Immunohistochemical (IHC)

staining with anti-AXL specific antibody of tissue microarrays

indicated AXL overexpression in 51.8% of EAC tumors relative to

normal esophageal squamous tissue specimens (18). The results of a
TABLE 1 Overview of AXL overexpression in GI neoplasms.

GI organ/type of cancer AXL overexpression or gene amplification References

Barrett’s esophagus/low grade dysplasia/high grade dysplasia/esophageal adenocarcinoma
(EAC)

Protein (IHC), DNA (SAGE) (11)

EAC Protein (IHC) (46, 47)

Esophageal squamous cell carcinoma (ESCC) Protein (IHC) (43)

Hepatocellular carcinoma (HCC) Protein (IHC)
Protein (WB and IHC)
sAXL protein in plasma (ELISA)
sAXL protein in plasma (ELISA)

(48)
(44)
(49)
(48)

Pancreatic ductal adenocarcinoma (PDA) Protein (IHC)
Protein (IHC)

(13)
(50)

Gastric cancer mRNA (qRT-PCR), protein (IHC) (45)

Colorectal carcinoma (CRC) mRNA (Array), protein (IHC)
mRNA (NGS), protein (IHC)
DNA (FISH), protein (IHC)

(9)
(42)
(51)
IHC, immunohistochemistry; WB, western blotting; ELISA, enzyme-linked immunosorbent assay; qRT-PCR, quantitative real-time PCR; NGS, next generation sequencing; FISH, fluorescence in
situ hybridization; sAXL, soluble AXL protein; SAGE, serial analysis of gene expression.
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further IHC analysis performed on tissue microarrays including 53

human EAC and 11 normal esophageal tissues revealed that AXL as

well as another potentially prooncogenic molecule non-receptor

tyrosine kinase c-ABL were overexpressed in 55% and 66% of EAC

samples, respectively, as compared to normal tissue specimens (46).

Moreover, co-overexpression of AXL and c-ABL was detected in

49% of EAC samples (46).

High mRNA and protein expression of Gas6 and AXL has been

reported in human gastric cancer cell lines and tissues (45). Notably,

Gas6 expression was significantly correlated with lymph node

metastases (45).

The immunohistochemical evaluation of expression of AXL

protein in a panel of 99 archival pancreatic cancers revealed

AXL expression in 54 out of 99 specimens (55%); and positive

AXL expression in pancreatic cancer was significantly associated

with lymph node metastases and a shorter median survival (12 as

opposed to 18 months) as compared to AXL-negative tumor

samples (50). Frequent overexpression of both molecules, Gas6

and AXL, has been detected in Pancreatic Ductal Adenocarcinoma

(PDA) cells and was linked to a poor prognosis in patients with

stage II PDA (13).

Additionally, high AXL mRNA and protein expression levels

were associated with poor overall survival in early-stage colorectal

cancer (CRC) tissues (42). Particularly, the statistical analysis of

CRC microarray dataset, available through the Gene Expression

Omnibus (GEO) (52), showed a significant association between

high AXL mRNA expression and decreased disease-specific survival

in a cohort of 177 patients diagnosed with an early-stage (stage II/

III) CRC (42). Furthermore, AXL overexpression in colorectal

adenocarcinoma as compared to normal colon tissues was

demonstrated by IHC in tissue microarray resection specimens of

primary tumors collected from 509 patients with colorectal

adenocarcinoma (stage I-IV) at the National University Hospital

of Singapore between 1990 and 1999 (42). Likewise, the

overexpression of AXL and GAS6 was shown by IHC in 76,7%

and 73.5%, respectively, in 223 human CRC specimens, while the

amplification of AXL gene was detected by fluorescence in situ

hybridization (FISH) in 8 out of 146 cases (5,4%) of CRC samples

(51). The increased expression of AXL and GAS6 proteins was

correlated with less differentiated histological grading, tumor stage

and lymph nodes involvement (51). Given that majority of patients

with high-risk stage II/III CRC tend to relapse (53) and progress to

the advanced stages, AXL could be used as a prognostic biomarker

for the distal part of GI tract.

While all known methods to evaluate AXL expression include

tissue extraction, in some forms of hepatic neoplasm, it is possible

to assess clinical outcome by evaluating plasma levels of soluble

AXL (sAXL). It is an 85 kDa N-terminal product of extracellular

ADAM metalloproteases-dependent proteolytic cleavage of AXL,

which has GAS6 ligand-binding abilities and serving as a decoy

receptor (26, 54, 55). This circulating sAXL has a promising

potential as a specific serum marker of cirrhosis and early stages

of hepatocellular carcinoma (HCC) (49). It has been documented

that serum concentrations of sAXL were elevated at early (82.57 ng/

mL) and later stages (114.50 ng/mL) of HCC in comparison with

healthy controls (40.15 ng/mL) (49). Notably, sAXL levels were not
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altered in patients with chronic liver disease, liver adenomas and

cholangiocarcinomas (49). These data suggest that elevated

concentration of sAXL is a valuable biomarker of liver neoplastic

transformation that could be noninvasively detected in plasma. In

another study analyzing the diagnostic potential of this molecule,

sAXL levels were evaluated in 311 HCC and 237 control serum

samples collected from clinical centers in Europe and China (56).

Average concentrations of sAXL were significantly higher in the

serum of HCC patients (18.575 ng/mL) as compared to healthy

(13.388 ng/mL) or cirrhotic (12.169 ng/mL) controls (56). Levels of

sAxl remained unchanged in the serum of individuals diagnosed

with primary ovarian, colorectal and breast carcinomas, or

secondary colon-derived hepatic malignancies. Consequently, the

soluble form of AXL was suggested as highly specific and accurate

diagnostic marker for alpha-fetoprotein-negative HCC patients

(56). Additionally, sAXL was proposed as a biomarker for early

diagnosis of PADC based on the studies Martinez-Bosch, N. et al,

2022, which demonstrated increased sAXL levels in plasma of

PDAC group as compared to healthy controls or chronic

pancreatitis (CP) patients. Immunohistochemical analysis

revealed higher protein expression in tissues samples obtained

from PDAC and precancerous lesions as compared to CP or

healthy control specimens. The immunohistochemistry data was

confirmed by RNA expression analysis from TCGA database. It was

noted that patients with high levels of AXL have a lower overall

survival. Importantly, ROC statistical analysis of the plasma levels

of sAXL, GAS6, or CA19-9 (a marker of pancreatic cancer) in two

studied cohorts revealed that sAXL outperformed CA19-9 for

discriminating between CP and PDAC (57). The data showing

increased AXL expression in GI cancer tissues are summarized

in Table 1.

The mechanisms leading to AXL overexpression are tissue-

specific and may vary depending on local tissue microenvironment.

Irrespective of AXL localization, the alteration of patterns of this

molecule expression could be considered a hallmark of GI

carcinogenesis. The specific roles of AXL in the alteration of basic

cell functions in GI cancers are discussed below.
Proliferation and survival

Initial steps in carcinogenesis are associated with uncontrolled

proliferation and survival of transformed or cancer stem cells (58).

Gas6-AXL signaling pathway has been shown to enhance cell

survival and suppress apoptosis in gastric cancer cells through

activation of the AKT pathway (45). In another study, YAP-

dependent cell survival and proliferation required AXL expression

and activation of ERK1/2 signaling cascade in human HCC (59).

Additionally, the proliferation of a metastatic HCC in vitro and in

vivo was markedly suppressed by tunicamycin-induced de-

glycosylation and downregulation of AXL (60).

In pancreatic ductal adenocarcinoma, the upregulation of AXL

has been associated with a poor clinical prognosis and increased cell

proliferation (12, 13), while stable knockdown of AXL resulted in a

significant reduction in cell viability and anchorage-independent

growth in pancreatic cancer cells (50). In a preclinical study,
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treatment with S49076, an ATP-competitive tyrosine kinase

inhibitor of MET, AXL, and FGFR1, significantly inhibited colony

formation in soft agar by HCC cells overexpressing AXL and

FGFR2 (61). The lack of sensitivity to S49076 in the same cell

lines cultured in monolayer (61) suggests a key role of AXL in

extracellular matrix anchorage-independent growth and survival.

Indeed, the results of currently available preclinical and clinical

studies suggest that the primary roles of AXL and other TAM RTKs

may be mostly related to the mechanisms of survival, motility, and

drug resistance rather than functioning as oncogenic drivers

(62, 63).
Epithelial–mesenchymal transition
and metastasis

The epithelial–mesenchymal transition (EMT) is a process by

which epithelial cells undergo morphological and functional

changes towards a mesenchymal phenotype (64). During this

process of trans-differentiation, epithelial cells lose their polarity

as well as cell-cell adhesion properties and acquire characteristics of

mesenchymal stem cells (65). Cancer cells detach from the primary

tumor location, migrate through the extracellular matrix, and

intravasate into blood vessels, promoting metastases (66, 67).

Importantly, residual metastatic disease from the primary tumor

remains the major reason of recurrence and greater than 90% of

cancer-related death (68). In cancers of the digestive system, AXL

overexpression in tumors and metastases indicates adverse clinical

prognosis in patients (9, 10, 42–44, 51, 69).

EMT associated with intrahepatic metastasis is a typical feature

of HCC (48). Several studies in HCC have demonstrated elevated

levels of AXL transcript and protein in association with EMT (48,

56, 59). For example, AXL mRNA overexpression and correlation

with EMT has been documented in 28 HCC cell lines and 373 RNA-

seq tissue datasets in comparison with cirrhotic and normal liver

samples (70). A crucial role of AXL in transforming growth factor

beta (TGF-b)-dependent HCC progression was proposed based on

the studies revealing upregulation and activation of AXL in EMT-

altered hepatoma cells (48). At the same time, AXL activation by

Gas-6 increased TGF-b1 mRNA, while AXL knockdown

dramatically reduced resistance to TGF-b-dependent growth

inhibition by abrogating invasion and trans-endothelial migration

of mesenchymal HCC cells (48). Notably, AXL overexpression

triggered metastatic colonization of epithelial hepatoma cells in

vivo. Immunohistochemical analysis of AXL expression in tumor

tissues collected from 133 HCC patients demonstrated a correlation

of increased AXL expression with advanced tumor stages,

augmented vessel invasion of HCC cells, elevated risk of cancer

relapse after liver transplantation, and a poor clinical prognosis

(48). One of the most severe metastatic complications in HCC is

portal vein tumor thrombus (PVTT). It has been shown that co-

implantation of human umbilical vein endothelial cells (HUVECs)

overexpressing AXL with HCC cells in xenograft nude mice and

patient-derived xenograft (PDX) nude mice substantially enhanced

tumor growth, hepatic metastasis, and vessel metastasis of HCC
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(71). These effects were suppressed by an AXL inhibitor R428, also

known as BGB324 or bemcentinib (71).

Several studies suggested AXL as a potential therapeutic target in

pancreatic cancer (13, 50, 72, 73). Thus, the immunohistochemical

assessment of 99 pancreatic cancer specimens revealed a higher

number of lymph node metastases and a shorter median survival

of patients with AXL-positive tumors (12 versus 18 months) in

contrast to the AXL-negative group (50). Stable knockdown of

endogenous AXL in pancreatic cancer cells resulted in a significant

decrease of mRNA levels of matrix metalloproteinase (MMP)-9 and

EMT-associated transcription factors twist, snail, and slug (50).

Moreover, AXL knockdown cells exhibited reduction in cell

viability, migration, and invasion (50). The role of AXL signaling in

progression and metastasis of pancreatic cancer was confirmed in a

study using low-dose warfarin, a vitamin K “antagonist” to inhibit

Gas6-dependent AXL activation (72). Treatment with low-dose

warfarin reduced AXL-mediated human pancreatic cancer cells

migration, invasiveness, and proliferation, while increasing

apoptosis and sensitivity to chemotherapy. Additionally, warfarin

decreased primary tumor growth and suppressed metastases in a

murine model of pancreatic ductal adenocarcinoma (PDAC) (72).

On a molecular level, low-dose warfarin treatment blocked TGFb-
induced expression of AXL, and markedly reduced expression levels

of mesenchymal markers, Zeb1 and nuclear b-catenin in Panc-1

pancreatic epithelioid carcinoma cell line. Consistently, warfarin

inhibited expression of vimentin and increased levels of E-cadherin

in AXL-positive Panc-1 xenografts (72).

AXL signaling axis is also implicated in EMT of GI cancers. For

instance, high levels of Gas6 and AXL mRNA and proteins were

revealed in human gastric cancer cell lines and tissue samples, and

Gas6 expression was significantly correlated with metastases to

lymph nodes (45). The in vitro experiments using recombinant

Gas6 and a decoy-receptor of AXL showed that activation of Gas6-

AXL signaling axis leads to the inhibition of apoptosis and

exacerbation of AKT-dependent survival and invasion of gastric

cancer cells (45). In another study, inhibition of AXL-NF-kB
signaling pathway by ursolic acid markedly inhibited cell

migration and reduced the expression of mesenchymal markers

and EMT-related transcription factors in gastric cancer cells and

xenografts (74). In EAC cells, genetic silencing of AXL attenuated

invasion, migration, and in vivo engraftment. Furthermore,

pharmacological inhibition of AXL with small molecule agent

R428 has shown similar functional effects in EAC cells (11). Our

studies in EAC cell lines demonstrated that increased expression of

AXL facilitates peripheral distribution of lysosomes leading to

activation of cell invasion signaling cascade through the

regulation of cathepsin B secretion (75). Besides, we found that

these processes were caused by extracellular acidification because of

AXL-induced secretion of lactate through AKT-NF-kB–dependent
synthesis of lactate transporter MCT-1 (75).

Recently, dual inhibition of TGFb and AXL signaling pathways

was proposed as a novel therapy for human colorectal

adenocarcinoma with mesenchymal phenotype (CMS4), a very

aggressive CRC characterized by resistance to standard

chemotherapies, low survival rate and high risk of recurrence (76,
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77). In fact, overexpression of AXL and TGFb receptors in CMS4

tumors correlated with higher risk of post-surgical relapse in stage

II/III CRC and decreased survival (76). In CRC cell lines, treatment

with the TGFb inhibitor, galunisertib, and the AXL inhibitor, R428,

markedly reduced colony formation and migration of cancer cells,

and demonstrated potent anti-tumor activity in 3D spheroid

cultures obtained from individuals with advanced CRC (76).

Additionally, multitarget tyrosine kinase inhibitor (TKI)

cabozantinib and AXL/c-MET selective inhibitor R428 both

decreased AXL phosphorylation and TGFb-induced E-cadherin

expression (marker of EMT), cell viability, migration, and tumor

growth in esophageal squamous cell carcinoma (ESCC) cells and

xenograft models (78).

Interestingly, AXL expression was upregulated by Long non-

coding RNA (lncRNA) CALIC in complex with RNA-binding

protein hnRNP-L in colon cancer cells, while knockdown of

either CALIC or AXL inhibited metastases in vivo (14).

Application of AXL expression as a marker of poor prognosis and

a crucial mediator of cell invasion was proposed for early-stage

CRC, specifically in the adjuvant disease in the cases of unsuccessful

EGFR/VEGF–targeted therapies (42).
AXL in angiogenesis

Angiogenesis is the formation of new blood vessels that often

promote tumor growth and progression. AXL regulates many

angiogenic activities such as proliferation and migration of

vascular smooth muscle cells (VSMCs) and endothelial cells

(ECs) (36), tube formation in vitro and angiogenesis in vivo (3).

Vascular endothelial growth factor (VEGF) is secreted in high levels

by most types of cancer cells (79). Proliferation and migration of

VSMC are necessary for tumor angiogenesis (80). In fact, VSMCs

express Gas6, and exogenous Gas6 promotes proliferation and

migration of VSMCs (36). AXL also is expressed by tumor

stromal cells, including ECs (7, 81). Knockdown of AXL or Gas6

expression markedly inhibited migration of HUVECs, while AXL

overexpression enhanced cell growth and tubes formation (3).

Notably, overexpression of AXL expression was observed in

HCC-tumor-derived endothelial cells (TECs), although not in the

tumor cells of HCC patients with portal vein tumor thrombus

(PVTT) type of metastases. These data were associated with poor

overall survival and disease-free survival of HCC patients with

PVTT (71). Moreover, elevated expression of AXL was associated

with the expression of a marker of endothelial cells CD 31 in vitro

and in vivo (71).

Interestingly, Axl-null mice exhibited an impaired

angiogenesis and vascular permeability in response to VEGF-A

treatment (82). Therefore, it has been proposed that AXL could

be one of the essential mediators of VEGF-A-dependent

activation of pro-angiogenic PI3K/AKT signaling pathway

(82). Accordingly, using AXL inhibitors in addition to anti-

VEGF therapeutics could be an effective strategy targeting

neovascularization in GI cancers.
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AXL in the immune response to tumors

Inflammation is a one of the hallmarks of carcinogenesis, and it

has been proven that chronic inflammation caused by autoimmune

gastritis and Helicobacter pylori infection increases a risk of

developing gastric cancer (83). In fact, more than 90% of gastric

adenocarcinomas originate from epithelial cells of gastric mucosa

because of chronic inflammation (83). Tumor intrinsic and

immunosuppressive mechanisms contribute to conventional

chemotherapy resistance (84). TAM family of RTKs, including

AXL, are key regulators of immune response (85). Following their

activation by Gas6 ligand – activator of all TAM family members,

and Protein S ligand -activator of both MER and TYRO3, these

receptors promote the resolution of inflammation by suppressing

activation of cells of the innate immune system (86). Remarkably,

studies on Tyro3−/−Axl−/−Mer−/− triple mutant mice (TAM TKOs)

have demonstrated that loss of function of the three receptors,

Tyro3, Axl, andMer, dysregulates the immune system, presented by

a severe lymphoproliferative disorder accompanied by a broad-

spectrum autoimmune disease (39, 87). In a cancer setting, TAM

receptors regulate the initiation and progression of tumorigenesis

and, simultaneously, the anti-tumor functions of immune cells (85).

Tumor progression is considerably affected by the tumor

microenvironment (TME), comprised of all host cells and tissue

components surrounding the cancer cells (88). On the other hand,

programmed cell death through apoptosis maintains tissue

homeostasis and prevents oncogenic transformation. Clearance of

cell debris is the last stage of apoptosis. Uncleared products of this

process might induce necrosis, thereby promoting inflammation

and autoimmunity (89). Externalized phosphatidylserine (PS) acts

as “eat-me” signal on apoptotic cells, stressed cells, exosomes, and

liposomes. Importantly, endogenous ligands Gas6 and Protein S

link externalized PS molecules with TAMs, activating those RTKs

and promoting clearance of apoptotic cells (90, 91).

Studies on animal models have shown that TAM family

receptors are involved in the clearance of apoptotic cells by

macrophages and dendritic cells (DC) (92, 93). In fact, treatment

with dextran sulfate sodium (DSS) salt blocked clearance of

apoptotic neutrophils in the lamina propria of large intestine and

promoted colitis in Axl−/−Mer−/− double mutant mice (94). The

Authors demonstrated that the observed inflammatory phenotype

is associated with the knockout of Axl and Mer genes in

radioresistant population of macrophages residing specifically in

the intestinal tissues, while loss of Axl and Mer in the radiosensitive

bone marrow–derived hematopoietic cells was not linked to

exacerbated colitis (94). As such, AXL and MERTK inhibitors

might induce adverse effects at the systemic level, and

physiological effects of the alteration of AXL and MERTK

signaling could be highly tissue-specific and depend on

tumor microenvironment.

Tumor-associated macrophages are abundant in the TME and

contribute to immunosuppression and tumor progression (92). In

human and murine macrophage cultures, AXL activation has been

shown to mediate Interferon a induction of Twist, a transcriptional
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repressor of inflammatory cytokine tumor necrosis factor a (TNFa)
(95). Altering AXL expression and downstream activation of Twist

highlights a promising approach to control inflammation, which is

the hallmark of oncogenesis. In several studies, activation of TAM

receptors not only decreased severe inflammatory responses (96),

but also induced efferocytosis and macrophage polarization towards

a pro-tumor M2-like phenotype, accompanied by the increased

production of immunosuppressive cytokines (92, 97–99). AXL

induced TANK binding kinase 1 (TBK1)-NF-kB signaling

pathway and innate immune suppression in the TME in

pancreatic cancer (73), while inhibition of AXL with small

molecule R428 enhanced immune stimulatory microenvironment

(73). Immune checkpoint blockade (PD-1) is a novel popular

approach in cancer immunotherapies. Unfortunately, some of the

tumors are resistant to PD-1 inhibitors and considered to be

immunologically “cold,” because of the lack of tumor antigen-

specific primed cytotoxic T cells (99). It has been shown that

Sitravatinib, a broad-spectrum tyrosine kinase inhibitor (TKI)

targeting MET, TAM, and members of VEGFR, platelet-derived

growth factor receptor (PDGFR), and Eph families is highly

effective in various cancer models, including CT1B-A5, an

isogenic pancreatic cancer cell line, that could be partially

attributed to altering the TME and restoring the efficacy of

immune checkpoint blockade (PD-1) (99). Therefore, AXL is one

of the major drivers of immune suppression in the TME. Although

AXL-mediated pathway is an attractive candidate for inhibition in

GI cancers to reverse the immunosuppressive TME, further

investigations are needed as this therapeutic approach may cause

adverse systemic effects like inflammation and autoimmunity.
AXL in resistance to anti-cancer therapies

One of the major problems of anti-cancer therapies is that many

cancers are initially responsive to treatment, but ultimately develop

drug resistance thatmay lead to an unfavorable clinical outcome (100).

AXL overexpression in GI cancers has been associated with resistance

to both targeted and non-targeted anti-cancer therapies. Particularly,

EAC is characterized by resistance to chemotherapy and poor

prognosis (18). Notably, AXL overexpression has been shown to

mediate resistance to epirubicin by upregulation of c-MYC

transcription via AKT-b-catenin signaling pathway in EAC cells

(17). Additionally, AXL has been proposed as a promising

therapeutic target to sensitize GI cancers to DNA-damaging

chemotherapy drugs. In fact, genetic silencing of endogenous AXL

abrogates cisplatin resistance through inhibition of the pro-apoptotic

c-ABL/p73b signaling pathway in human EAC cells (18). AXL

expression also promotes resistance to TNF-related apoptosis-

inducing ligand (TRAIL) mediated by death receptor 5 (DR5)

activity in EAC cells (47). Specifically, AXL and DR5 protein

interaction blocks the recruitment of caspase-8 to the death-inducing

signaling complex (DISC), resulting in enhanced cell survival, and

decreased apoptosis. Sensitivity to TRAIL was restored in EAC cells

after genetic silencing of endogenous AXL (47).
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Resistance to the chemotherapy drug gemcitabine in PDAC was

attributed to the function of YWHAZ/14-3-3 zeta/delta (14-3-3z)
protein, which was isolated from monocyte-derived macrophage

cultures (101). In mice bearing orthotopic PDAC xenografts, the

antitumor activity of gemcitabine was significantly enhanced by

pharmacological inhibition of AXL, which is a binding protein

partner of 14-3-3z (48, 101). Therefore, it was suggested that

apoptosis induced by chemotherapy might in turn activate a

survival pathway through 14-3-3z/AXL and AKT phosphorylation

cascade (101). Treatment of PDAC cells with BGB324, a selective

small molecule inhibitor of AXL, promotes epithelial differentiation,

stimulatory immune microenvironment, and high expression of

nucleoside transporters, enhancing the response to gemcitabine

(73). Of note, BGB324 treatment also improved survival and

gemcitabine sensitivity in mice with advanced PDAC (73).

Based on a large body of evidence (9, 102, 103), cancer

progression is frequently associated with acquired resistance to

the inhibitors of EGF receptor (EGFR) mediated by the enhanced

AXL expression as a bypass mechanism. For instance, increased

AXL mRNA levels were found in 5 out of 7 CRC patients following

anti-EGFR therapy (9). Moreover, resistance to anti-EGFR drugs

accompanied by high AXL expression was demonstrated in three-

dimensional CRC cell cultures derived from an AXL-positive, RAS

wild-type patient after anti-EGFR treatment (9). Furthermore, AXL

overexpression in CRC cell lines led to the resistance to EGFR

inhibition. The role of AXL in EGFR inhibition resistance was

established by analysis of AXL expression in tumor xenograft mice

and in CRC patients after anti-EGFR treatment (9). Overexpression

and activation of AXL upregulates PI3K/mammalian target of

rapamycin (mTOR) and MAPK signaling pathways, enhancing

cell survival, cell growth, invasion, and migration (104).

Particularly, AXL mediates resistance to PI3Ka inhibition

through activation of EGFR/PKC/mTOR cascade in head and

neck (H&N) carcinomas as well in ESCC (105). The study

suggested simultaneous EGFR and PI3Ka inhibition as a

prospective therapeutic approach to overcome AXL-dependent

resistance to PI3Ka inhibitors in patients with esophageal and

H&N squamous cell carcinomas (105).

AXL plays a major role in promoting resistance to several

common chemotherapeutics and targeted anti-cancer therapies. For

example, treatment with AXL inhibitor S49076 markedly decreased

tumor resistance to bevacizumab, a VEGF/VEGFR blocker, in a colon

carcinoma xenograft model and attenuated colony formation of

FGFR1/2- and AXL-positive hepatocarcinoma cells (61). In

addition, cabozantinib, a dual inhibitor of MET and AXL, decreased

cell growth in both in vitro and in vivo models of HER2-amplified

gastric cancer with acquired resistance to afatinib, a pan-HER

inhibitor (106). Studies in ESCC cell model have demonstrated a

synergistic effect of combinatory treatment with HER2 inhibitor

lapatinib and AXL inhibitor foretinib (43). Notably, in esophageal

tissue of patients diagnosed with operable primary ESCC, the

cumulative expression of AXL and HER2 was associated with

unfavorable clinical outcome (43). Therefore, drug resistance to

lapatinib could be potentially overcome by the inhibition of AXL.
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In HCC cell lines, AXL inhibition with RNA-interference or R428

compound improved sensitivity to sorafenib associated with increased

phosphorylation level of AXL (70). Elevated level of AXL expression

and its activation have been implicated in the resistance to imatinib in

gastrointestinal stromal tumors (GIST) (107). Since GI cancer

mesenchymal cells exhibit high levels of AXL expression, this RTK

is potentially a promising therapeutic target for overcoming

chemoresistance and improving the efficacy of current

cancer therapies.
Targeting AXL in GI cancers

With the development of personalized medicine and targeted

therapy, including tyrosine kinase inhibitors, GI cancer treatment

continues to progress. Preclinical studies demonstrated that small-

molecule TAM inhibitors, such as R428 (73) and RXDX106 (108),

display anti-cancer activity in GI organs. As AXL has been

associated with various stages of carcinogenesis and the inhibition

of its expression and activity demonstrated promising results, AXL-

specific inhibitors are currently being evaluated in clinical studies.

BGB324 (BerGenBio); also known as R428 (Rigel Pharmaceuticals),

is an oral selective small molecule AXL inhibitor that is currently

being investigated in phase II clinical trials of pancreatic neoplasms

(Table 2). BGB324 enhanced the efficacy of gemcitabine in

preclinical studies in vivo through the stimulation of immune

cellular response, expression of nucleoside transporters and

promotion of epithelial cells differentiation in PDAC (73).

Additionally, BGB324 is currently being tested in clinical trials as

a monotherapy and in combination with chemo-, targeted-, and

immunotherapy in various cancers (acute myeloid leukemia

(AML), NCT02488408; non-small cell lung cancer (NSCLC),

NCT02424617, NCT02922777; melanoma, NCT02872259).

Particularly, combinations with nab-paclitaxel, gemcitabine, or

cisplatin have shown encouraging results of clinical activity in

patients with metastatic pancreatic cancer (NCT03649321).

AVB-500 (AVB-S6-500, Batiraxcept; Aravive, Inc.) is a novel

high affinity Fc-sAXL fusion protein, which acts as an AXL decoy

receptor by binding Gas6 and blocking AXL signaling (109).

Preclinical data demonstrated inhibition of Gas6-induced AXL

and Src phosphorylation, tumor vessel density, tumor growth,

and metastatic burden in renal cell carcinoma (6, 110, 111) and

ovarian cancer (109, 112) in response to treatment with AVB-500.

Compared with chemotherapy alone, AVB-500 in combination

with carboplatin and/or paclitaxel attenuated ovarian cancer cell

survival in vitro and tumor growth in vivo (112). AVB-500 is

currently investigated in Phase I/II clinical trials for patients with

platinum-resistant or recurrent ovarian, fallopian tube, or

peritoneal cancers as a combination therapy (Clinical Trial

Identification #s: NCT03639246, NCT04019288) (Table 2). Also,

a Phase 1b/2 study of AVB-500 safety and efficacy as a monotherapy

or in combination with cabozantinib or nivolumab in patients with

advanced or metastatic clear cell renal cell carcinoma is in progress

(Clinical Trial Identification # NCT04300140). Three other studies

are currently active and recruiting patients for ovarian cancer,

advanced urothelial carcinoma, and pancreatic adenocarcinoma
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to assess AVB-500 efficacy as a combination therapy either with

paclitaxel, or cabozantinib, or nab-paclitaxel/gemcitabine,

correspondingly (Clinical Trial Identification #s: NCT04729608,

NCT04004442, NCT04983407) (113).

A promising approach using a conditionally active biologic (CAB)

AXL-targeted antibody drug conjugate BA3011 CAB-AXL-ADC,

BioAtla, LLC, Table 2, NCT 03425279) alone and in combination

with a PD-1 inhibitor Nivolumab in patients with advanced solid

tumors is currently getting tested in Phase I, and in adult and

adolescent patients with advanced, refractory sarcoma is investigated

in Phase II. BA3011 is a product of fusion of anti-AXL antibodies with

anti-mitotic compound monomethyl auristatin E (MMAE). The

binding of antibody part of BA3011 to AXL initiates intracellular

translocation of antibody-drug conjugate (ADC) complex followed by

the release of MMAE ultimately leading to cancer cell death. Patients

with advanced solid tumors, including NSCLC, prostate cancer, and

pancreatic cancer are currently recruited.

Cabozantinib (Cabometix, XL184, BMS-907351, Cabometyx™,

BMS-907351) is an oral small molecule TKI that targets AXL, c-Met

and VEGFR (Table 2). This inhibitor has been preclinically

investigated in ESCC (78) and liver cancer (114, 115). Currently,

the evaluation of cabozantinib in combination with durvalumab

(anti-programmed cell death protein 1 (PD-L1) inhibitor) in

patients with advanced gastroesophageal adenocarcinoma, gastric

cancer, hepatocellular carcinoma, and colorectal cancer is

undergoing phase I/II open label, multi-cohort trial to determine

safety, tolerability, and efficacy of the treatment (Clinical Trial

Identification #: NCT03539822). The investigators propose

that cabozantinib in combination with checkpoint-based

immunotherapeutics like durvalumab will result in synergistic

effect by altering the TME. Cabozantinib has been clinically

approved for patients with sorafenib-resistant HCC (116)

(Clinical Trial Identification #: NCT01908426). The data from the

randomized phase III CELESTIAL trial revealed a significant

improvement in progression-free survival and overall survival vs.

placebo in a cohort of patients with previously treated advanced

HCC (116). The patients who were not included in CELESTIAL

trial are currently enrolled in another trial evaluating the

therapeutic effect of cabozantinib in the patients with HCC

intolerant to sorafenib treatment or first line treatment different

from sorafenib (Clinical Trial Identification #: NCT04316182,

Phase II). Another trial at stage 2 is ongoing to determine the

outcome of cabozantinib treatment in patients with recurrent HCC

and who had received a liver transplant as a part of a previous

therapy (Clinical Trial Identification #: NCT04204850). Safety and

efficacy of the treatment combination of cabozantinib and

atezolizumab in comparison with the standard care (treatment

with sorafenib) in patients with advanced HCC, who have not

received prior systemic anti-cancer treatment, is being investigated

in Phase III clinical trial (NCT03755791). The clinical benefits of

cabozantinib in a cohort of patients with metastatic disease or

unresectable locally advanced malignancy are being assessed as a

part of MegaMOST clinical study (NCT04116541).

The clinical study of SLC-391 (SignalChem Lifesciences

Corporation), a novel, potent and selective small molecule inhibitor

of AXL, is currently ongoing in Canada, and recruiting patients with
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solid tumors to determine safety and tolerability of the drug

(NCT03990454). Notably, the clinical outcome of SLC-391 in

combination with the anti-PD-1 therapy pembrolizumab

(Keytruda®) will be evaluated in SKYLITE trial, a phase II study

for patients with NSCLC carried by Merck (MSD) and British
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Columbia-based SignalChem Lifesciences. TP-0903 (Sumitomo

Dainippon Pharma Oncology, Inc), a novel oral inhibitor of AXL

kinase that reverses the mesenchymal cancer phenotype, is currently

investigated in Phases 1a/1b clinical trial for advanced solid tumors

(Clinical Trial Identification #: NCT02729298). Commonly used
TABLE 2 Current clinical trials testing AXL-targeted agents in GI cancer patients.

Intervention Primary target Condition Co-treatment/
comparator

Clinical
trial

Identifier

BGB324 Inhibitor of AXL kinase Pancreatic cancer Nab-paclitaxel
Gemcitabine
Cisplatin

Phase 1
Phase 2

NCT03649321

AVB-500 AXL decoy soluble receptor, binds GAS6 Phase 1
Safety and Tolerability

Study

Placebo Phase 1 NCT03401528

AVB-500 AXL decoy soluble receptor, binds GAS6 Pancreatic
Adenocarcinoma

Nab paclitaxel
Gemcitabine

Phase 1
Phase 2

NCT04983407

BA3011 Conditionally active biologic anti-AXL antibody drug
conjugate

Advanced Solid
Tumor (Phase 1)
Solid Tumor

PD-1 inhibitor Phase 1
Phase 2

NCT03425279

Cabozantinib Small molecule inhibitor of multiple receptor tyrosine
kinases including MET, VEGFR 1, 2 and 3, AXL, and
RET

Gastric Cancer
Esophageal
Adenocarcinoma
Hepatocellular
Carcinoma
Colorectal Cancer

Durvalumab
anti-(Programmed cell death
protein 1 (PD-L1) inhibitor
Tremelimumab

Phase 1
Phase 2

NCT03539822

Cabozantinib Hepatocellular
Carcinoma

Placebo Phase 3 NCT01908426

Cabozantinib Hepatocellular
Carcinoma

Phase 2 NCT04316182

Cabozantinib Hepatocellular
Carcinoma
Recurrent Cancer
Liver Transplant

Phase 2 NCT04204850

Cabozantinib Hepatocellular
Carcinoma

Sorafenib
Atezolizumab

Phase 3 NCT03755791

Cabozantinib Malignant Solid
Tumor

Phase 2 NCT04116541

SLC-391 Inhibitor of AXL Solid Tumor Phase 1 NCT03990454

TP-0903 Inhibitor of AXL Advanced Solid
Tumors
EGFR Positive Non-
small Cell Lung
Cancer
Colorectal Carcinoma
Recurrent Ovarian
Carcinoma
BRAF-Mutated
Melanoma

Phase 1 NCT02608268

Warfarin Inhibits AXL activation, Vitamin K agonist Pancreatic Cancer Withdrawn NCT03536208

MGCD516 c-Kit, PDGFRa/b, TAM, VEGF Advanced Cancer Phase 1 NCT02219711

BPI-9016M Inhibitor of MET/AXL kinases. Solid tumors Phase 1 NCT02478866

Crizotinib a small molecule directed to vascular endothelial growth
factor receptors, MET and AXL

Hematologic Cancers
Solid Tumors
Metastatic Cancer

Phase 2 NCT02034981

INCB081776 Inhibitor of AXL and Mer that blocks TAM Advanced Solid
Tumors

INCMGA00012 Phase 1 NCT03522142
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anticoagulant Warfarin prevents the Gas6 interaction with

externalized phosphatidylserine on the surface of apoptotic cells

and cell debris through inhibition of vitamin K-dependent gamma-

carboxylation of the g-carboxyglutamic acid-rich (Gla) domain of

Gas6 (117). A preclinical study reported that low-dose warfarin blocks

the progression and spread of pancreatic cancer (72). A Phase I study

of the effect of escalating doses of Warfarin on circulating biomarkers

of AXL pathways (phosphoGas6 and sAXL) in patients with

pancreatic adenocarcinoma (Table 2, Clinical Trial Identification #:

NCT03536208) was initiated in 2019, but the study was withdrawn in

2021 because of lack of accrual.

MGCD516 (Sitravatinib, Mirati Therapeutics Inc.) is a small

molecule spectrum selective TKI of several closely related receptor

tyrosine kinases, including TAM and members of the VEGFR,

PDGFR, DDR2, TRK and Eph families (118, 119). Anti-

tumorigenic and anti-angiogenic activities of MGCD516 have been

demonstrated in preclinical models of soft tissue sarcoma (119) and

metastatic models of anti-angiogenic therapy resistance (118).

Additionally, MGCD516 treatment enhances the immune

checkpoint blockade by lowering the number of tumor-associated

immunosuppressive myeloid cells and expanding the populations of

CD4+ T cells and proliferating CD8+ T cells in the TME (99).

MGCD516 therapy is currently investigated in patients with advanced

solid tumors (Table 2, Clinical Trial Identification #: NCT02219711).

BPI-9016M (Betta Pharmaceuticals Co., Ltd.), is a novel highly

potent dual-target inhibitor of c-Met/AXL. Preclinical studies in a lung

adenocarcinoma model demonstrated strong activity of BPI-9016M in

vitro and in vivo against c-Met/AXL kinases and their downstream

pathways, leading to reduced tumor cell growth, migration, and

invasion (120). A clinical trial at Phase I (NCT02478866) is currently

assessing pharmacokinetics, safety, and anti-tumor activity of the
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inhibitor in patients with advanced solid tumors (121). Crizotinib

(XALKORI®, PF-02341066, Pfizer Inc.) is a multitargeted, ATP-

competitive, small molecule and orally available tyrosine kinase

inhibitor that inhibits c-Met, AXL, ALK, and Ron (113).

Preclinically, this compound reduced cell growth and induced

apoptosis in human gastric carcinoma cells (122). Additionally,

crizotinib in combination with mitomycin C increased apoptosis in

CRC (123). A Phase II clinical trial is ongoing for patients with

hematologic cancers, solid tumors, and metastatic cancer to

determine the efficacy and the safety of crizotinib in 23 cohorts of

patients with identified activatingmolecular alterations in the crizotinib

target genes (Table 2, Clinical Trial Identification #: NCT02034981).

Overall, there are 168 clinical studies associated with crizotinib in the

ClinicalTrials.gov database. INCB081776 as a monotherapy or in

combination with INCMGA00012 is undergoing Phase I trial for the

safety and tolerability, pharmacokinetics, pharmacodynamics, and

early clinical activity in patients with advanced solid tumors (Clinical

Trial Identification #: NCT03522142). AXL-targeted therapies either as

particular agents or in combination with conventional chemotherapy

or other small molecule inhibitors have a promising opportunity to

increase the survival rate of cancer patients. Nonetheless, more studies

of AXL signaling pathways and physiological effects of their alteration

are essential to identify the specific cohorts of patients who would be

more responsive to the treatments with fewer adverse effects.

Chimeric antigen receptor (CAR)-T cell therapy targeting the B-

cell antigen CD19 has proven clinically very successful in hematologic

cancers [Clinical Trial Identification #: NCT02435849, NCT02445248,

and NCT02348216 (124, 125)]. However, the development of CAR-T

cell therapies for solid tumors has been slow because of the unique

challenges associated with tumor microenvironment (126, 127).

Preclinical studies indicated that CAR-T cell therapy targeting AXL
FIGURE 1

A schematic representation depicting the role of AXL overexpression and activation in GI cancers. Overexpression of AXL, induced by DNA
amplification or high mRNA and protein levels, in GI epithelial tissues leads to strong activation of downstream signaling pathways, promoting cell
proliferation, migration, and survival, hallmarks of GI carcinogenesis. Targeting AXL with specific monoclonal antibodies, small molecule kinase
inhibitors, soluble AXL decoy receptor, or CAR-T cell therapy could be effective as a targeted therapeutic approach in GI cancers.
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induced in vitro cytotoxicity in triple negative breast cancer cells

(TNBC) and reduced tumor growth in a TNBC xenograft mouse

model (128). Preclinical and clinical studies are needed to investigate

AXL-CAR-T cell therapy approach in GI cancers with high

AXL expression.
Conclusions and future perspectives

Collectively and based on the current literature, AXL has been

associated with GI cancer development and progression and its

inhibition provides a novel therapeutic approach in the fight

against GI cancers (Figure 1). Targeting AXL alone or with other

TAM receptor tyrosine kinases could stimulate antitumor immunity,

reduce cancer cell survival, enhance chemosensitivity and markedly

attenuate metastatic tumor burden (129, 130). AXL might potentially

become a valuable therapeutic target in GI cancers, and targeted anti-

AXL therapies could further improve the standard first line of

therapies with the objective to improve the prognosis and clinical

outcome in patients with GI cancers or other AXL-expressing tumors.
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