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Intoduction: Identification of molecular alterations associated with tumor behavior

is necessary to guide clinical management. The 2022 WHO classification has

organized the thyroid follicular cell-derived neoplasms into benign, low-risk and

high-risk neoplasms, and emphasized the value of biomarkers that may provide

differential diagnostic and prognostic information to avoid overtreatment of low risk

neoplasms. This work aims to study the epidermal growth factor receptor (EGFR)

expression, functional and spatial dynamics in relation to specificmiRNAs alterations

in papillary thyroid cancer (PTC) and in non-invasive follicular thyroid neoplasmwith

papillary-like nuclear features (NIFTP) considered asmodels of high-risk and low-risk

thyroid tumors respectively.

Methods: Primary thyroid cultured cells were used for miRNA gain/loss of

function and luciferase reporter assays. Paraffin embedded tissues were used

for real time PCR, immuno-fluorescence stain and confocal microscopy

experiments.

Results: Our results showed that in PTC, EGFR mRNA is reduced as an effect of

miR-146b-5p upregulation. The EGF expression is low and the ERK pathway is

inhibited. The EGFR protein high cytoplasmic expression and colocalization with

the endosomal/exosomal markers, ALIX and CD63, suggest the occurrence of

stress-induced EGFR internalization, accumulation in endosomal vesicles and

secretion via exosomes. In NIFTP EGFR transcription is increased in association

with downregulation of miR-7-5p and the EGFR/ERK pathway is active indicating

dependence on the canonical EGFR pathway for growth.

Conclusion: Downregulation of transcript level along with cytoplasmic

accumulation of undegraded protein is a new pattern of EGFR regulation

associated with malignancy in thyroid. Further research is needed to elucidate the

intracellular trafficking defects responsible for this specific EGFR dynamic in PTC.
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1 Introduction

The epidermal growth factor receptor (EGFR) is the prototype of

tyrosine kinase receptors which contributes to human cancer

development and progression (1, 2). Altered EGFR signaling is

considered one of the most dysregulated molecular pathways caused

either by EGFR gene mutation or amplification, overexpression due to

dysregulated transcription and/or translation, or other alterations of the

normal regulatory mechanisms (3–5). EGFR overexpression has been

reported in many types of cancer and has been associated with

aggressive behavior and poor prognosis (6–9). Its well-established

role in promoting cell proliferation and survival has led to the

discovery and application of many therapeutic drugs targeting the

EGFR pathway (10, 11). However, targeted EGFR therapy has shown

limited clinical success in cancer patients (12–15). Extensive research

into the reasons of drug resistance highlighted the high complexity of

EGFR signaling and regulation during cancer cell progression and

interaction with the microenvironment. EGFR performs different

functions depending on the dynamics of its intracellular trafficking

and subcellular location and in response to different stimuli (16–18).

Altered receptor endocytosis and trafficking and cellular stresses

activate the wild-type EGFR signaling thus diminishing the

dependence on gene mutation (19). Moreover, EGFR performs

functions that are independent of its tyrosine kinase activity in

cancer cells which necessitate new perspectives in assessing EGFR for

cancer management (20, 21).

The incidence of thyroid cancer has been increasing worldwide,

largely driven by the increase in papillary thyroid cancer (PTC)

(22–24). In the new WHO classification, Thyroid tumors are

divided into benign, low-risk, and malignant neoplasms with

deeper consideration of the cell of origin, pathologic features,

molecular classification, and biological behavior (25). The

multifocal hyperplastic/neoplastic lesions used to be called

“multinodular goiter” is now referred to as “thyroid follicular

nodular disease (FND)”. The low-risk follicular cell–derived

neoplasms included the non-invasive follicular thyroid neoplasm

with papillary-like nuclear features (NIFTP) among other lesions.

The malignant follicular cell–derived neoplasms were stratified

based on molecular profiles and aggressiveness and included

classic PTC (PTC), as a high-risk subtype, among other types

(25). PTC represent the BRAF-like malignancies, associated with

altered regulation of the mitogen-activated protein kinase (MAPK)

and stimulation of the extracellular signal–regulated kinases (ERK)

transcriptional programs that mediate tumorigenesis and

progression to malignancy (26, 27). Although multiple genes and

cellular pathways have been reported to contribute to PTC

pathogenesis, there is currently no conclusive data on their

functions or clinical utility (28–30). EGFR was reported to be

overexpressed in anaplastic thyroid carcinomas, follicular thyroid

carcinomas and in primary medullary carcinomas, with no evidence

of somatic EGFR mutations (31–34). EGFR tyrosine kinase

inhibitor is undergoing phase II testing for the treatment of

patients with iodine-refractory advanced thyroid carcinoma with

no significant clinical benefit yet available (35, 36). In PTC, wild

type EGFR overexpression was reported as an important biomarker

of aggressive behavior (37–39). However, other studies reported no
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association of EGFR overexpression with adverse clinical features in

PTC (40).

miRNAs are promising biomarkers in the diagnosis, prognosis

and therapy of cancer including PTC (41–43). In our previous work,

we showed that downregulation of miR-7-5p significantly

discriminates thyroid neoplasms including classic PTC (PTC),

follicular variant PTC and NIFTP from hyperplastic thyroid lesions

(now called FND). We also showed that miR-146b-5p high

expression is characteristic of PTC, is upregulated in the circulation

in preoperative blood samples and is significantly reduced post

thyroidectomy (44). Functional studies, including ours, suggested

that miRNA-146b-5p is involved in the pathogenesis of PTC (42, 45,

46). Interestingly, both miR-7-5p and miR-146b-5p can target EGFR

by binding to the 3′UTR region of its mRNA. EGFR has been

reported as one of the targets of miR-7-5p in breast, ovarian and

lung cancers and in glioblastoma (47–50). Mechanistic evidence

showed that miR-7-5p can inhibit the proliferation of cancer cells

through regulating the expression of EGFR (51). miR-146b-5p was

found to suppress the expression of EGFR in human glioblastoma cell

lines (52). miR-146b-5p was suggested as a useful tool for overcoming

EGFR resistance through regulation of miR-146b-5p/IRAK1/NF-kB
signaling (53). miR-146b-5p overexpression was suggested as a new

tool to improve the clinical benefit of EGFR-targeted treatments in

ovarian cancer patients (54). There are no reports on the interaction

of miR-7-5p and miR-146b-5p with EGFR in PTC or on the

expression of EGFR in the newly classified tumors such as NIFTP.

In this work, we are investigating the expression of EGFR and its

regulation by miR-7-5p and miR-146b-5p in PTC and NIFTP as

models of high risk and low risk thyroid tumors respectively.
2 Materials and methods

2.1 Patients

Thyroid tissue samples from partial or total thyroidectomy were

obtained after completing routine gross and histopathological

processing. Fresh tissue samples were used for culture (n=20).

Formalin fixed paraffin embedded (FFPE) tissues were also obtained

and microscopically reviewed by consultant histopathologists (R.H.A.

and N.A.B.) following the new WHO classification of endocrine

tumors (25). Samples included 50 classic papillary thyroid cancer

(PTC) identified as the conventional infiltrative PTC composed

predominantly of papillae, 20 noninvasive follicular neoplasm with

PTC nuclear features (NIFTP), and 10 thyroid follicular nodular cases

(FND). Ethical approval to conduct this study was obtained from

Kuwait Ministry of Health and Kuwait University Health Sciences

Center ethics committee.
2.2 Cell culture and transfection of miRNA
inhibitor/mimic

Primary thyroid cell culture was done as described in our

previous work (55). Cultured cells, at a density of 1 × 106 cells,

were transfected using 15 mL of HiPerFect Transfection Reagent
frontiersin.org
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(QIAGEN) and 150 ng of Anti has- miR-146b-5p miScript miRNA

Inhibitor (QIAGEN) or Syn-hsa-miR-7-5p miScript miRNAMimic

(QIAGEN), or negative control siRNA (QIAGEN). In all

transfection experiments endogenous miRNA levels were

quantified by real-time PCR after transfection to ensure the

success of the experiment. Oxidative stress was induced by

treating the cancer cells with Paraquat (3 mM) for 24 h before

analysis. This concentration of paraquat was optimized previously

and proved to be the highest concentration that cause less than 10%

cell death in thyroid cells culture (55).
2.3 Reverse transcription and real-time
PCR amplification

Total RNA from cultured cells and from paraffin-embedded thyroid

tissues was isolated using TRIzol (Ambion) and miRNeasy FFPE Kit

(QIAGEN) respectively, following the manufacturers’ instructions.

Genomic DNA elimination and reverse transcription of cDNA was

done using the RT2 first strand Kit (QIAGEN) according to the

manufacturer’s instructions. cDNA was mixed with RT2 SYBR Green

Mastermix (QIAGEN), and RT2 qPCR Primer Assay specific primers

(QIAGEN), and amplification reactions were set in 96-well plates. HPRT

was used as housekeeping gene and PCR reactions were run on an ABI

7500 Fast Block real-time PCR machine. All samples were run in

triplicates. Expression is calculated using the relative quantification

method (DCt = CT of target normalized to CT of housekeeping

genes). Expression in the test groups (Cells treated with miR146

inhibitor) are compared to control group (Cells treated with negative

control) using the formula (DDCT = DCT of test group - DCT of control

group), and results are finally presented as fold change (2–DDCT).
2.4 Luciferase reporter assay

The effect of miR-146b-5p and miR-7-5p on ERK and hypoxia

signaling pathways was tested using the Cignal Finder Cancer Pathway

Reporter Array (Qiagen) which uses the dual-luciferase technology.

Firefly/Renilla activity ratios were generated for experimental (with

miRNA inhibitor/mimic) and control transfections. The change in the

activity of each signaling pathway is determined by comparing the

normalized luciferase activities of the reporter in experimental versus

control transfectants using the formula, Fold Change = (firefly/renilla

ratio of experimental sample)/(firefly/renilla ratio of control sample).

All transfections were performed in quadruplicate for each of the

reporter assays. Transfection efficiency was estimated by observing

GFP expression (a constitutively expressing GFP construct containing

Monster Green® Fluorescent Protein) in the positive control wells by

fluorescence microscopy.
2.5 Immunofluorescence and
immunohistochemistry stain

Expression and subcellular localization of EGFR, phosphorylated

ERK (p42/44) and, phosphorylated p38 was tested by indirect
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was done on FFPE tissue sections. The antibodies used were anti-

EGFR (Cell Signaling, #42675), anti-phospho-ERK (Cell Signaling,

RRID-AB-331775), anti-p38 (Cell Signaling, RRID-AB2139682),

anti-ALIX (NOVUS, RRID-AB-960843) and, anti-CD63 (NOVUS,

RRID-AB-108402). Primary antibodies were diluted according to

manufacturers’ recommendations and incubated at 4°C overnight.

Secondary antibodies labeled with Alexa Fluor 555 and Alexa Fluor

488 (Invitrogen), were incubated for one hour at room temperature.

The nonspecific background was removed using blocking solution

(DAKO). DAPI was used to counter stain the nuclei. Immuno-

stained sections were visualized by laser scanning confocal

microscope (LSM 700, Zeiss, Germany). Colocalization coefficients

were calculated by Zen software (Zeiss, version 14.0.0.201, Germany)

based on the co-occurrence of the red and green signals and their

relative intensities. Colocalization coefficient of >0.5 was considered

as positive co-expression.
2.6 In Situ Hybridization to study
the expression of miR-146b-5p in
thyroid tissues

Expression and cellular localization of miR-146b-5p was

studied by ISH using miRCURY LNA miRNA Detection Probes

(QIAGEN). The protocol parameters were first optimized with the

LNA U6 snRNA positive control probe by adjusting the

concentration of the probe, the hybridization temperature and

proteinase K treatment. 100nM was selected as the optimal probe

concentration and 55 degrees was selected as the optimal

temperature for hybridization. Antigen retrieval was done using

acetic acid pH=6 and heating for 10 min. Specific hybridization

signals were detected as purple stain under light microscope.

Combination of ISH procedure with immunofluorescence was

done using miRNA probe labelled with FAM. Anti-FAM

antibody was used as the primary antibody to detect the miRNA.

Specific targets such as EGFR were detected using specific anti-

EGFR antibody. Fluorescently labelled anti-sheep and anti-rabbit

secondary Abs were used and the double immunofluorescence stain

was examined by confocal microscopy.
2.7 Immunoblotting

Cultured and transfected thyroid cells was tested for change of

expression of EGFR protein by Western immunoblot technique as

described previously (55). 20 mg of protein was electrophoresed on

SDS-PAGE gel and transferred to PVDF membranes at a stable

current of 300 mA overnight at 4°C. The efficiency of transfer was

confirmed by staining the gel with Coomassie blue stain. Blocking

was done for 1 h at room temperature with 1x TBS with 1% Casein

(Bio-Rad). Anti-EGFR antibody (Cell Signaling #42675) was

incubated overnight at 4°C. Protein bands were detected by

chemiluminescence using ECL-Plus kit (Amersham Pharmacia

Biotech Ltd.). The density of the detected EGFR band was

measured and compared to the cumulative densities of the total
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loaded proteins using ChemiDoc MP Imaging System (Bio-Rad)

and Image Lab Software.
2.8 Statistical analysis

The expression level of genes in different groups were compared

using student t-test. The difference in expression level between

matched samples (treated with miRNA inhibitor/mimic versus

control) was determined using paired-sample t-test using SPSS

software. In all analysis, significance was considered with a p-

value of <0.05.
3 Results

3.1 Expression of EGFR mRNA in thyroid
clinical samples

Expression of EGFR mRNA was tested by RT-PCR in PTC,

NIFTP and FND FFPE tissue samples. Results showed that EGFR

expression is downregulated in PTC compared to NIFTP and FND,

while it is upregulated in NIFTP compared to FND (Table 1).

Moreover, miR-7-5p is downregulated in PTC and NIFTP

compared to FND while miR-146b-5p is upregulated only in PTC

(Table 1). No statistically significant association was detected

between EGFR expression and aggressive pathological
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found to be upregulated in samples with BRAF V600E mutation

compared to BRAF mutation negative samples but with no

statistical significance (Table 2).
3.2 EGFR expression is regulated by miR-7-
5p and miR-146b-5p in primary cultured
thyroid cells

As miR-146b-5p is upregulated in PTC, we transfected cultured

PTC cells with miR-146b-5p inhibitor to test the effect of miR-

146b-5p downregulation on EGFR expression. Results showed that

EGFR expression was significantly upregulated in cells transfected

with miR-146b-5p inhibitor compared to control cells (Table 3). As

miR-7-5p is downregulated in PTC, cultured PTC cells were

transfected with miR-7-5p mimic. Transfection resulted in a

significantly reduced expression of EGFR mRNA compared to

control cells (Table 4).
3.3 Expression and subcellular localization
of EGFR protein in thyroid tissues

High EGFR protein expression was characteristic of PTC, while

moderate to low EGFR expression were detected in NIFTP and

FND tissues (Figure 1; SI Table 1). In PTC EGFR protein expression
TABLE 1 Expression of EGFR, miR-7-5p and miR-146b-5p in thyroid tissue samples.

Mean expression value DCt (SD) NIFTP vs. FND PTC vs. FND PTC vs. NIFTP

FND
(n=10) NIFTP (n=16) PTC

(n=28) Fold Change p-
value* Fold Change p-

value* Fold Change p-
value*

EGFR 1.72 (1.09) -2.82 (2.39) 3.04 (3.02) 23.35 <0.0001 -2.49 0.028 -58.10 <0.0001

miR-7-5p
-1.08
(1.16)

7.25 (6.07) 8.17 (5.17) -321.80 0.0003 -608.87 <0.0001
1.89 0.082

miR-146b-
5p

3.78 (1.06) 3.01 (2.87)
-0.68
(0.47)

1.71 0.788 22.03 <0.0001 12.92 0.0003
fro
Expression is calculated using the relative quantification method (DCt = CT of target normalized to CT of housekeeping gene). Fold change is calculated using (2–DDCT) formula (56). *Statistical
analysis is done using student t-test.
TABLE 2 EGFR expression in relation to pathological characteristics in PTC samples.

Pathological characteristic

Invasion Lymph node metastasis BRAF mutation status

Groups pos (n=26) neg (n=14) pos (n=14) neg (n=26) pos (n=16) neg (n=25)

EGFR

Average DCt 2.81 3.17 2.56 3.20 1.86 3.80

Fold change (pos/neg) 1.29 1.55 -3.84

p-value* 0.379 0.286 0.077
Expression is calculated using the relative quantification method (DCt = CT of target normalized to CT of housekeeping gene). Fold change is calculated using (2–DDCT) formula. *Statistical
analysis is done using student t-test.
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appeared as either granular cytoplasmic or cytoplasmic/

membranous, and the two patterns could be simultaneously seen

in the same tissue in some cases (Figure 1). Enrichment of

expression in the basolateral areas of the thyroid follicles was also

characteristic of PTC cases (Figure 1). In NIFTP and FND EGFR

protein expression was mostly cytoplasmic/membranous with

moderate to low intensity (Figure 1). Double immunofluorescence

stain experiments showed colocalization of EGFR with ALIX and

CD63 in PTC and NIFTP in intracellular and extracellular vesicles

(Figures 2, 3). High expression of ALIX and CD63 was

characteristic of PTC tissues compared to NIFTP (Figures 2, 3).
3.4 MAPK/ERK and HIF1a pathways activity
in thyroid cultured cells

The activity of MAPK/ERK and HIF1a pathways was tested by

luciferase assay and found to be downregulated in PTC samples

compared to control FND samples (SI Table 2). Possible regulation

of these pathways by miR-146b-5p and miR-7-5p was also tested.

Results showed minimal or no effect of these miRNAs loss or gain of
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(SI Table 2).
3.5 ERK and p38 pathway activity in thyroid
tissue samples

To test the activity of ERK and p38 in real life away from the

possible culture related modifying effect, we performed

immunofluorescence stain with anti-phospho-ERK1/2 and anti-

phospho-p38 antibodies in thyroid tissue FFPE samples. Results

showed positive nuclear stain of p-ERK in NIFTP but not in PTC

samples (Figure 4). All PTC samples, regardless of BRAF mutation

status, showed negative p-ERK staining. Positive p-p38 nuclear

stain was detected in PTC and NIFTP (Figure 5). A heterogenous

pattern of negative and positive p-p38 was observed in different

samples or different areas of the same tissue in PTC. Real time PCR

experiments done on FFPE tissue samples showed that ERK and

p38 genes expression are significantly upregulated in NIFTP

compared to FND, while in PTC there was no significant change

although the proliferation marker KI67 is upregulated (SI Table 3).
TABLE 3 Effect of miR-146b-5p inhibitor on EGFR mRNA expression in PTC.

Samples
miR-146b-5p expression EGFR Expression

Control +/miR-146b-5p inhibitor Fold Change p-value*

1 -1.03 -1.41 -2.98

2 73.01 -54.87 19.65

0.001

3 62.25 -134.13 3.02

4 19.29 -176.27 10.75

5 49.18 -28.60 39.25

6 16.00 -4.50 22.57

7 10.78 -2.91 140.40
fro
Fold change is calculated using the 2(-DDCt) of the transfected versus control cells.
*Statistical analysis is done using paired student t-test.
TABLE 4 Effect of miR-7-5p mimic on EGFR mRNA expression in PTC.

Samples
miR-7-5p expression EGFR Expression

Control +/miR-7-5p mimic Fold Change p-value*

1 -1.46 2.03 -20.32

2 -90.51 3.92 -9.59

0.0009

3 -63.12 4.35 -59.22

4 -3.43 18.13 -3.90

5 -2.97 3.25 -58.05

6 -25.11 3.43 -142.22
Fold change is calculated using the 2(-DDCt) of the transfected cells versus control cells.
*Statistical analysis is done using paired student t-test.
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EGF expression was lower in NIFTP and PTC compared to FND

(SI Table 3).
3.6 Factors contributing to reduced EGFR
expression in thyroid cultured cells

To investigate the possible causes of EGFR downregulation

in PTC, we used cultured cells from FND samples and tested the

effect of different treatments including miRNAs alteration and

oxidative stress that hypothetically simulate the conditions in

PTC. Our data shows that the combined effect of miR-7-5p

downregulation along with miR-146b-5p upregulation resulted
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in a significant downregulation of EGFR gene expression (-2.88

folds, p= 0.005, Figure 6A). Moreover, oxidative stress

combined with miR-7-5p downregulation and miR-146b-5p

upregulation resulted in the highest reduction of EGFR

expression (-7.25 folds, p= 0.0001, Figure 6A). Similar results

were detected for EGFR protein expression in the same

conditions (Figure 6B).
4 Discussion

EGFR signaling is a mechanism of autonomous proliferation

involved in the pathogenesis of many types of cancer. EGFR binding
A

B

C

D

E

FIGURE 1

Expression of EGFR (green) and miR146b-5p (red) in representative samples. (A) PTC showing strong EGFR expression that colocalizes with miR-146
in the cytoplasm of tumor cells. (B) EGFR expression is enriched in the cell membrane in parts of the tissues in PTC. (C) In PTC cytoplasmic and
membranous EGFR expression coexist in the same field and is not related to difference in miR-146b-5p level of expression. (D) NIFTP sample
showing low cytoplasmic/membranous EGFR expression along with low miR-146b-5p expression in tumor cells. (E) FND sample showing low
membranous EGFR expression and low miR-146b-5p in the follicular cells.
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to its ligand on the cell surface activates signaling pathways, typically

the extracellular signal–regulated kinase (ERK) pathway, to promote

cell proliferation and survival. The activated receptor is then

internalized and transported to the endosomal network where it is

either destined for degradation in lysosomes, for termination of signal

and maintenance of cellular homeostasis, or recycled to the plasma

membrane for prolongation of signal and sustained proliferation (57).

An additional fate of internalized EGFR has been described. EGFR is

activated by ligand-independent mechanisms, such as stress, and

require the activity of the stress activated MAPK-p38 for

internalization (57–59). The stress induced EGFR shifts from the

canonical trafficking, evade lysosomal degradation and accumulate in

endosomes (60–62). The stress-activated receptor can also be recycled

to the plasma membrane by p38 inhibition (63). This model of EGFR

spatiotemporal control and cell fate has been reported in
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tumorigenesis and in response to cancer therapy. How the high-

risk and low-risk thyroid tumors, specifically PTC and NIFTP, fit into

this model?

In NIFTP, our results showed that EGFRmRNA is overexpressed

while the EGFR protein expression is low with enrichment at the

plasma membrane of tumor cells (Table 1; Figure 1 and SI Table 1),.

Protein expression is stronger in areas under the capsule compared to

the core nodule where a weak cytoplasmic stain is detected indicating

loss of the protein (SI Figure 1). There is evidence of active signaling

through the ERK pathway indicated by nuclear stain with p-ERK

(Figure 4). The EGF growth factor is expressed although at a lower

level than the control FND samples (SI Table 3). EGFR

internalization is indicated by the cytoplasmic expression of EGFR

protein and its co-localization with the endosomes/exosomes

markers (ALIX and CD63) (Figures 2, 3). The stress-inducible p38
A

B

C

D

E

FIGURE 2

Representative samples stained with ALIX (red) and EGFR (green). Prominent ALIX positive vesicles of multiple sizes are seen in PTC in association
with EGFR cytoplasmic expression (A), EGFR membranous expression (B), and EGFR enrichment at the basolateral surfaces (C). (D) ALIX and EGFR
expression in NIFTP sample. (E) Colocalization of ALIX and EGFR in intracellular and extracellular vesicles in PTC (Colocalization coefficient > 0.7).
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MAPK pathway is active as indicated by nuclear expression of p-p38

in the tumor cells (Figure 5). Altogether, these results suggest that

NIFTP growth is dependent on EGFR activity through the canonical

pathway where the receptor is activated by ligand binding (EGF or

possibly other untested ligands), signals through the ERK pathway,

gets internalized in a p38 dependent manner and is subjected to

degradation in the cytoplasm.

In PTC, EGFR adopts different pattern of expression and

dynamics. Surprisingly in this malignant tumor, EGFR mRNA is

downregulated compared to NIFTP and FND (Table 1). Moreover,

EGFR expression did not correlate with invasion or lymph node

metastasis features in our PTC samples (Table 2). These results

agree with published results which did not find evidence of EGFR

increased expression correlating with aggressive features (40).

However, these results contradict other studies which could find

such correlation (37, 38). We believe that this disagreement is

caused by the diagnosis criteria that the authors used at the time of

their work which followed the old classification that did not

differentiate between PTC and NIFTP. Another surprising result

in this study is the lack of ERK activity in all our PTC samples

(Figure 4). We tested more than 100 PTC tissues by
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immunofluorescence and found no evidence of active ERK

regardless of BRAF mutation presence or absence. Nuclear p-ERK

was only seen in stromal cells and normal looking follicles outside

the tumor in PTC samples while it was detected in thyroid follicular

cells in NIFTP (Figure 4). Although PTC is known as a BRAF

associated cancer with expected active RAS/ERK pathway (26),

search of the literature did not reveal clear pictures of activated ERK

in PTC. Our results agree with Lee at al who reported that phospho-

ERK1/2 was detected in only eight (4.8%) cases out of 167 PTC

samples and the staining intensity or nuclear localization were

independent of the BRAFV600E mutation status (64). Moreover,

our functional assay in PTC cultured cells showed that the ERK

pathway activity is downregulated compared to FND (SI Table 2).

Therefore, we speculate that inhibition of MAPK/ERK pathway

activity might be a mechanism characteristic of malignant cells in

PTC. This inhibition can be caused by reduced EGFR tyrosine

kinase activity or by some other mechanisms.

At the protein level, our results showed that EGFR is highly

expressed in PTC mainly in the cytoplasm and the plasma

membrane of tumor cells (Figure 1; SI Table 1). Landriscina et al.

demonstrated that EGFR protein increased expression occur in
A

B

C

FIGURE 3

Representative samples stained with CD63 (red) and EGFR (green). CD63 colocalizes with EGFR in intracellular and extracellular vesicles in PTC
(Colocalization coefficient >0.7) (A, B). (C) In NIFTP CD63 positive vesicles appear mainly in the cytoplasm of tumor cells along with EGFR that
shows enrichment at the plasma membrane.
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malignant and less differentiated cells in PTC therefore they

concluded that EGFR expression correlate with aggressiveness

(39). We found similar increased protein level in malignant

tumors compared to benign tumors Figure 1; SI Table 1).

However, this increased protein availability is not due to

increased gene expression, considering the low mRNA level in

PTC, rather it is the result of accumulation of EGFR protein

possibly due to reduced degradation. EGFR accumulation and

arrest at non-degradable state in endosomal compartments is

usually associated with the stress-induced EGFR internalization.

This type of internalization requires activation of the p38 pathway

and is independent of the EGFR tyrosine kinase activity (58–62).

Our immunofluorescence stain results in PTC samples showed a

heterogenous pattern with positive nuclear p-p38 expression in

some tissue areas and negative p-p38 in others (Figure 5). As

activated p38 is required for EGFR internalization and evasion of

degradation, inhibition of p38 activity facilitates EGFR recycling to

the plasma membrane (63). EGFR expression at the plasma

membrane of tumor cells was also observed in our PTC samples

which correlate with the p38 heterogenous pattern in our samples.

Enrichment of EGFR expression to the basolateral domains of the

tumor cells was only observed in our PTC samples with no change

in the ERK activation pattern (Figure 1). Previous published data
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showed that EGFR-mediated phosphorylation of certain substrates

differ at the apical and basolateral cell membrane and EGFR mis-

localization can result in abnormal signaling and aberrant cell

behavior (65). Altogether, our results in PTC favor the non-

canonical scenario of stress-induced internalization of EGFR with

accumulation of non-degraded protein in endosomal

compartments and recycling to the plasma membrane in parts of

the tumors.

The mechanisms that control the fates of endosomal cargos to

degradation, accumulation or secretion is still not clear. It has been

shown that intracellular retention of stress-induced EGFR is

required for EGFR signaling and protection from apoptosis. This

process depends on the endosomal sorting complex required for

transport (ESCRT) machinery and ALG-2-interacting Protein X

(ALIX) (63, 66). ALIX contributes to many ESCRT-dependent

processes such as virus budding, autophagy, and exosome

biogenesis (67–69). ALIX was identified as an important regulator

of the signaling output of activated EGFR since it mediates its

endosomal sorting and rapid silencing; Knockdown of Alix

inhibited sorting of the activated EGFR and promoted sustained

activation of (ERK)1/2 (70). However, ALIX did not have a role in

sorting of EGF-stimulated EGFR or its targeting to lysosomes for

degradation (66). Moreover, ALIX was found to mediate the
A

B

C

FIGURE 4

ERK pathway activity in relation to miR-146b-5p expression in representative thyroid tissues. (A) In PTC no phospho-ERK (red) is detected in the
nuclei of tumor cells with high level of miR-146 (green). (B) p-ERK in negative along with low level of miR146b-5p. (C) In NIFTP strong nuclear
expression of p-ERK is detected in tumor cells with no expression of miR-146b-5p.
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endosomal sorting of tetraspanins, including the exosomal protein

CD63, and their secretion via exosomes (71, 72). We used ALIX and

CD63 as endosomal/exosomal markers to further investigate the

fate of EGFR. Our confocal microscopy results showed expression

of EGFR in ALIX and CD63 positive intracellular and extracellular

vesicles which indicate trafficking of EGFR from late endosomes to

exosomal secretion. Increased expression of ALIX was characteristic

of PTC samples in this study. It has been shown that overexpression

of ALIX reduces the ubiquitylation of EGFR (73) which can explain

the increased protein accumulation of EGFR in our PTC samples.

Zannetti-Domingues et al. described a role of EGFR in exosome

trafficking, biogenesis and uptake by recipient cells, thereby

participating in its own dissemination (74). Since exosomes are

able to transfer various biological molecules including protein,
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RNA, DNA, and miRNA, they serve as key modulators of

intercellular communication in many physiological and

pathological conditions (75, 76). Therefore, multiple roles of

exosomal EGFR in metastasis formation and tumor immunity has

been described (77–79). This is the first report on EGFR exosomal

dissemination in PTC.

Multiple microRNAs have been reported to modulate the

expression of EGFR and its downstream signaling pathways in

different cancers. It has been reported that miR-7-5p attenuates the

activation of ERK signaling and induces cell cycle arrest and cell

death in cancer cells by down-regulating EGFR expression (47–51).

Our functional assays showed that miR-7-5p and miR-146b-5p

regulate the expression of EGFR in PTC cultured cells (Tables 3 and

4). Moreover, the combined effect of miR-7-5p downregulation and
A

B

C

FIGURE 5

p38 pathway activity in relation to miR-146b-5p expression in representative thyroid tissues. (A) In PTC phospho-p38 is detected in the nuclei of
tumor cells with low expression of miR-146b-5p. (B) p-p38 is negative in areas of miR-146b-5p high expression. (C) In NIFTP strong nuclear
expression of p-p38 is detected with no expression of miR-146b-5p.
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miR-146b-5p upregulation could reproduce the pattern of low

EGFR seen in PTC (Figure 6). In PTC tissue samples, miR-146b-

5p high expression detected by in situ hybridization coexisted with

increased EGFR protein expression in PTC tissues (Figure 1) which

support the idea that EGFR protein presence in PTC is the result of

protein accumulation and lack of degradation and not sourced by

increased protein translation that would be otherwise inhibited by

miR-146b-5p. The effect of miR-146b-5p on ERK activity was not

clear in our cultured cells (SI Table 2). This can be due to the

culturing conditions which possibly change the endogenous ERK

activity and mask the regulatory effect of the transfected miRNA.

However, in tissue samples there was an inverse association between

active ERK and miR-146b-5p expression level (Figure 4). Therefore,

the regulatory effect of miR-146b-5p on ERK activity cannot be

ruled out.
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How cancer cells in PTC would benefit from downregulation

of EGFR? Although our data is not enough to answer this

question, it can direct our attention away from EGFR role as an

oncogene towards its role in stress response. It is well established

that oxidative stress plays an active role in carcinogenesis and

cancer progression (80). High level of oxidative DNA damage was

demonstrated in cancer thyroid tissue and proposed to be

involved in disease progression through modulation of EGFR

and its downstream signaling (81–83). Prolonged EGFR

signaling and accumulation of stress- activated receptor creates

a feedback mechanism which leads to apoptosis (84, 85). In our

previous work we showed that miR-146b-5p has an inhibitory

effect on the stress MAPK/JNK/AP1 pathway in PTC and protects

thyroid cells from cell death in response to oxidative stress (55).

Previous published results showed that EGFR contributes to the
A

B

FIGURE 6

Possible factors contributing to reduced EGFR expression in thyroid cultured cells. (A) Expression of EGFR was tested by Real time PCR in five
different FND samples. Cells treated with miR-7-5p inhibitor and miR-146b-5p mimic show significant downregulation of EGFR (**p=0.005).
Oxidative stress combined with miR-7-5p downregulation and miR-146b-5p upregulation resulted in the highest reduction of EGFR expression
(***p < 0.001). (B) EGFR protein expression in the same conditions was tested by western blot and showed similar results.
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cellular response to stress by upregulating the transcription of the

EGFR gene and modulating miRNA biogenesis in tumor cells (86,

87). Our results here show that in the presence of high level of

miR146b-5p, EGFR is downregulated in response to oxidative

stress (Figure 6). Altogether these results suggest that EGFR

upregulation can be part of the stress response in thyroid cells,

and miR-146b-5p increased expression in PTC downregulates

EGFR possibly to protect the cells against stress-induced

cell death.
5 Conclusion

This work provides a new perspective of the already known

increase EGFR protein associated with malignancy. High EGFR

protein in PTC (high risk tumor) is not due to gene overexpression,

but rather caused by accumulation of non-degraded protein

arrested in endosomal compartments and disseminated through

exosomes to the extracellular milieu. In PTC EGFR does not signal

through ERK pathway and may be involved in the stress response

during carcinogenesis. In NIFTP (low-risk tumor) EGFR is

overexpressed and follows the canonical pathway of signaling

through ERK pathway, internalization and recycling to plasma
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membrane and ending with degradation [Figure 7]. These

patterns can be used as diagnostic features in addition to the

histopathological characterization. The different regulation

patterns differentiating the high risk from low-risk tumors in this

work may open new windows for investigating and targeting the

intracellular trafficking associated with malignancy. This work also

showed two microRNAs that have combined effect on EGFR which

may have important implications in EGFR related cancers

prognosis and therapy.
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