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Background: Hypoxia-inducible factor 1-alpha (HIF-1a) stability and

transcriptional action are reduced by the hypoxia-inducible factor 1-alpha

subunit suppressor (HIF1AN). Its inappropriate expression is associated with the

development of cancer and immune control. It is yet unknown how HIF1AN,

clinical outcomes, and immune involvement in breast cancer (BC) are related.

Methods: Using the GEPIA, UALCAN, TIMER, Kaplan-Meier plotter, and TISIDB

datasets, a thorough analysis of HIF1AN differential expression, medical prognosis,

and the relationship between HIF1AN and tumor-infiltrating immune cells in BC

was conducted. Quantitative real-time PCR (qRT−PCR) analysis of BC cells were

used for external validation.

Results: The findings revealed that, as compared to standard specimens, BC cells

had significantly lower levels of HIF1AN expression. Good overall survival (OS) for

BC was associated with higher HIF1AN expression. Additionally, in BC, the

expression of HIF1AN was closely associated with the chemokines and immune

cell infiltration, including neutrophils, macrophages, T helper cells, B cells, Tregs,

monocytes, dendritic cells, and NK cells. A high correlation between HIF1AN

expression and several immunological indicators of T-cell exhaustion was

particularly revealed by the bioinformatic study.

Conclusions: HIF1AN is a predictive indicator for breast tumors, and it is useful for

predicting survival rates.

KEYWORDS

breast cancer, hypoxia-inducible factor 1-alpha subunit inhibitor (HIF1AN), prognosis,
immune infiltrating cell, biomarker
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Introduction

Breast cancer (BC) is a complicated disease with numerous

classifications and exhibits both significant inter- and intra-tumor

variations (1, 2). Globally, BC affects approximately 10% of women

during the course of their lives (3, 4). Despite improvements in the

diagnosis and treatment of BC, the management of the disease is still

challenging and most patients have poor outcomes (5). ER (+) or ER

(-) are the two hormone receptors used to classify BC, with the latter

having fewer therapeutic decisions, especially for triple-negative

breast cancers (TNBCs) (2, 6). Several studies have investigated the

molecular pathways underlying the various hormonal states to reveal

options for the treatment of BC.

In addition to surgery, chemo- and radiation therapy, inhibition

of targeted pathways and combination immunotherapies are

considered alternative treatment options (7). Given its high

heterogeneity, not all BC patients benefit from immunotherapy.

Researchers have demonstrated that the clinical efficacy of

immunotherapy is partly influenced by the immunosuppressive

tumor microenvironment (8). Therefore, specific immune-related

biomarkers of BC should be explored to develop new

immunotherapeutic targets and strategies to alleviate resistance.

The HIF-1A protein regulates the transcription of genes involved

in response to hypoxia. The protein participates in processes the

ensure the survival of cells under hypoxia (9, 10), and it has been

shown that HIF1A may play a role in the development of tumor

resistance to immunotherapy (11, 12). It is also involved in tumor

development and metastasis (13). Hypoxia-inducible factor 1-alpha

subunit suppressor (HIF1AN), also known as component suppressing

HIF-1 (FIH-1), inhibits HIF-1 activity by hydroxylating the C-

terminal trans-activation domain of the HIF-1a subunit, thus

preventing HIF-1 from recruiting co-activators CPB/p300, which

are important for the transcription of target genes (14, 15). Prior

research suggests that HIF1A enhances cancer progression, spread,

and metastasis by promoting angiogenesis and controlling cellular

metabolism in hypoxic tumor conditions. HIF1A is upregulated in

multiple malignancies and immune responses (16). Additionally,

numerous studies have revealed that HIF1AN suppresses the

growth of cancerous cells and might function as a potential tumor

inhibitor in gastrointestinal and prostate cancer (17). The

fundamental pathways via which HIF1AN prevents tumor growth

and immunological interaction with BC are currently unknown.

To investigate the relevance of HIF1AN in BC, RNA sequencing

and medical analysis process based on BC patients with identified

HIF1AN collected from The Cancer Genome Atlas (TCGA) dataset.

The link between HIF1AN and immunological infiltration was also

investigated. This is the first in-depth investigation into the clinical,

structural, and immunological features of HIF1AN gene expression.
Materials and methods

RNA-sequencing of patient data

Gene expression data of cases in which HIF1AN had been

measured using HTSeq-FPKM or HTSeq-count, generated by the

Breast invasive carcinoma (BRCA) projects, together with
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corresponding clinical information, were collected from the TCGA

website. Normal BRCA samples and cases with an overall survival of

<30 days were excluded. Level 3 HTSeq-FPKM data were transformed

into transcripts per million reads (TPM) for subsequent analysis.

Information from 1222 patients with BRCA was retained. Unknown

or unavailable clinical data in the 1222 patients were considered to be

missing values. All data used in the paper were acquired from TCGA,

and hence ethics approval and informed consent were not required.
Identification of DEGs and functional
enrichment analysis

To obtain the differentially expressed genes (DEGs) for BRCA

between the high and low HIF1AN expression groups, the expression

profiles (HTSeq-counts) were analyzed using the DESeq2 R package

(18). The threshold values used to identify DEGs were |

log2FoldChange| > 1.5 and p.adj < 0.05. Then the functional

enrichment analyses, including Gene Ontology (GO) functional

analysis and Kyoto Encyclopedia of Gene and Genomes (KEGG)

pathway were performed using the clusterProfiler package in R. The

thresholds were as follows: p.adj<0.05 and q value <0.2.
Exploration of the expression of HIF1AN and
its clinical relevance

To investigate the clinical relevance of HIF1AN, we explored the

university of Alabama at Birmingham cancer data analysis portal

(UALCAN). UALCAN (http://ualcan.path.uab.edu) a user-friendly

portal, can facilitating the analysis in various tumor sub-groups based

on individual cancer stages, tumor grade, race, body weight or other

clinicopathologic features (19). In our study the associations between

HIF1AN expression and significant clinical characteristics, including

tissue type (healthy/tumor), breast cancer subtypes, stage of cancer

(stages 1, 2, 3, and 4), lymph node stage (N0, 1, 2, and 3), and cancer

cluster, are investigated.
Survival analysis of HIF1AN in breast cancer

The Kaplan-Meier plotter Database (http://kmplot.com/analysis/)

was used for survival analysis (20). We used the pattern of mRNA of

gene chip in Breast cancer to explore the prognostic value of HIF1AN,

including overall survival (OS), recurrence-free survival (RFS), and

distant metastasis-free survival (DMFS). The hazard ratio (HR) and

95% confidence interval (CI) were calculated and the differences

between the survival curves were examined using log-rank tests.
Gene set enrichment analysis

To further investigate the functions of HIF1AN in breast cancer,

Gene set enrichment analysis (GSEA) was conducted using the

clusterProfiler package (https://bioconductor.org/packages/release/

bioc/html/clusterProfiler.html) in R (3.6.2). The low and high

groups were determined according to the expression level of
frontiersin.org
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HIF1AN, and gene set permutations were performed 1000 times for

each analysis. The low and high groups were used as the phenotype

label, and gene sets with adj.p-value <0.05 and FDR q-value <0.25

were considered to be enrichment significant.
Analysis of immune cell infiltration and its
correlation with HIF1AN

The immune infiltration analysis of BRCA was performed using

single-sample GSEA (ssGSEA) with the GSVA package in R (3.6.2)

(https://www.bioconductor.org/packages/release/bioc/html/GSVA.

html) for 24 types of immune cells in the tumor samples. Spearman

correlation was applied to explore the correlations between HIF1AN

and the infiltration levels of T cell exhaustion and TAM related genes,

WilCoxon rank sum tests were used to reveal the association of the

infiltration of immune cells with the groups with different levels of

expression of HIF1AN.
Correlation analysis between HIF1AN
expression and chemokines

To further clarify the role of HIF1AN in the interaction between

breast cancer and immune system, we searched the Tumor-Immune

System Interactions Database (TISIDB, http://cis.hku.hk/TISIDB/

index.php) (21). The relationship between HIF1AN and

chemokines (such as CCL2, CXCL8, CXCL16 and CCR2) were

calculated by Spearman’s correlation analysis in the database.
Cell lines and culture

The normal breast epithelial cell line MCF10A, the human BC cell

lines MCF-7, SKBR-3, and MDA-MB-453, and the Chinese Academy

of Sciences’ Cell Bank of Type Culture Collection. DMEM (Gibco;

Thermo Fisher Scientific, Inc.) supplemented with 10% (v/v) foetal

bovine serum (Gibco; Thermo Fisher Scientific, Inc.) and a 1% (v/v)

penicillin and streptomycin solution was employed to regularly

cultivate SKBR-3, MCF-7, and MDA-MB-231 cells (Beyotime

Institute of Biotechnology). A mammary epithelial cell environment

(Procell Life Science & Technology Co., Ltd.) containing 10% horse

serum, EGF, hydrocortisone, insulin, and 1% penicillin-streptomycin

was employed to cultivate MCF10A cells. All cell lines were perfused

employing conventional cell culture methods and grown in an

incubator at 37°C with 5% CO2.
Quantitative real-time PCR analysis

Using the RNAiso Plus Kit (cat. no. 9109; Takara Biotechnology

Co., Ltd.), total RNA of the SKBR-3, MCF-7, MDA-MB-453, and

MCF10A cells was extracted in accordance with the industrialist’s

recommendations. Following the industrialist ‘s instructions, 1,000 ng

of total mRNA were retro transcribed into cDNA employing Takara

Biotechnology Co., Ltd.’s PrimeScript™ RT Reagent Kit with the

Genomic DNA Eraser (cat. no. RR047). To find out if each of the
Frontiers in Oncology 03
target genes was expressed, TB Green Premix Ex Taq (cat. no. RR420;

Takara Biotechnology Co., Ltd.) was employed in a quantitative PCR

(qPCR) assay using the LightCycler® 96 Instrument (Roche

Diagnostics). The following primer pairs were used for qPCR:

HIF1AN forward, 5’-GAGTGCCTCTACCCATACCCT-3’ and

reverse, 5’-TCGTAGTCGGGATTGTCAAAGT-3’; and GAPDH

forward, 5’-CATTGACCTCAACTACATGGTTT-3’ and reverse, 5’-

GAAGATGGTGATGGGATTTCC-3’. qPCR was completed under

the specified thermocycling situations: 95°C for 5 min, then 40 cycles

of 95°C for 10 sec and 60°C for 30 sec. The proportional mRNA

expression levels were normalised to those of the housekeeping gene

GAPDH using the conventional 2-Cq technique, and the comparative

cycle limit of the housekeeping gene GAPDH was assessed as an

endogenous control. The trial was carried out three times.
Statistical analysis

R (software v.3.6.2) was used to perform the statistical analyses.

WilCoxon signed-rank tests were used to analyze the expression of

HIF1AN in non-paired and paired samples. The Kaplan–Meier method

was applied to survival analysis, and the differences between the

survival curves were examined using log-rank tests. Correlations

between HIF1AN and other genes were identified using Spearman’s

correlation analysis. qRT-PCR results are presented as the mean ±

standard deviation (SD) from the three independent experiments, t-test

was carried out for statistical analysis with GraphPad Prism software

version 7.0. A p-value <0.05 was considered as statistically significant.
Results

Expression of HIF1AN in various cancers and
the differentially expressed genes in BC

The differential expression of HIF1AN between various cancers

and nearby healthy tissue was assessed on the TCGA database. As

shown in Figure 1A, the expression of HIF1AN was downregulated in

most cancers such as breast cancer (BRCA), thyroid cancer (THCA),

prostate adenocarcinoma (PRAD), and uterine corpus endometrial

carcinoma (UCEC). It expression was in stomach adenocarcinoma

(STAD), cholangiocarcinoma (CHO) and liver hepatocellular (LIHC).

To further verify the findings for BC, 1222 BC samples from the

TCGA database were examined. HIF1AN expression levels were

lower in BC (1109 samples) than in normal tissues (113 samples)

(Figure 1B). Moreover, HIF1AN expression was lower than in

matched adjacent normal tissue (Figure 1C). According to RT-

qPCR analysis, the expression level of HIF1AN in all three types of

BC cells (SKBR-3, MCF-7, MDA-MB-453) was significantly lower

compared with that of MCF10A cells, which is consistent with the

aforementioned results (Figure 1D). The 1222 BC patients were

divided into two cohorts, elevated and low HIF1AN expression

cohorts, depending on the median HIF1AN expression in BC

tumors. The mRNA expression levels of the two cohorts were

compared. In the elevated HIF1AN cohort, 949 mRNAs,

comprising 31 elevated and 918 reduced genes, were identified as

DEGs (absolute value of fold change >1.5, P < 0.05) (Figure 1E).
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Association of HIF1AN expression with
clinicopathological features in BC individuals

The differential expression of HIF1AN in BC and healthy samples

was explored by UALCAN as shown in Figure 2A. Compared to

normal cells, the expression of HIF1AN was markedly significantly

inhibited in BC cells (Figure 2A). For cancer patients with HIF1AN

expression, the number of clinical and pathological factors, molecular

subtypes, tumor phases (phase 1, 2, 3, and 4), and lymph node phase

(N0, 1, 2 and 3) were examined. Figure 2B shows that compared to

healthy tissues, the expression of HIF1AN was decreased in Luminal,

HER2 positive, and triple negative BC. Furthermore, the expression of

HIF1AN was decreased as the tumor level increased. Notably, middle-

stage and late-stage BC had much lower expression of HIF1AN than

early-stage BC (Figure 2C). HIF1AN expression was significantly

decreased in BC than in all phases of lymph node phase specimens

(Figure 2D). These findings suggest that the level of cancer is related

to reduced HIF1AN.
Decreased HIF1AN is linked to poor survival
in breast cancer patients

The expression of HIF1AN in BC patients was lower than in

healthy individuals. Therefore, there is a need to further investigate

the relationship between HIF1AN and tumor rates. To assess the

relationship between HIF1AN and prognostic outcomes in BC, KM

survival curves were to explore the connection between HIF1AN and
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illness prognosis. In the group 226648-at, it is noteworthy that higher

levels of HIF1AN expression were associated with better outcomes for

BC (overall survival (OS): HR = 0.49, p < 0.001; recurrence-free

survival (RFS): HR = 0.52, p < 0.001; distant metastasis-free survival

(DMFS): HR = 0.55, p <0.001) (Figure 3).

Next, using the PAM50 subtype approach, we evaluated the

likelihood that HIF1AN expression would be present in various

subtypes. The healthy breast-like subtype group showed better OS

when HIF1AN was highly expressed (p=0.027). The luminalA,

luminalB, and basal-like subtype groups, although, did not show

any major changes, while the HER2 subtype cohort showed a

tendency in the other direction (p=0.027). These findings imply

that the outcome of various BC subtypes is correlated with the

expression level of HIF1AN.
Predicted biological function and pathways
of HIF1AN in BC

Genes co-expressed with HIF1AN (|logFC| > 1, P.adj <0.05) were

chosen to perform gene analyses once their bioactivity was

determined. Epidermis progression, skin growth, epidermal cell

differentiation, and keratinocyte differentiation were all

considerably elevated in GO terms used to describe biological

processes (BP) (Figure 4A). For the cellular component,

extracellular matrix, vesicle lumen, and cytoplasmic vesicles that

hold collagen were enriched (CC) (Figure 4B). Receptor-ligand

action, enzyme suppressing activity, and channel activity were all
A B

D EC

FIGURE 1

Stratified by HIF1AN levels, different mRNA expression patterns in BC patients. (A) The TCGA database-based expression of HIF1AN in various kinds of
cancer. (B) According to the TCGA-BRCA data, HIF1AN expression was markedly reduced in BC cells as compared to healthy cells. (C) According to the
TCGA-BRCA sets of data, HIF1AN expression was considerably reduced in associated BC tumour tissues as compared to neighbouring healthy tissue. ns,
P ≥ 0.05; *P < 0.05; **P < 0.01; ***P < 0.001. (D) Evaluation of HIF1AN mRNA expression levels in breast tissues epithelium and breast cancer cell lines
using reverse transcription-quantitative PCR. Mann Whitney U analysis of the relationship between TCGA BRCA datasets’ HIF1AN gene expression; (E)
High- and low-HIF1AN expression cohorts’ mRNA expression patterns are displayed. Volcano graphs are used to visualize information.
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highly enriched, according to the molecular function (MF) study

(Figure 4C). Additionally, KEGG results suggests that the IL-17

signaling mechanism, neuroactive ligand-receptor activity, and

cytokine-cytokine receptor interplay were dominant processes

(Figure 4D). Generally, the findings suggested that HIF1AN and the

genes its co-expresses may be involved in cell signaling, which may

control BC’s biological pathways.
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Furthermore, GSEA was carried out using the normalized enrichment

score (NES) and FDR (false discovery rate) q-value to clarify the potential

biological mechanisms controlled by HIF1AN between elevated and reduced

HIF1AN expression cohorts. As illustrated in Figure 5, a number of signal

mechanisms, such as Notch signaling, cell-surface contacts, CD8 TCR

downstream pathway, and chemokine signaling pathway, were substantially

concentrated in the cohort with decreased HIF1AN expression.
A B C

FIGURE 3

Kaplan-Meier survival curves comparing the elevated and reduced expression of HIF1AN in BC. Survival curves of OS (A), RFS (B), and DMFS (C). OS,
overall survival; RFS, recurrence-free survival, DMFS, distant metastasis-free survival.
A B

DC

FIGURE 2

Correlation between HIF1AN expression level and clinicopathological variables of BC through the UALCAN datasets. (A) HIF1AN expression was
remarkably downregulated in breast primary tumor than that in normal tissues. (B) HIF1AN expression was lower in luminal, HER2 positive and triple
negative BC than in normal tissues. (C) HIF1AN expression in middle-stage and late-stage BC was substantially lower than in the early phase. (D) HIF1AN
expression at all stages of lymph node stage specimens was substantially lower in BC than in healthy one; P, primary tumor; S1, stage 1; S2, stage 2; S3,
stage 3; S4, stage 4.
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Correlation of HIF1AN expression and
immunity cells infiltration in BC

One of the main elements influencing tumor growth is immune

infiltration. Notably, 24 different types of immune cells were found in

breast tumor using ssGSEA. The relationship between immune cell

infiltration and HIF1AN expression was then examined employing

Spearman’s analysis. Figure 6A reveals significant positive correlation

between HIF1AN expression and Tcm cells (R = 0.320, P <0.001),

eosinophils (R = 0.260, P <0.001), T helper cells (R = 0.330, P <0.001),

and NK cells (R = 0.087, P = 0.004). However, there was a negative

connection between HIF1AN and macrophages (R = -0.171, P <0.001),

neutrophils (R = -0.146, <P 0.001), Th1 cells (R = -0.271, P <0.001), CD8

T cells (R = -0.169, P <0.001), and aDC cells (R = -0.251, P <0.001).

Moreover, the rates of immune cell infiltration in various HIF1AN

cohorts were assessed, including Tcm cells (Figure 6B), T helper cells

(Figure 6C), Th17 cells (Figure 6D), eosinophils (Figure 6E), neutrophils

(Figure 6F), and Treg cells (Figure 6G). The findings were in line with

those shown in Figure 3A, demonstrating the significance of HIF1AN in

immune infiltration of Breast malignancy.

The relationship between HIF1AN and several TIL indicators

(neutrophils, T cells and associated variants, CD8+/CD4+ T cells, NK

cells, B cells, monocytes, DCs, TAMs, M1 macrophages, and M2

macrophages) in BC was investigated using the GEPIA and TIMER

datasets. It was found that most TIL identifiers were correlated with

HIF1AN. Additionally, several functional T cells, particularly Tregs,
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Th1, Th2, Th17, Tfh cells, and fatigued T cells, were examined.

Results showed that HIF1AN was particularly strongly correlated

with TILs (Supplementary Table 1).

Interestingly, the findings suggested a correlation between

HIF1AN in breast malignancy and PDCD1, LAG3, CTLA4, and

GZMB of T cell exhaustion as well as chemokine ligand CCL2 of

TAMs (Figures 7A, B). proving that HIF1AN may have a role in

controlling T cell fatigue in breast tumors.
Correlation between the HIF1AN and
chemokines in BC patients

Chemokines regulate infiltration of immune cells (22). Here, we

found that HIF1AN expression was correlated with chemokines.

Particularly, HIF1AN expression was significantly (p < 0.001)

linked to CCL2 (Cor = -0.338), CCL3 (Cor = -0.222), CCL4 (Cor =

-0.303), CCL5 (Cor = -0.367), CCL8 (Cor = -0.264), CCL11 (Cor =

-0.164), CCL13 (Cor = -0.297), CCL7 (Cor = -0.279), CCL17 (Cor =

-0.264), CCL19 (Cor = -0.221), CX3CL1 (Cor = -0.351), CXCL9 (Cor =

-0.234), CXCL10 (Cor = -0.282), CXCL13 (Cor = -0.21), and XCL2 (Cor

=- 0.286). Furthermore, HIF1AN expression was also related with

chemokine receptors (p < 0.001), including CCR1 (Cor = -0.203),

CCR2 (Cor = -0.151), CCR5 (Cor = -0.179), CCR7 (Cor = -0.223),

CCR10 (Cor = -0.275), CXCR3 (Cor = -0.285), CXCR4 (Cor = -0.273),

CXCR5 (Cor = -0.211), CXCR6 (Cor = -0.26) and CX3CR1 (Cor = 0.187)
A

B D

C

FIGURE 4

Go and KEGG enrichment test of genes associated with HIF1AN in BC cells in the TCGA-BRCA data. (A–C) Go enrichment evaluation revealed the BP
(biological processes), CC (cellular components), and MF (molecular function) of co-expressed genes with HIF1AN. (D) substantially enriched KEGG terms
derived from KEGG enrichment test of co-expressed genes with HIF1AN.
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(Table 1). The above outcomes further proved that HIF1AN may

modulate in breast malignancy.
Discussion

Hypoxic stress is a characteristic of most solid tumors and is

associated with adverse clinical outcomes (23). HIF1A is the main

regulator of hypoxic response. Recent studies have demonstrated that

the tumor immune escape is closely related to epithelial-mesenchymal

transformation (EMT) of tumor cells and regulates the tumor

microenvironment (24). In particular, HIF1A is stimulates the EMT

in cancer cells, and modifies the immune function of tumor cells, and

promotes immune escape (16). HIF1AN, an asparagine hydroxylase

and an upstream regulation gene of HIF1A, acts as an inhibitor of

HIF1A and is an important transcription factor that affects responses

to hypoxia (17). Under normoxic conditions, HIF1AN inhibits the

transcriptional activity of HIF1A, to prevent the transcription of the

HIF1A-mediated gene. However, under hypoxic conditions, the
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inhibition is relieved, allowing HIF1A to recruit CBP/p300,

resulting in expression of the target gene (25). Although HIF1AN

has been well investigated in several kinds of malignant tumors, its

clinical significance and possible regulatory role in immunity in breast

malignancy is unknown.

In the current work, a bioinformatics analyses were done to

examine the bioactivities of HIF1AN in BC. According to our

studies, HIF1AN expression was downregulated in breast cancer

females which correlated with poor prognosis (Figure 3). These

findings further showed that decreased HIF1AN expression was

directly linked to the level of immune cell, immunostimulator,

immunological inhibitor, receptor, and chemokine infiltration in

BC (Figures 6, 7, Table 1). Therefore, we concluded that HIF1AN

may be a tumor suppressor with the potential to be a treatment target

in women with breast cancer. It is also likely to be an indicator of

immune infiltration in BC.

The expression of HIF1AN in BC was determined using a

separate database. In normal cells and cancer cells, HIF1AN was

considerably reduced in BC cells, and it was related to the tissue level
A B

D E F

G IH

C

FIGURE 5

Enrichment plots from the gene set enrichment analysis (GSEA). (A) IL12 mechanism, (B) interleukin10 signaling, (C) DNA damage telomere stress
induced senescence, (D) Notch signaling, (E) ECM affiliated, (F) chemokine signaling pathway, (G) CD8 TCR downstream pathway, (H) cytokine-cytokine
receptor interaction, and (I) neutrophil degranulation were substantially enriched in HIF1AN-associated BC. NES, normalized enrichment scores; FDR,
false discovery rate.
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(Figure 2). Furthermore, low expression of HIF1AN was correlated

with negative clinical outcomes (Figure 3). These findings imply that

HIF1AN may act as a tumor inhibitor in BC and slow the spread of

breast cancer. Earlier studies also showed that HIF1AN deficiency

increased VEGF expression in head and neck cancer, elevated the

expression of HIF1AN to suppress the oncogenic progression of head

and neck squamous cell carcinoma (26). Inhibition of HIF1Awas

found to be a therapeutic strategy for the human colorectal cancer
Frontiers in Oncology 08
(17). Furthermore, a comparable investigation revealed that miR-

135b-5p may promote the growth of ovarian cancer cells by

suppressing HIF1AN the expression (27). These studies showed the

cancer-inhibitory role of HIF1AN in other tumors, which was similar

to the results of our analysis in BC.

Surprisingly, the PAM50 test showed that the effect of HIF1AN

expression on survival rates varied across different breast cancer

subtypes. Decreased HIF1AN expression, particularly in the
A

B

FIGURE 7

HIF1AN expression correlated with T cell exhaustion and markers include CCL2 and CD68 of TAMs in BC; Scatterplots of correlations between HIF1AN
expression and gene indicators of (A) T cell exhaustion, (B) TAMs.
A B D

E F G

C

FIGURE 6

Correlation of immune cell infiltration and HIF1AN expression in BC females. (A) correlations among infiltration levels of 24 kinds of immune cell and
HIF1AN expression profiles by Spearman’s evaluation test. Illustrated is the comparison of infiltration levels of most correlated immune cells, containing
Tcm (B), T helper cells (C), Th17 cells (D), Eosinophils (E), Neutrophils (F) and Treg (G) between high and low HIF1AN expression groups. DCs, dendritic
cells; aDCs, activated DCs; iDCs, immature DCs; pDCs, plasmacytoid DCs; Th, T helper cells; Th1, type 1 Th cells; Th2, type 2 Th cells; Th17, type 17 Th
cells; Treg, regulatory T cells; Tgd, T gamma delta; Tcm, T central memory; Tem, T effector memory; Tfh, T follicular helper; NK, natural killer; ns: P ≥

0.05, *P < 0.05, ** P < 0.01, and *** P < 0.001.
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normal-like subtype, was associated with poor prognosis but opposite

results were obtained in the HER2 subtype. These findings imply that

HIF1AN has diverse functions in different BC types, but it is

important to take into account sampling errors in the five

BC subtypes.

TCGA datasets were subjected to GO and KEGG analyses of the

HIF1AN-coexpressed genes and GSEA analyses of HIF1AN to better

investigate the cellular roles and related concepts of HIF1AN in BC.

Results of GO analysis revealed physiological systems associated with

the formation of the epidermis, the extracellular structure that

contains collagen, and receptor-ligand activity (Figure 4). The

KEGG analyses revealed two major systems: cytokine-cytokine

receptor interaction and neuroactive ligand-receptor relationship

(Figure 5). A previous study showed that carcinogenesis and

progression were thought to be influenced by neuroactive ligand-
Frontiers in Oncology 09
receptor interaction in several malignant forms, including glioma

(25), renal cell carcinoma (28), colorectal cancer and hepatocellular

carcinoma (29). HIF1AN might contribute to the neuroactive ligand-

receptor interaction and cell signaling processes needed for BC to

start and spread malignancy.

In the low HIF1AN expression phenotype, GSEA findings

indicate that a number of routes were considerably dominated,

including the chemokine signaling pathway, CD8 TCR downstream

mechanism, interleukin 10 and ECM affiliated signaling (Figure 4).

These mechanisms show a tight connection with cancer or the

inflammatory reaction. Increased HIF1AN expression was

associated with chronic colitis in a previous study (30).

To explore the immune infiltration status of BC and its

association with HIF1AN, we assessed immune cell populations and

their correlation with HIF1AN expression levels. Our results
TABLE 1 Correlation analysis between the expression of HIF1AN and Chemokines & Receptors in breast cancer at TISIDB datasets.

Chemokines & Receptors HIF1AN

Cor p Value

CCL2 -0.338 <0.001

CCL3 -0.222 <0.001

CCL4 -0.303 <0.001

CCL5 -0.367 <0.001

CCL7 -0.279 <0.001

CCL8 -0.264 <0.001

CCL11 -0.164 <0.001

CCL13 -0.297 <0.001

CCL17 -0.264 <0.001

CCL18 -0.264 <0.001

CCL19 -0.221 <0.001

CXCL8 -0.19 <0.001

CXCL11 -0.266 <0.001

CXCL13 -0.21 <0.001

CXCL16 -0.324 <0.001

XCL1 -0.27 <0.001

XCL2 -0.286 <0.001

CCR1 -0.203 <0.001

CCR2 -0.151 <0.001

CCR5 -0.179 <0.001

CCR7 -0.223 <0.001

CCR10 -0.275 <0.001

CXCR3 -0.285 <0.001

CXCR4 -0.273 <0.001

CXCR5 -0.211 <0.001

CXCR6 -0.26 <0.001

CX3CR1 0.187 <0.001
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illustrated that HIF1AN expression is negatively correlated with

numerous immune cells. High HIF1AN levels are associated with

decreased infiltration of several immunocellular markers including

CD8 T cells, B cells, DC cells and neutrophils (Figure 6, 7 and

supplementary materials). These results need to be further validated

through in vitro and in vivo experiments. Nevertheless, they suggest

that the role of HIF1AN in TILs attraction and cancer

microenvironment through which immune cells regulate

tumorigenesis, cancer development and metastasis, as well as affect

the efficacy and/or resistance to chem- and immunotherapy (31).

Immunosuppressive cells like Treg cells and neutrophils can inhibit

antitumor response and high levels of these cell types in a hypoxic

environment significantly modulate the immune microenvironment

(32). In the present study, we observed a similar effect, with higher

levels of Tregs and neutrophil cells found in BC females with low

HIF1AN expression than in patients with elevated HIF1AN

expression. This indicates that HIF1AN may be a favorable factor

that modulate the immune microenvironment of BC patients.

Most studies have shown that immune checkpoints have cancer

immunosuppressive effects and are the primary immunotherapeutic

strategy (32). To date, multiple clinical studies have demonstrated the

efficacy of immunosuppressants against PD1/PDL1 in various

malignancies, including TNBC (33). However, resistance to

immune therapy limits their clinical application (34). Therefore,

improving malignant tissue response to immune checkpoint

suppressors and cytokines has a significant impact in cancer

treatment. It was demonstrated that low oxygen increased PD-L1

expression on macrophages in the tumor milieu (35). Additionally, it

was shown that hypoxia significantly reduced the ability of CTLs to

kill cancer cells (36). This is likely because HIF1A affects the

sensitivity of malignant cells to CTL-mediated killing by increasing

expression of NANOG and microRNA (miR)-210 (37, 38).

Additionally, combining anti-PD-1 with reducing HIF1A

concentrations by pharmacologically inhibiting Axl decreases the

main tumour and metastatic loads in a preclinical model of HER2+

breast cancer, indicating a viable treatment strategy in BC (39).

According to our findings, PD1, LAG3, CTLA4, and GzmB were all

inversely correlated with T cell fatigue, as were elevated doses of

HIF1AN expression. GzmB should be considered a sign of late T cell

depletion. The exhausted T cells showed a diminished function in a

hierarchical way (40). It is suggested that lower expression of HIF1AN

is correlated with a higher level of T cell exhaustion markers, which

indicates that the tumor may under a hypoxia state, the HIF1A is

activated, and the T cells enter a cellular state called “Exhaustion”,

they unable to clear the tumor cells. Therefore, decrease HIF1A

activity by HIF1AN inhibition could provide an antitumorigenic

microenvironment. Additionally, GzmB is an indicator for NK cell

(Natural Killer)-mediated killing. One of the main methods by which

NK cells destroy tumor cells is by producing cytotoxic granules

containing perforin (PRF1) and GzmB. According to reports, lack

of oxygen negatively affects NK-mediated killing in addition to

impairing CTL-mediated death. Evidence indicates that ischemic

cells preferentially activate phagocytosis to destroy the proapoptotic

protein GzmB, which prevents the NK system from destroying cancer

cells (41). Our findings, therefore, indicated that there is a bad

correlation between GzmB expression and HIF1AN. This suggested

that lack of oxygen cells may correspond with greater NK cellular
Frontiers in Oncology 10
function rather than a suppressive impact in reduced

HIF1AN conditions.

Additionally, this study found that high expression level of

HIF1AN were also negatively correlated with chemokines and

receptors (Table 1). Most tumors produce two types of chemokines,

CXC and CC. Studies have shown that CCL5 promotes tumor cell

growth and inhibits paracrine and autocrine apoptosis of breast

cancer (42). This indicate that decreased HIF1AN level may

through chemokines regulate the tumor growth and apoptosis.

Other studies have reported that HIF induced the release of

proinflammatory and proangiogenic substances by breast cancer

cells, adipocytes, infiltrating CD8+ T cells, and other stromal cells,

suggesting an intricate interplay between HIFs, proinflammatory

factors derived from tumor and various TME cells, and

angiogenesis that has yet to be fully elucidated (43, 44), and

HIF1AN may a l so regu l a t e ang iogenes i s and tumor

microenvironment through chemokines and cytokines .

Furthermore, chemokines and cytokines play an essential role in

leukocyte recruitment. These results reflected that higher HIF1AN

may correlated with lower level of immune response in the tumor

microenvironment, and higher HIF1AN may also correlated with

lower level of angiogenesis and proliferation, which indicate a better

situation of the patient.

In conclusion, this study demonstrated that high HIF1AN

expression may be associated with a favorable prognosis of BC

patients. HIF1AN was also found to be involved in immune

infiltration mechanisms, to modulate the tumor immune

microenvironment. Further in vitro and in vivo investigation and

validation experiments are necessary to confirm these observations.

This study is the first systematic in-clinic investigation of core

correlations of HIF1AN in BC, exploring its potential molecular

mechan i sm and func t i on in modu l a t i n g th e tumor

microenvironment. Thus, HIF1AN is a potential prognostic factor

and therapeutic target of BC.
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