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Loss of liver kinase B1 in
human seminoma

Manish Kumar, Subhransu S. Sahoo, M. Fairuz B. Jamaluddin
and Pradeep S. Tanwar*

School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
Testicular cancer is a common malignancy of young males and is believed to be

originated from defective embryonic or adult germ cells. Liver kinase B1 (LKB1) is

a serine/threonine kinase and a tumor suppressor gene. LKB1 is a negative

regulator of the mammalian target of rapamycin (mTOR) pathway, often

inactivated in many human cancer types. In this study, we investigated the

involvement of LKB1 in the pathogenesis of testicular germ cell cancer. We

performed immunodetection of LKB1 protein in human seminoma samples. A 3D

culture model of human seminoma was developed from TCam-2 cells, and two

mTOR inhibitors were tested for their efficacy against these cancer cells. Western

blot and mTOR protein arrays were used to show that these inhibitors specifically

target the mTOR pathway. Examination of LKB1 showed reduced expression in

germ cell neoplasia in situ lesions and seminoma compared to adjacent normal-

appearing seminiferous tubules where the expression of this protein was present

in the majority of germ cell types. We developed a 3D culture model of

seminoma using TCam-2 cells, which also showed reduced levels of LKB1

protein. Treatment of TCam-2 cells in 3D with two well-known mTOR

inhibitors resulted in reduced proliferation and survival of TCam-2 cells.

Overall, our results support that downregulation or loss of LKB1 marks the

early stages of the pathogenesis of seminoma, and the suppression of

downstream signaling to LKB1 might be an effective therapeutic strategy

against this cancer type.
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Introduction

Testicular cancer (TC) is the most common malignancy in young men, with an

increasing incidence over the past 30 years (1, 2). It affects males during the peak of

reproductive life and causes a decline in male reproductive health which is associated with

reduced semen quality, increased germ cell abnormalities, and infertility (1, 3). As per the

World Health Organization (WHO) classification, TC is divided into three main types:

germ cell tumors (GCTs), sex cord stromal tumors, and mixed germ cell sex cord stromal

tumors. GCTs are further subdivided into two major subtypes, germ cell neoplasia in situ

(GCNIS)-derived and not GCNIS-derived (4). GCNIS-derived tumors are categorized into
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five different types, including seminoma, trophoblastic tumors

(choriocarcinoma and other trophoblastic tumors), embryonal

carcinoma, teratoma (post-pubertal type) and yolk sac tumors (4).

GCTs are the most common (>95% of cases) form of TC (5).

Among GCTs, seminoma is the most common type and accounts

for approximately 50% of cases (6).

GCTs originate from the uncontrolled division of germ cells

that fail to mature and differentiate (7). These cancer cells are

believed to arise from primordial germ cells either during their

migration to genital ridges or mitotic division to increase germ cell

numbers after they reach genital ridges (8). TC initiates as GCNIS, a

pre-invasive cancer stage in which the cancer cells express

primordial germ cell markers. During the onset of puberty,

GCNIS cells proliferate and develop neoplastic characteristics

leading to TC (9). TCs are successfully treated by orchidectomy

followed by cisplatin-based chemotherapy, however, treatment

reduces patient fertility. Moreover, 20-30% of TC patients do not

respond to standard chemotherapy or relapse (10, 11). Only 20-25%

of these unresponsive patients respond to salvage chemotherapy in

combination with cisplatin and previously unused drugs (11, 12).

Non-germinomatous germ cell tumors, a form of GCTs which may

be located in the central nervous system, have a poor prognosis with

less than 10% 5-year survival rate (13). The reasons for this poor

prognosis are unknown molecular mechanisms underlying the

development of both chemotherapy-sensitive and resistant

tumors. Previous efforts to treat these unresponsive cases of TC

have mostly led to disappointing results due to a lack of full

understanding of mechanisms underlying the resistance

development (14). Thus, identifying the mechanisms involved in

the initiation of GCNIS, the progression of GCNIS into TC,

and the development of chemotherapy-resistant tumors will

potentially facilitate early diagnosis, improved prognosis, and less

invasive therapeutic approaches, especially in case of relapse/

unresponsive cancer.

mTOR pathway is a major regulator of cell growth and division,

and activating mutations have been reported in many different

cancer types, including TC (13, 15–17). Balanced mTOR signaling

is essential for the proliferation and differentiation of

spermatogonial cells and the male fertility (18). LKB1 is a

negative regulator of the mTOR pathway, and its inactivation in

patients and mice predispose them to early onset of tumors (19).

Moreover, loss of LKB1 in Peutz-Jeghers syndrome (PJS) is well-

known to cause large-cell calcifying Sertoli cell tumors of the testes

(LCCSCTs) (20). This led us to investigate the role of LKB1 in

human GCTs. In this study, we showed downregulation of LKB1

expression in seminoma patients and suppression of the mTOR

pathway in a seminoma cell line resulted in reduced cell viability

and proliferation.
Materials and methods

Human and mouse testis tissue samples

The use of human TC tissue samples in this study was approved

by the Institutional Human Research Ethics Committee at The
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University of Newcastle, NSW, Australia. Human GCTs tissue

samples (n = 13) were obtained from Hunter Cancer Biobank.

High-density tumor microarrays (TMA) were obtained from

Biomax (US Biomax, MD, USA). It included 48 tissue cores (35

seminoma, 5 non-seminoma and 8 normal). For quality control of

TMA at Biomax, each single tissue spot on every array slide is

individually examined by pathologists and certified according to

WHO-published standardizations for the diagnosis and

classification of TC. All mouse experiments performed were

approved by the Animal Care and Ethics Committee of the

University of Newcastle, Australia. Mouse care and experimental

protocols were performed strictly under New South Wales Animal

Research Act, New South Wales Animal Research Regulation, and

the Australian code for the care and use of animals for scientific

purposes guidelines. Testes from three adult C57BL/6;129SvEv

mixed genetic background mice were collected and processed for

histopathology as described (21).
Cell culture

TCam‐2 cell line was kindly provided by Prof. Eileen

McLaughlin (University of Newcastle). These cells were cultured

in RPMI1640 (Gibco, Invitrogen, CA, USA), with penicillin/

streptomycin (Gibco) and 10% fetal bovine serum (FBS, Bovogen

Biologicals Pty, Vic, Australia) in an incubator with 5% CO2 and 37°

C temperature (22). For 3D culture, TCam-2 cells were cultured on

96-well culture plates double-coated with polyHEMA [poly(2-

hydroxyethyl methacrylate); Sigma-Aldrich, MO, USA].

PolyHEMA solution was prepared by dissolving 1.5 g PolyHEMA

in 5 ml molecular biology grade water and 95 ml absolute ethanol

(Sigma-Aldrich) at 65°C for 6 hours (23, 24). 5000 cells were

cultured in each well for seven days with media change every 2

days. The images were taken with JuLiTM Stage Real-Time Cell

History Recorder (Nanoentek, Seoul, South Korea) in a humidified

incubator with 5% CO2 and 37˚C temperature. For carboplatin,

BEZ235, and everolimus treatments, 25000 cells in 50 µl Matrigel

(Invitrogen, CA, USA) were plated in 24 well plates and cultured for

seven days with media change every two days. For colony formation

efficiency and colony death, the number of colonies were manually

counted in each well. The viability of the cells cultured in the

presence of control (DMSO), BEZ235, everolimus (dissolved in

DMSO) and cisplatin plus BEZ235/everolimus was assessed using

Vision Blue Cell Viability Fluorometric Assay (BioVision, CA,

USA) performed as per manufacturer’s instructions (25). Each

treatment was done in triplicate and every experiment was

repeated three times.
Immunohistochemistry (IHC) and
immunofluorescence (IF)

IHC was performed as described in (21). Briefly, after

deparaffinization and rehydration of paraffin sections following

standard procedures, heat induced epitope retrieval was carried

out in sodium citrate antigen unmasking buffer (pH 6.0) using a
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decloaking chamber (Biocare Medical, CA, USA) at 110˚C for

20 min. After inactivation of endogenous peroxidases with 0.3%

H2O2 in absolute methanol and blocking with 10% goat serum in

phosphate buffer saline, primary antibody (LKB1, 1:100 dilution,

Plzf, 1:100 dilution, Santa Cruz Biotechnology, CA, USA; mTOR

and p4EBP1, 1:100, Cell Signaling Technology, MA, USA; Stra8,

1:100 dilution, Abcam, VIC, Australia) was applied to the sections.

Following incubation in HRP-tagged secondary goat anti-rabbit

antibodies (Jackson ImmunoResearch Laboratories, PA, USA), the

color was developed with DAB (3,3’-diaminobenzidine, Sigma-

Aldrich) (21). For immunofluorescence, fluorophore tagged

secondary antibodies (Jackson ImmunoResearch Laboratories,

PA, USA) were used (26).
Western blotting and mTOR array

TCam-2 cells were cultured in 6-well plates and were treated with

BEZ235 (0-100 nmol/L) and everolimus (0-10 nmol/L) for 72 hours.

Protein was extracted using RIPA buffer and equal amounts (27µg) of

proteins were loaded and separated using sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (27). Following the transfer of

proteins on a nitrocellulose membrane, they were incubated

overnight at 4˚C in primary antibodies: pS6, S6 (1:1000, Cell

Signaling Technology) and b-actin (1:2000, Sigma-Aldrich). HRP

conjugated secondary antibodies (Jackson ImmunoResearch

Laboratories) were used to detect the primary antibodies. The mean

density of the protein bands was determined using NIH ImageJ plugin.

b-actin was used as a loading control. Chemiluminescent mTOR

Signaling Antibody Array was performed as per manufacturer’s

instructions (Cell Signaling Technology). Equal amount of protein

(27 µg) was loaded in each group. The array target map was obtained

from the manufacturer’s homepage.
Statistical analysis

All the statistical analysis was performed using Graph Pad

Prism 6.0. The values are presented as mean ± SD. Student t-test

was performed to calculate P-values. P-values less than 0.05 were

considered statistically significant.
Results

LKB1 expression was downregulated in
testicular cancer

Previously, we have established that LKB1 is a tumor suppressor

gene and a negative regulator of the mTOR pathway (28). In this

study, we investigated the expression of LKB1 among human

seminoma patient samples. In both human and mouse testis,

LKB1 expression was higher in germ cells committed for

differentiation cells (Stimulated by Retinoic Acid 8: STRA8+)

than in spermatogonia (PLZF+, Figure 1; n=3/each). Compared
Frontiers in Oncology 03
to normal adjacent tubules, LKB1 expression was reduced in

adjacent GCNIS lesions in the same patient (Figure 2A; n=5).

Similarly, LKB1 expression was decreased or lost in seminoma,

but intact LKB1 expression was present in adjacent normal-looking

tubules in the same patient (Figures 2B–D). To further confirm the

expression of LKB1 in a larger cohort of samples, we used a

testicular cancer tissue array with 48 tissue cores (35 seminoma, 5

non-seminoma, and 8 normal; Figure 2E). In these additional

patients, we also found a significant reduction in the expression
B

C

D

A

FIGURE 1

Differential expression of LKB1 in germ cells of human and mouse
testis. (A, B) A low level of LKB1 expression is present in PLZF-
positive spermatogonia in normal human and mouse testis. (C, D)
Higher LKB1 protein expression is present in differentiated germ
cells (STRA8). Areas outlined with squares in Ab’’, Bb”, CB”, and DB”
are presented at higher magnification in insets. Bars: 100 µm.
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of LKB1 protein in seminoma compared to controls (Figures 2F, G;

P = 0.0007).
Development of a 3D culture model of
seminoma using TCam-2 cells

Two-dimensional (2D) cell culture system is a conventional in

vitro model to study cellular responses to stimulations from

biochemical and/or biophysical cues. Although 2D culture
Frontiers in Oncology 04
approaches have advanced our understanding of cancer cell

growth, the results from 2D systems deviate significantly from in

vivo response (29). For instance, some essential characteristics of

cancer cells cannot be appropriately modeled in 2D cultures (30).

To overcome this limitation, novel 3D cell culture platforms are

being created that better mimic in vivo conditions (31–33). Previous

studies on 3D culture have demonstrated that the presence of

extracellular matrix (ECM) around cells significantly impacts cell

proliferation, differentiation, and survival (34). Therefore, to mimic

the 3D arrangement of cancer cells observed in GCTs and in vivo
B

C D

E F G

A

FIGURE 2

The loss of LKB1 expression is a common feature of seminoma. (A) LKB1 expression is present in normal-looking seminiferous tubules but absent in
tubules with germ cell neoplasia in situ (arrows). (B–D) LKB1 protein expression is absent in cancerous germ cells but present in adjacent normal
seminiferous tubules. (E) A representative image of testicular tissue array containing representative tissue samples from seminoma (n=35; outlined in
red) and healthy controls (n=8; outlined in black). (F) Examples of LKB1 staining in tissue arrays cores representing seminoma and normal controls.
(G) Quantification of LKB1 staining intensity between healthy controls and seminoma tissue samples. Bars: 100 µm.
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conditions, we cultured the TCam-2 cells as 3D spheroids. In 2D

culture, TCam-2 cells showed flat morphology (Figure 3A), while in

3D culture, these cells grew in the form of spheroids where cells

were connected in three dimensions (Figure 3A).
Suppression of PI3K-mTOR signaling axis
in seminoma cells after treatment with
everolimus and BEZ235

In a previous study, we showed that the loss of the LKB1 gene in

the uterus leads to endometrial cancer development through
Frontiers in Oncology 05
hyperactive mTOR signaling and suppression of mTOR signaling

in mice suppressed endometrial cancer growth (28). Due to the loss

or reduced expression of LKB1 in seminoma samples, we decided to

investigate if suppression of mTOR signaling in seminoma cells will

affect their growth. First, we confirmed that mTOR signaling is

upregulated in seminoma by examining the expression of mTOR

and p4EBP1 (Figures 3B, C). To downregulate the mTOR pathway,

we used two FDA-approved mTOR inhibitors (everolimus and

BEZ235). We cultured the TCam-2 cells in 3D in the presence of

different concentrations of everolimus (1 and 10 nM) and BEZ235

(10 and 100 nM) and found a reduction in colony number among all

the concentrations used for both the drugs (Figure 3D). To investigate
B

C

D

E F

G

H I

A

FIGURE 3

mTOR suppression inhibits the growth of human seminoma cells cultured in 3D. (A) Phase-contrast images of TCam-2 cells in 2D and 3D. (B, C)
Increased mTOR and p4EBP1 expression in cancer tissues compared to normal adjacent. (D) TCam-2 cells were cultured (5 x 103 cells/well) in 3D in
a 96-well tissue culture plate. On Day 2, cells were treated with increasing concentrations (1-10 nM) of everolimus and (0-100 nM) of BEZ235. The
efficiency of colony formation for TCam-2 cells were calculated in different drug concentrations (Number of colonies formed/total number of cells

seeded, n=4 experiments). (E, F) Cell viability of TCam-2 cell line was assessed by VisionBlue™ fluorometric assay after treatment with increasing
concentrations (0-10 nM) of everolimus and (0-100 nM) of BEZ235 (n = 3, *P < 0.05; **P < 0.01; ***P < 0.001). (G) Western blot depicting no
change in the expression of S6 with everolimus treatment. However, BEZ235 treatment reduced S6 expression in TCam-2 cells. A dose-dependent
decrease in pS6 expression was observed in both treatments. b-actin levels are shown for loading control. (H) mTOR protein array revealed a
decrease in the activity levels of some of the key components of mTOR signaling after treatment with everolimus or BEZ235. (I) Bar diagram
showing quantification of the differentially regulated proteins in mTOR array. Bar: 100um.
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the reasons for reduced colony number, we examined the viability of

these cells. We found a progressive and significant decline in the

viability of TCam-2 cells cultured in the presence of increasing

concentrations of everolimus and BEZ235 (Figures 3E, F).

To confirm the downregulation of the mTOR pathway with

everolimus and BEZ235 treatment, we examined the expression of

pS6 (a downstream target of the mTOR pathway). Both everolimus

and BEZ235 caused a reduction in pS6 expression in TCam-2 cells at

all the concentrations used (Figure 3G). As expected, everolimus did

not affect the expression of S6. However, BEZ235 treatment altered S6

expression in TCam-2 cells (Figure 3G), which is consistent with a

previous observation (35). To understand the effect of everolimus and

BEZ235 on other members of the mTOR pathway, cell lysates from

treated and control TCam-2 cells were subjected to a mTOR protein

array, which allows simultaneous detection of 16 phosphorylated

proteins belonging to the mTOR/Akt signaling axis. Treatment with

everolimus and BEZ235 reduced the expression level of some of the

key components of the mTOR pathway (mTOR Ser2481, S6RP

Ser235/236, RSK1 Thr421/Ser424, Bad Ser112 and PRAS40 Thr246;

Figures 3H, I). The phosphorylation of mTOR at Ser2481 and S6

ribosomal protein at Ser235/236 indicated activation of the mTOR

pathway. RSK1 Thr421/Ser424 phosphorylates a wide range of

substrates, including ribosomal protein S6, and positively regulates

protein translation and cell growth. Bad is a pro-apoptotic protein,

and its phosphorylation at Ser112 by Akt promotes cell survival.

Phosphorylation of PRAS40 at Thr246 by Akt relieves PRAS40

inhibition of mTORC1 resulting in upregulation of the mTOR

pathway. Reduced expression of these components (Figure 3I) in

the everolimus and BEZ235 treatment groups indicated the

suppression of the mTOR pathway among the everolimus and

BEZ235 treatment groups.
Co-treatment of mTOR inhibitors with
carboplatin act synergistically against
testicular cancer germ cells

Previous studies have shown that Seminoma patients respond

well to carboplatin with 95% relapse-free 5-year survival rate (36).

To find if the suppression of the mTOR pathway can synergistically

increase the death of cancer cells with chemotherapy drugs, we

cultured TCam-2 cells with different concentrations of carboplatin

and mTOR inhibitors. A dose-dependent reduction in the viability

of TCam-2 cells with increasing concentrations of carboplatin and

mTOR inhibitors was observed (Figure 4A). Furthermore, the

addition of carboplatin reduced the colony formation efficiency

and increased the colony death of TCam-2 cells as compared to

control and mTOR inhibitor only treatments (Figures 4B, C). These

results indicate that mTOR inhibitors may potentially improve the

outcome of the use of chemotherapy drugs in seminoma patients.

Discussion

TC is themost common cancer which affects the young population

during the phase of high career aspirations and the start of sexual life

and can cause infertility and death (37). Despite high sensitivity to
Frontiers in Oncology 06
chemotherapy, a small fraction of TC patients suffers from relapsed or

refractory tumors. In the past 20 years, many targeted treatments have

been tried for patients with refractory TC without any success (38–42).

With several decades of continuous research efforts, neither the

mechanisms involved in resistance development nor promising

therapeutic options for patients with relapse of TC have been

identified. To this end, we investigated the involvement of LKB1, a

tumor suppressor gene, in the development of TC.

TC usually starts as GCNIS and later, alterations in pathways

regulating cell fate and proliferation (such as PI3K/Akt/mTOR

signaling axis), result in the generation of invasive germ cell tumors.

The PI3K/Akt/mTOR signaling axis is well known to play a key role

in cancer development and progression. This axis is indispensable for

many different functions including, cell proliferation, differentiation,

metabolism, cytoskeletal reorganization, and apoptosis (43). A

previous study reported activation of the mTOR pathway in 94.4%

of patients with intracranial germ cell tumors (44). In the present

study, we have shown that LKB1, a tumor suppressor gene and

negative regulator of the mTOR pathway, is downregulated in TC.

LKB1 regulates a broad spectrum of cellular functions, including cell

growth, metabolism, autophagy, and polarity by phosphorylation of

adenosine monophosphate-activated protein kinase (AMPK) and

other AMPK-like kinases (45). With the use of a seminoma cell line

(TCam-2), we showed that suppression of the mTOR pathway results

in reduced viability and proliferation of cancer germ cells. Inhibition

of mTOR with RAD001 in cisplatin-resistant gastric cancer cells has

also yielded promising results (46). However, another study has

shown only a marginal increase in disease-free survival duration in

a fraction of TC patients using everolimus (47). Upstream activation

of the mTOR pathway (such as by downregulation of LKB1) could be

a reason for poor response to everolimus in patients with loss of

PTEN in their study. Moreover, these patients were heavily pre-

treated with chemotherapy for TC, which may have resulted in the

accumulation of multiple mutations. Therefore, the use of mTOR

inhibitors in patients with dysregulated mTOR signaling during the

early stage of the disease will potentially provide a better outcome in

terms of reduced drug toxicity and relapse of the disease. Moreover,

the use of combination therapy needs to be tested on a larger

patient cohort.

Patients with the inactivation of the LKB1 gene are predisposed to

early-onset of several different types of tumors (skin, pancreatic,

ovarian, lung, and cervical cancers) (19). However, the involvement

of LKB1 loss in TC has not yet been reported. We here report the

reduced expression of LKB1 in cancerous germ cells. Therefore,

targeting the loss-of-function mutation of the LKB1 gene presents a

unique therapeutic approach to treating such cancer patients. In this

direction, the establishment of standard genetic and molecular

screening tests for LKB1 gene expression and mutations are critical,

which requires costly deep sequencing techniques. To this end, initial

screening with immunohistochemical staining for LKB1 expression

on cancer tissue samples or biopsies may provide an effective

alternative approach. In this study, we used this approach and

found decreased expression of LKB1 in human TC patient samples

(N=43, 35 seminoma, 8 controls). Another major challenge after

detecting LKB1 expression is developing functional assays to measure

the activation of LKB1 following treatment with AMPK activators
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such as phenformin. This can be achieved by the ex vivo culture of

tumor biopsies. In this direction, we have taken an initial step by

using a novel approach of culturing a seminoma cancer cell line

(TCam-2) in 3D. Treatment of these cells with BEZ235, a dual

inhibitor of mTOR and PI3 kinase, and everolimus, an allosteric

mTOR inhibitor, resulted in reduced viability and proliferation of

cancer cells. These results provide evidence for the potential use of

mTOR inhibitors in TC patients.
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FIGURE 4

mTOR inhibitors act synergistically with carboplatin in reducing viability and colony formation efficiency of TCam-2 cells. (A) TCam-2 cells were
cultured in the presence of escalating concentrations of mTOR inhibitors (BEZ-235, 1 and 10 nM, and everolimus, 10 and 100 nM) in combination
with carboplatin (1, 10 and 50 ng/ml) for four days. The viability was measured in different treatment groups and is expressed as luminescence
(Relative Light Unit, RLU) in comparison to controls (no treatment). (B, C) For colony formation assay and colony death, the colonies were counted
manually (n = 3; ***P<0.001; ****P<0.0001).
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