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Colorectal cancer (CRC) is now the third most common malignancy to cause

mortality worldwide, and its prognosis is of great importance. Recent CRC

prognostic prediction studies mainly focused on biomarkers, radiometric images,

and end-to-end deep learning methods, while only a few works paid attention to

exploring the relationship between the quantitative morphological features of

patients' tissue slides and their prognosis. However, existing few works in this area

suffered from the drawback of choosing the cells randomly from the whole slides,

which contain the non-tumor region that lakes information about prognosis. In

addition, the existing works, which tried to demonstrate their biological

interpretability using patients' transcriptome data, failed to show the biological

meaning closely related to cancer. In this study, we proposed and evaluated a

prognostic model using morphological features of cells in the tumor region. The

features were first extracted by the software CellProfiler from the tumor region

selected by Eff-Unet deep learning model. Features from different regions were

then averaged for each patient as their representative, and the Lasso-Cox model

was used to select the prognosis-related features. The prognostic prediction

model was at last constructed using the selected prognosis-related features and

was evaluated through KM estimate and cross-validation. In terms of biological

meaning, Gene Ontology (GO) enrichment analysis of the expressed genes that

correlated with the prognostically significant features was performed to show the

biological interpretability of our model.With the help of tumor segmentation, our

model achieved better statistical significance and better biological interpretability

compared to the results without tumor segmentation. Statistically, the Kaplan

Meier (KM) estimate of our model showed that the model using features in the

tumor region has a higher C-index, a lower p-value, and a better performance on

cross-validation than the model without tumor segmentation. In addition,

revealing the pathway of the immune escape and the spread of the tumor, the

model with tumor segmentation demonstrated a biological meaning much more

related to cancer immunobiology than the model without tumor segmentation.

Our prognostic prediction model using quantitive morphological features from

tumor regions was almost as good as the TNM tumor staging system as they had a
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close C-index, and our model can be combined with the TNM tumor stage system

to make a better prognostic prediction. And to the best of our knowledge, the

biological mechanisms in our study were the most relevant to the immune

mechanism of cancer compared to the previous studies.
KEYWORDS

deep learning, colorectal cancer, prognostic prediction, morphological feature, gene
ontology enrichment analysis
Introduction

Colorectal cancer(CRC) has become the third most commonly

occurring cancer and a leading cause of cancer death worldwide (1).

In the aspect of prognostic prediction, data-driven outcome

prediction has demonstrated its promising power for making

clinical decisions which could help doctors in providing treatment

schedules and giving similar cases as references. Single modality data

such as biomarkers and medical images have been proven effective in

prognostic prediction for many studies (2–4). For example, in the

field of medical images, Lewis et al. (3) proved that computer-

extracted image features from surgical and biopsy tissue samples

can help predict the level of disease aggressiveness in oropharyngeal

squamous cell carcinoma. Grove et al. (4) quantitatively analyzed the

computed tomography(CT) features from two independent cohorts,

demonstrating that convexity score and entropy ratio were important

prognostic factors for survival analysis, and were negatively correlated

with overall survival in non-small cell lung cancer patients.

Meanwhile, prognostic prediction based on biomarkers, such as

transcriptome data and DNA methylation data, also plays an

important role in helping physicians to identify patients with high

mortality risk accurately (2, 5, 6). For example, by using the

transcriptome data, Yi et al. (5) identified 7 key genes negatively

correlated with the survival rate of rectal adenocarcinoma (READ).

Yu et al. (6) found that DNA methylation level was negatively

associated with the prognosis of bladder cancer patients and could

be served as a potential biomarker. In recent studies, histopathological

slide images especially the H&E stained slide had become a new

research star. As the gold standard of diagnosis, histopathological

slide images could provide rich information such as cell density, cell

complexity, and immune infiltrations. Meanwhile, there exist more

and more studies focusing on histopathological images and aiming to

study their role in tumor prognosis prediction. With the help of

computer-aided quantitative analysis of histopathological slide

images, Cheng et al. (7) reported the association between specific

image features and patient survival in gastric adenocarcinoma. In

another research, Chen et al. (8) identified 12 features by Kaplan-

Meier analysis that were significantly associated with 8-year disease-

free survival.

Thanks to the advances in whole slide scanning technologies, we

can access an unprecedented quantity of digital whole slide images

with high resolution which could be up to 20x or 40x even. Along

with a large amount of data from high-resolution whole slides,

computer-aided whole slide analysis has become more and more
02
noticeable. On the one hand, there may be some subtle features that

are too hard to be recognized by human eyes which may contain

essential information about diagnosis and clinical outcomes.

Moreover, even an experienced pathologist can’t analyze tens of

thousands of cells in one whole slide, nor quantitatively calculate

the features of these cells. On the other hand, the computer vision

processing algorithms together with the deep learning-based

convolutional neural networks had greatly accelerated the

computer-aided analysis of whole slide images from many aspects

such as image classification (9), tumor region segmentation (10),

tumor microenvironment analysis (11) and the end-to-end

prognostic prediction (12), making the analysis process not only

faster than manual work, but also more precise than the traditional

way. However, due to the end-to-end characteristics of deep learning,

studies may suffer from low interpretability (13), especially when the

goal is not just to manipulate images (e.g. make prognostic

predictions directly).

Morphological features of biological objects can be obtained by

statistical calculation of characteristics of gray values such as

geometrical characteristics and shape features. With the help of

analysis tools such as CellProfiler (14), we can easily and

quantitively obtain image features. The morphological features

derived from the whole slide images provide another perspective of

image data which displays in a matrix format, therefore, traditional

machine learning can play a big role in mining the image features. For

example, Chen et al. (15) used quantitative features of

histopathological images for survival prediction of clear cell renal

cell carcinoma. Yin et al. (16) used a machine learning approach to

analyze features extracted by CellProfiler from whole slides and

achieved an accuracy of 91%-96% in distinguishing tumor stage Ta

and T1. However, due to the limitation of computing power and the

software itself, previous studies only used small pieces from whole

slide images regardless of whether the pieces belonged to the tumor

region or the non-tumor region. Considering that most prognosis

studies of cancer mainly focus on the tumor region (17), the averaged

morphological features from the confused small pieces of tumor and

stromal region possibly lead to less trustworthy results or less accurate

prediction results, which may have a negative influence on the

statistical significance and the biological interpretability of

the model. To avoid the potential risks, selecting small pieces from

the same type of region may serve as an effective way. In addition,

although there existed some studies exploring the biological

significance and the interpretability of the prognosis prediction

model based on quantitative morphological features, the results
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were not closely related to the mechanisms of cancer

immunology (18).

In our study, we built a prognostic prediction model using

morphological features from the H&E stained slides. We also

proved that our prognostic prediction model with deep learning-

based tumor segmentation had better statistical significance and

better biological interpretability compared to the model without

tumor segmentation.
Material and methods

Data sets and data preprocessing

We acquired hematoxylin and eosin (H&E)-stained histological slide

images for patients with colon adenocarcinoma (COAD) from The

Cancer Genome Atlas (TCGA) data portal as the object of our

analysis. We downloaded all available 1560 slides with svs formats.
Frontiers in Oncology 03
Patients’ transcriptome data and their clinical records (Table 1) were also

used for analysis. The whole analysis process was shown in Figure 1.

For the tissue histological slide images, we performed a quality

control step and excluded the slide with low quality. The whole slide

image data in the TCGA-COAD dataset was stored in the format of

svs, where the images were compressed with different resolutions at

different levels. And a low number of levels and low resolution at level

1 would indicate poor quality of the corresponding whole slide image.

So we first excluded slides with less than 2 compress levels, then

removed the slides with less than 5000 x 5000 pixels size at level 1.

After that, we got 941 slides for 460 patients, of which 459 patients
TABLE 1 The clinical information of the TCGA-COAD cohort (selected
385 patients).

Characteristics

Male/female, n 203/182

Age, years

30-49 45 (12%)

50-69 167 (43%)

>70 173 (45%)

Alive/dead, n 297/88

Pathologic stage, n

Stage I 65 (17%)

Stage IA 1 (0.3%)

Stage II 22 (5.7%)

Stage IIA 117 (30%)

Stage IIB 9 (2.3%)

Stage IIC 1 (0.3%)

Stage III 17 (4.4%)

Stage IIIA 7 (1.8%)

Stage IIIB 51 (13%)

Stage IIIC 36 (9.4%)

Stage IV 35 (9.1%)

Stage IVA 15 (3.9%)

Stage IVB 2 (0.5%)

Unknown 7 (1.8%)

Depth of tumor (T stage), n

T1 9 (2.3%)

T2 67 (17%)

(Continued)
TABLE 1 Continued

Characteristics

T3 262 (68%)

T4 22 (5.7%)

T4a 16 (4.2%)

T4b 8 (2.1%)

Tis 1 (0.3%)

N stage, n

N0 228 (59%)

N1 64 (17%)

N1a 11 (2.9%)

N1b 15 (3.9%)

N1c 2 (0.5%)

N2 47 (12%)

N2a 6 (1.6%)

N2b 12 (3.1%)

M stage, n

M0 288 (75%)

M1 40 (10%)

M1a 9 (2.3%)

M1b 3 (0.8%)

MX 40 (10%)

Unknown 5 (1.3%)

Race, n

American indian or alaska native 1 (0.3%)

Black or african american 55 (14.3%)

White 210 (54.5%)

Asian 11 (2.9%)

Not reported 158 (41.0%)

Ethnicity, n

Hispanic or latino 4 (1.0%)

Not hispanic or latino 248 (64.4%)

Not reported 133 (34.5%)
fr
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have the transcriptomic data. Then, the patients whose overall

survival information was lost were excluded (e.g. a patient whose

vital state is “alive” but whose days to last follow-up was 0).
Tumor region segmentation model

Training and testing data
In this part, we used the dataset from the Pathology AI Platform

(PAIP) 2020 challenge as the training and validation data for our

tumor region segmentation model. In this dataset, all patients were

histologically diagnosed with COAD, and all cases including colon

tumor tissues were diagnosed at SNUH, SNUBH, and SMG-SNU

BMC between January 2005 and June 2018. In terms of images, there

were 47 whole slide images (WSIs), and all of them were obtained by

hematoxylin-eosin staining (H&E) and scanned at 40X magnification

using the Aperio AT2. The labels of tumor regions, which were

defined as boundary enclosing dispersed visible tumor cell nests,

necrosis, and peri- and intratumoral stromal tissue, were marked by

experienced pathologists and stored in the format of XML.
Frontiers in Oncology 04
We then divided the 47 WSIs into training data with 39 WSIs and

validation data with 8 WSIs. The raw and masked WSIs in both the

training and testing set were split into small patches with 384*384

pixels. Before feeding into the segmentation model, all small patches

were filtered to minimize the number of images from the

background region.

Neural network architecture
In this study, Eff-Unet (19) (version B2) was used to perform

the tumor segmentation, which achieved the benchmark

performance and won the firs t pr ize in the IDD Lite

segmentation challenge. The architecture of the Eff-Unet was

derived from the famous U-Net (20), which is a symmetric U-

shaped fully convolutional neural network developed for

biomedical image segmentation. Instead of using a traditional set

of convolution layers, the Eff-UNet employs EfficientNet (21) as the

encoder, feature extractor, and decoder of UNet, which combines

the high-level features and the low-level spatial information for

more exact pixel-wise segmentation. The detailed architecture of

Eff-Unet is shown below in Figure 2.
FIGURE 1

Flowchart of the construction and use of the tumor region segmentation deep learning model.
FIGURE 2

The architecture of Eff-Unet with EfficientNet B2 as the encoder.
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For the training step, we used the Adam optimizer for 200 epochs

with a batch size of 18 and fixed learning rate of 0.001 on a single

GPU, and a weight decay of 1e-4, which was the same as the

hyperparameters mentioned in the Eff-Unet article (19). Moreover,

the BCEDiceLoss was chosen to be the loss function, which was the

combination of the loss function of DICE loss and BCE loss and has

had a good performance in semantic segmentation tasks (22). All

training was conducted on NVIDIA V100 GPU with 16GB memory

on Linux CentOS 7.
Tumor region prediction

The slides from the TCGA-COAD cohort were first loaded and

preprocessed as described in 2.2.1, they were then cropped into

thousands of small tiles with 384x384 pixel size on the level 1 scale.

Next, these small pieces were fed into the tumor region segmentation

model to predict the tumor masks. And finally, the predicted results of

small tiles were combined into a complete tumor region-

predicted mask.

We enlarged the predicted mask from the level 1 scale to the same

dimension as the slide on level 0. And then 30 small tiles with a size of

500 x 500 pixels were selected randomly from the predicted tumor

region. In addition, for the patients who have multiple tissue slides,

the 30 tumor region was randomly selected from all slides. These 30

tiles would serve as a representation of one patient.

In addition, following the same methods above, we also randomly

selected 30 tiles from patients’ whole slides to serve as their

representation. Notably, background regions with no cells were

excluded from all the selected regions.
Morphological features

Following the process steps proposed by Luo et al. (23), we

calculated the morphological image features using CellPorfiler,

which is considered a state-of-the-art medical image analysis tool.

The extracted morphological features included cell size, shape, and

texture of the nuclei, as well as the distribution of pixel intensity in the

cytoplasm and nuclei. These features included some standard features

of histopathological image analysis (24) and complex features like

Zernike shape features, and Haralick and Gabor texture features, such

as “AngularSecondMoment” and “Texture_Entropy”, which have

been proven helpful to characterize the tumor habitats (25, 26).

Additionally, we also extracted features that measure an image as a

whole in some aspects, such as intensity, texture, saturation, blur, and

the area occupied by the stain. Then, CellProfiler will automatically

calculate the statistical characteristic (e.g. mean value, median,

standard deviation) of the morphological features of each cell in an

input picture. After that, we performed the patient-wise average

calculation to get the patient-level morphological features from the

selected 30 patches. And finally, the values of these morphological
Frontiers in Oncology 05
features were transformed with MinMax normalization to better

adapt to the prognostic analysis.
Survival analysis for different models
We performed survival analysis to assess the prognostic value of

morphological features. The Lasso-Cox model, which can

automatically adapt to the negative influence of co-linearity, was

used to select prognosis-related features. Notably, the features we

selected were the set of features that had the lowest partial likelihood

deviance in cross-validation among different random seeds. Then,

features with the same measuring method but with a different

computing method by CellProfiler were removed to eliminate

feature redundancy in the model and further eliminate co-linearity

to the prognost ic predict ion model (e .g . StDev_Ident

ifyhemasub2_Texture_AngularSecondMoment_ImageAfterMath_3_

01_256 and StDev_Identifyhemasub2_Texture_Difference

Entropy_ImageAfterMath_3_02_256). In addition, the BIC criterion

was used to optimize variable selection.

We performed a cox regression and used the KM survival curve to

evaluate the effectiveness of our model in the TCGA-COAD cohort.

We first fit a multivariate cox regression model with the prognosis-

related features selected above. The prognostically significant features

were those with a p-value less than 0.05 in the multivariate cox

regression The risk score of each patient was defined as the weighted

sum of the patient’s selected features, weighted by the coefficients in

the multivariate cox model (15). Patients were then divided into high-

and low-risk groups with a cutoff value at the median of all patients’

risk scores. KM survival curve was assessed in both the high- and low-

risk groups. The overall survival difference between the two groups

was evaluated using the log-rank test.

Next, we performed cross-validation to better evaluate the

effectiveness of the prognostic model. Patients in the TCGA-COAD

dataset were divided into training and testing sets of the same size.

Given that there were 22% of patients with a death event, stratified

randomization was performed in order to balance the proportion of

death in each set. We then trained a cox regression model using

patients’ survival and risk scores in the training set. Then, we calculate

the risk scores of patients in the testing set using the weights obtained

from the cox regression model trained by the training set. Finally, the

KM survival curves and the overall survival difference were calculated,

and the cross-validation was performed 50 times with different

random seeds.

Using the feature selection procedures described above, we

evaluated the correlation between patients’ prognosis and their

morphological features extracted from cells in the tumor region and

cells randomly selected from the whole slide. We also compared these

two models using KM survival curves and cross-validation. In addition,

we further compared our model with the prognostic prediction model

using clinical features and that using the TNM tumor staging system

suggested by the American Joint Committee on Cancer (AJCC) and the

Union for International Cancer Control (UICC). In these statistical

analyses, the Lasso-Cox model was conducted using the R package

glmnet (27) and all analysis was performed using R 4.1.3.
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Functional enrichment analysis
To evaluate the biological significance of our prognostic

prediction model, we performed functional enrichment analysis to

investigate whether the genes correlated with those prognostically

significant morphological features are enriched in various biological

mechanisms. We first calculated spearman correlations between the

expression levels of all genes and patients’ morphological features.

Genes were considered significantly correlated with a morphological

feature if the FDR-adjusted p-value of the spearman correlation was

less than 0.01. Then, Gene Ontology (GO) enrichment analysis was

performed to identify the related biological mechanisms of those

significant genes using the R package clusterProfiler (28) on the

organism “Homo sapiens”. Lastly, we compared the list of biological

mechanisms revealed by the prognostically significant features

selected from the model with tumor segmentation and without

tumor segmentation.
Results

Tumor region segmentation and
morphological features extraction

We evaluated the tumor region segmentation model on training

and validation set using the intersection over union (IOU) index. The

average IOU value of 0.866 on the training set and 0.833 on

the validation set implied the validity of our model. In addition, the

minimum value of IOU on the training set was 0.710 and 0.739

on the validation set, which also proved the accuracy of our

segmentation model.

As an independent image dataset, 941 slides from patients in the

TCGA-COAD cohort were processed and segmented for the

predicted tumor region (Figure 1).

After the processing and filtering steps, the morphological

features of small patches from the tumor region and regions

randomly selected from the whole slide were then extracted. In

total, we extracted 571 morphological features including tissue

textures, nuclei, cells, cytoplasm, and the neighboring architecture.

The feature matrixes for the tumor region and randomly selected

regions will be shown separately in Supplementary Table 1 (tumor

region), and Supplementary Table 2 (randomly selected regions).

We at last retained 385 patients who have the corresponding

qualified slides, transcriptomic data, and survival information. Of all
Frontiers in Oncology 06
the patients, the race, ethnicity, age, sex, vital status, and cancer

stage of patients in the TCGA-COAD cohort were summarized

in Table 1.
Evaluation of different prognosis models

Using the tumor region segmentation model, the number of

prognosis-related features selected by the Lasso-Cox model was

increased from 5 to 12. We further excluded 1 feature out of the 12

features because 2 features were measured by the same method by

CellProfiler (Supplementary Table 3). Among the selected 11 features,

the multivariate cox regression model produced 5 morphological

features that were prognostically significant for the model with tumor

segmentation (Table 2; Figure 3), whereas there were only 3

prognostically significant features in the model without tumor

segmentation. The KM survival and its C-index demonstrated

significant overall survival difference between the high- and low-

risk groups in the model with tumor segmentation (p-value = 1.5e-6,

C-index = 0.701, Figure 4A), which is more statistically significant

compared to that of the model without tumor segmentation

(p-value = 6.4e-05, C-index=0.663). It is also worth mentioning

that the normalization method we used was the 0-1 normalization,

so there might be some outliers that made the other values relatively

small, and that may cause the range of HR estimates different from

each other.

Through cross-validation (Figures 4B, C), the prognostic model

with tumor segmentation performed better than the model without

tumor segmentation (Figures 4D, E). For the KM estimate, we

observed a significant overall survival difference (p-value < 0.05) in

all the testing sets for the model with tumor segmentation, whereas

only 92% of the testing sets showed a significant overall survival

difference for the model without tumor segmentation.

The comparison of the C-index, the p-value of the KM estimate,

the number of prognosis-related features and prognostically

significant features, and the results of cross-validation were

summarized in Table 3.

In addition, we found that our prognostic prediction model was

almost as good as the TNM tumor staging system as they had a close C-

index. We also found that when combining the morphological features

in the tumor region with the TNM stage clinical features, the prognostic

model using both features outperformed the model that only used

TNM stage clinical features (Table 4). Considering that it would take
TABLE 2 The key information of the prognostically significant morphological features in the multivariate cox regression.

Feature HR HR.95L HR.95H P-value

Median_Identifyeosinprimarycytoplasm_Texture_Entropy_maskosingray_3_01_256 289.6413 10.84684 7734.237 0.000719

Median_Identifyhemasub2_AreaShape_Zernike_8_0 0.141232 0.025642 0.777883 0.024544

Median_Identifyhemasub2_AreaShape_Zernike_9_9 102.0159 7.546394 1379.101 0.000499

Median_Identifyhemasub2_Texture_AngularSecondMoment_ImageAfterMath_3_02_256 16.6161 1.134321 243.4007 0.040171

StDev_Identifyeosinprimarycytoplasm_Texture_Entropy_maskosingray_3_03_256 13.99343 1.598739 122.4817 0.017131

StDev_Identifyhemasub2_AreaShape_Zernike_6_2 86.34095 3.582171 2081.073 0.006036
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A B

C

FIGURE 3

Demonstration of the prognosis-related morphological feature selection process using the Lasso-Cox model. (A) The profile of coefficients in the model
at different levels of L1 penalization plotted against the log(lambda) sequence. (B) The minimum standard (the left line) was adopted to obtain the value
of the super parameter l by 10-fold cross-validation with the criteria of partial likelihood deviance. (C) Heat map that shows the distribution of
prognostically significant features.
D

A B

E

C

FIGURE 4

Evaluation of the prognostic prediction model using features extracted from cells in tumor region. (A) Multivariate cox regression for all patients using all
prognosis-related morphological features. (B, C) Kaplan Meier estimate using multivariate cox regression on training and testing data. (D, E) Statistical
evaluation and demonstration of the prognostic prediction model using selected prognosis-related morphological features on the testing set and the
training set.
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experienced doctors some time to make decisions on the TNM stage

but the computer can automatically perform the procedures mentioned

above, our model using morphological features in the tumor region is

expected to be helpful in real clinical practices.
Frontiers in Oncology 08
Enrichment analysis

For the prognostically significant features extracted from cells in

tumor regions, there were a total of 645 unique genes that were correlated

with one or more morphological features (Supplementary Table 4). GO

enrichment analysis revealed that these correlated genes were mainly

enriched in “T cell activation and regulation”, “leukocyte cell-cell

adhesion”, “leukocyte proliferation and migration” and “immune

receptor activity” (Figure 5A), indicating the abnormal pathway in

immune escape and tumor spread. In addition, we found that except

for one GO term belonging to “molecular function”, all the other top 20

enriched GO terms belong to “Biological Process” (BP). The top 10

enriched GO terms in “Molecular Function” (MF) and “Cellular

Component” (CC) were also analyzed (Figure 5B). All of them are

closely related to the immune mechanisms of cancer, and corresponded
TABLE 3 Comparison of C-index of the cox regression model, -log10(p-value) of survival analysis, the number of prognosis-related features, and the
percentage of p-value less than 0.05 on the training and testing set in cross-validation between the prognostic prediction model using morphological
features extracted from cells in the tumor region and the model using features in regions randomly selected from the whole slide.

Region C-index of cox
regression

-log10(P-value of
KM

estimate)

Number of
prognosis-related

features

Number of
prognostically
significant
features

Percentage of P-
value less than
0.05 on the
training set

Average p-
value on the
testing set

Tumor 0.7007 5.825 11 6 100% 3%

Randomly
selected

0.6637 4.191 5 3 92% 7%
TABLE 4 Comparison of the prognostic prediction models using
morphological features, age and gender, and the TNM tumor stage.

Model C-index

Age(year)+Gender 0.579

Ajcc tumor stage 0.739

Morphological feature 0.701

Morphological features and Ajcc tumor stage 0.757
A

B

FIGURE 5

Top 20 gene ontology terms in the enrichment analysis. (A) The top 20 gene ontology (GO) terms that were significantly enriched in the enrichment
analysis on genes that are related to the prognostically significant features in the model with tumor segmentation. (B) The top 20 GO terms which were
significantly enriched in “cellular component” and “molecular function”.
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to the pathway of immune escape and tumor spread. To the best of our

knowledge, the biological significance revealed by our study was the most

related to the immune mechanisms of cancer compared to previous

studies (18, 29) which used morphological features to make the

prognostic prediction of cancer patients.

In contrast, without tumor segmentation, the model using

features from pieces randomly selected in the whole image does not

have a very interpretable biological meaning. The pathways in the GO

enrichment analysis on the genes correlated with the selected features

in the model without tumor segmentation mainly were GO terms

relevant to RNA splicing and ribosome (Figure 6) but not directly

related to cancer immunology. And the p-values of these GO terms

were much larger than that of the model with tumor segmentation.
Discussion

In this study, we did a prognostic prediction study for colorectal

cancer using morphological features of cells in the H&E-stained slides.

With a higher C-index, a much lower p-value, and better performance on

cross-validation, our prognostic prediction model with tumor

segmentation has a better statistical significance than the model

without tumor segmentation. We also looked at the association

between the expressed genes and the prognostically significant

morphological features. And we found that those correlated genes were

enriched in the aspects of “leukocyte cell-cell adhesion”, “leukocyte

proliferation and migration” and “immune receptor activity”, which is

more relevant to the immune mechanisms of cancer compared to that of

the model without tumor segmentation. In addition, these pathways were

also the most related to cancer immunology compared to previous

studies, which demonstrated good biological interpretability of the

model with tumor segmentation. This may indicate how the genotype

may affect the phenotype and how those genes may affect the prognostic.

The image process step in our study was accurate and the image type

we use was interpretable. With the development of more accurate and

more interpretable AI algorithms, deep learning has shown its
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magnificent power in dealing with biomedical images, such as tumor

region identification, metastasis detection, and patient prognosis (30).

Also, pathological images may be more insightful, interpretable, and

sensitive than radiometric images because alterations in tumor molecular

pathways are frequently mirrored in cell shape (18). Here, for our tumor

region segmentation part, we utilized the Eff-UNet as our tumor region

segmentation model for the H&E stained pathological images. By

applying the state-of-art Efficientnet B2 as the encoder and decoder of

U-net and using the BCEDiceLoss as our loss function, we achieved the

average IOU of 0.87 and 0.83 on the training and validation set, which

indicated a good performance of our tumor region segmentation model

compared to traditional models (31).

The prognostic prediction model using features from the tumor

region other than randomly selected from the whole slide was

reasonable and has been proven effective. There are tumor regions

and non-tumor regions in the WSI, and the morphological features of

cells in the normal tissue regions vary so far from the tumor region

that experienced doctors can manually distinguish the tumor region

from the non-tumor region. As a result, the prognosis prediction will

be compromised when using the morphological features from

confused tissues both from tumor regions and non-tumor regions.

Theoretically, as the mutations in cancer cells, changes in tumor

molecular processes, and other decisive factors for the diagnosis and

prognosis of cancer patients are always mirrored in the tumor region

instead of everywhere in the whole slide, it is reasonable that the

morphological features of cells in the tumor region would contribute

more to the prognosis of patients. In practice, we proved that the

model using features from tumor regions was more statistically

significant than the model using features from other regions. Also,

the biological significance revealed by the model with tumor

segmentation, which was more related to the immune mechanisms

of cancer compared to that of the model without tumor segmentation,

proved the improvement brought by tumor segmentation. To sum up,

by using the deep learning tumor segmentation model to distinguish

the tumor region from the non-tumor tissue, we overcame the

drawback of previous work where the features were extracted from
FIGURE 6

The top 20 gene ontology (GO) terms that were significantly enriched in the enrichment analysis for genes that are related to the prognostically
significant features in the model without tumor segmentation.
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cells randomly cropped from the whole slide, making our prognostic

prediction model more reasonable, explainable and accurate.

The statistical method used in our study was effective and the

prognostic prediction model in our study was very statistically

interpretable. In the morphological feature selection part, we used the

Lasso-Cox model to identify the prognosis-related features, which

reduced the damage of co-linearity to the model and comprehensively

selected the truly significant features. We also excluded features with the

same measuring method but with a different computing method by

CellProfiler, which reduced the redundancy of the selectedmorphological

features and further solved the problem of co-linearity. After the selection

analysis of significant morphological features, we discovered 6 features

that would significantly make the prognosis worse or better. Divided by

the object that the features describe, 4 of these features were from nucleus,

including the features of texture and area shape, and 2 were features of

cytoplasm.When divided by the statistical meaning of these features, 2 of

these features are the standard deviation of cells’morphological features,

which may indicate how much the cells in the tumor region vary from

each other, and may further indicate the tumor’s microenvironment.

And 4 of these features were the median value of cells’ morphological

features, which refer to the average texture feature of the tumor, and may

further indicate how the overall texture of the cells in the tumor region

affects the prognosis. Also, as it is hard for pathologists to estimate or

quantitatively calculate these morphological features, this accurate

prognosis prediction model may provide a new way for pathologists to

make the prognostic prediction.

The prognostic prediction model in our study also revealed some

biological mechanisms closely related to the immune mechanisms of

cancer, such as immune escape and the spread of the tumor, which

indicates better interpretability. After the identification of the prognostically

significant morphological features, we further explored the biological

mechanisms hidden in those morphological values. In the Gene

Ontology analysis, the “Biological Process” was the dominant part

among “Molecular Function”, “Biological Process” and “Cellular

Component”, with a p-value much less than other parts. The results of

enrichment analysis mainly focus on the activation and regulation of T-

cells and leukocytes, proliferation of immune cells, regulation of cell-cell

adhesion, and immune receptor activity. These all lead to a worse prognosis

for the following reasons. On the one hand, it is clear that the abnormal

regulation of T-cells and leukocytes will cause tumor immune escape (32),

which leads to a worse prognosis. While on the other hand, recent studies

have proven that the abnormal regulation of immune cells, together with

the proliferation of immune cells, will instead promote the growth of

cancer cells. To be more precise, chronic inflammation is caused by

persistent immune system activation and the failure of the inflammatory

response to resolve. The chronic inflammatory microenvironment then

promotes tumor growth and genomic lesions which also leads to a worse

prognosis (33). Also, the changes in cell-cell adhesion would make the

cancer cells leave their original position and spread to other organs, which

is a marker of the formation of malignant tumors (34). To sum up, all of

these biological processes have been proven crucial in the development and

progression of cancer cells, which shows the interpretability of our

prognostic model based on morphological features.

The biological mechanisms of the molecular function part and the

cellular component part can also give us insight into the biological

mechanisms of cancer, where they also indicate the mechanisms of

immune escape and the spread of the tumor. In terms of cellular
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components, the enriched GO terms mainly focus on the granule

membrane, plasma membrane, and immunology synapse. These all

have a relation to the biological membrane and may be reflected in the

plasma morphological features of cells in the tumor region. As for the

granule, when cells are exposed to stress stimuli, stress granules (SGs) are

one organelle that cells will form to aid cells in coping with stress. And it

has been proven that SGs function not only to regulate the switch

between survival and cell death, but also contribute to cancer cell

proliferation, invasion, metastasis, and drug resistance (35). There has

also been evidence suggesting that the expression and/or activity of

several key SGs components is deregulated not only in colorectal tumors

but also in pre-neoplastic conditions (e.g., inflammatory bowel disease),

implying a potential role in the development of CRC (36). Also, the GO

term “external side of plasma membrane”, containing any biomolecule

embedded or anchored in it or attached to its surface, plays an important

role in the immune mechanisms of cancer. Studies have proven the

abnormal external side of the plasma membrane can lead to a worse

prognosis for patients with cancer in many ways: higher cell proliferation,

disturbances in signaling pathways, and prevention of the cells from

demanding conditions of the microenvironment (37). As for GO terms

“immunology synapse”, it has been proven that the host would be

vulnerable to pathogens or tumor escape at one extreme and suffer

from autoimmunity at the other extreme if the immunology synapse is

dysregulated (38), which also makes immunology synapse crucial for the

prognosis of patients with cancer.

In terms of molecular function, immune receptor activity, C-C

chemokine binding/receptor activity, cytokine binding/receptor activity,

and MHC protein complex binding/receptor activity are the top aspects of

the enriched GO terms, where all of them also lead to a better or worse

prognosis and are closely related to the immune mechanisms of cancer.

The malfunction of the immune receptor and immune recognition

receptor activity will also lead to immune escape and worsen the

condition and so does the mutation of C-C chemokine. There has been

evidence indicating that the expression of C-C chemokine receptor 7 in

malignant tumors promotedmigration to the lymph nodes (39), which will

make the prognosis worse. And for the GO term “cytokine binding”,

because some cytokines bind to particular G-protein-coupled seven-span

transmembrane receptors, which are important regulators of cell trafficking

and adhesion, abnormal cytokine binding/receptor activity, cytokines’

malfunction may promote the spread of cancer cells and worsen

prognosis (40) thus leading to a worse prognosis. This mechanism also

corresponds to the GO term “G protein−coupled chemoattractant receptor

activity” in the MF part. And when it comes to the MHC protein complex

binding/receptor activity, they are in charge of binding peptides derived

from a cell’s expressed genes, then transporting, and displaying this

antigenic information on the cell surface, so that CD8 T cells can

recognize pathological cells that are synthesizing abnormal proteins, such

as cancers that are expressing mutated proteins (41). As a result, losing

MHC I antigen presentation machinery is one way where cancers can

evade immune control, which also has a negative impact on prognosis.

There are also some limitations in this study. First of all, we only use

the data from TCGA-COAD, where the amount of data is limited and

more data would make the research more convincing. Also, some

patients do not have the whole slide image that contains the non-

tumor region, thus the evaluation of the model using features from only

the non-tumor region was unable to carry out. Secondly, we used the

method of treating the median risk score as the cut-off value to divide the
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patients into the high-risk group and the low-risk group, where a specific

value is not required.
Conclusions

In conclusion, we developed and verified a robust prognosis prediction

model using the morphological features of patients’ H&E-stained

pathological images. We proved that with the help of our tumor region

segmentation deep learning model, using the features extracted from cells in

the tumor region will make a better prognostic prediction than using features

of regions randomly selected from the whole slides. With a good

performance on survival analysis and cross-validation, our model with

tumor segmentation can very accurately make the prognostic prediction.

The biological interpretability is also proven to be better by segmenting the

tumor region. As the results of enrichment analysis for genes that are related

to the tumor region’s prognostically significant features highly correlatedwith

cancer immunology, our study demonstrated good biological interpretability

of our model and may provide insight into the relationship between cancer’s

phenotype and the biological mechanisms of cancer.
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