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1H NMR-based metabolomics of
paired tissue, serum and urine
samples reveals an optimized
panel of biofluids metabolic
biomarkers for esophageal cancer
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Jiayun Zhao1, Rongzhi Cai1, Huanian Zhang1,
Peie Zheng1 and Yan Lin1*

1Radiology Department, Second Affiliated Hospital, Shantou University Medical College, Shantou,
Guangdong, China, 2Radiology Department, People’s Hospital of Leshan, Leshan, Sichuan, China,
3Radiation Oncology, Affiliated Tumor Hospital, Shantou University Medical College, Shantou,
Guangdong, China
Introduction: The goal of this study was to establish an optimized metabolic panel

by combining serum and urine biomarkers that could reflect the malignancy of

cancer tissues to improve the non-invasive diagnosis of esophageal squamous cell

cancer (ESCC).

Methods: Urine and serum specimens representing the healthy and ESCC

individuals, together with the paralleled ESCC cancer tissues and corresponding

distant non-cancerous tissues were investigated in this study using the high-

resolution 600 MHz 1H-NMR technique.

Results:We identified distinct 1H NMR-based serum and urine metabolic signatures

respectively, which were linked to the metabolic profiles of esophageal-cancerous

tissues. Creatine and glycine in both serum and urine were selected as the optimal

biofluids biomarker panel for ESCC detection, as they were the overlapping

discriminative metabolites across serum, urine and cancer tissues in ESCC

patients. Also, the were the major metabolites involved in the perturbation of

“glycine, serine, and threonine metabolism”, the significant pathway alteration

associated with ESCC progression. Then a visual predictive nomogram was

constructed by combining creatine and glycine in both serum and urine, which

exhibited superior diagnostic efficiency (with an AUC of 0.930) than any diagnostic

model constructed by a single urine or serum metabolic biomarkers.

Discussion: Overall, this study highlighted that NMR-based biofluids

metabolomics fingerprinting, as a non-invasive predictor, has the potential utility

for ESCC detection. Further studies based on a lager number size and in

combination with other omics or molecular biological approaches are needed

to validate the metabolic pathway disturbances in ESCC patients.

KEYWORDS

biomarker, biofluids, esophageal squamous cell carcinoma, 1H NMR-based
metabolomics, predictive nomogram
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Introduction

Esophageal cancer (EC) is the sixth leading cause of cancer death

and the eighth most common cancer worldwide, with a 5-year

survival rate of only 15%-25% (1). In China, the EC incidence

currently ranks first in the world, among which more than 90% are

esophageal squamous cell carcinoma (ESCC) (2), and Chaoshan

region of Guangdong Province is the only coastal area with a high

incidence of ESCC in China (3). ESCC often presents with progressive

dysphagia, most of which have advanced to a later stage with

significantly lower 5-year survival rates (4). Hence, early diagnosis

of ESCC is of great significance for optimized disease management

(5). Endoscopic esophageal biopsy carries the risks of bleeding,

tearing and perforation, which compromises its wider applicability

for ESCC early diagnosis (6, 7). The sensitivity and specificity of

serum tumor markers such as CA199 and CA125 for ESCC diagnosis

are not high enough (<50%) (8). Esophageal barium meal and CT

imaging involve in radiation hazards and are prone to miss small EC

lesions (6, 7). Recently, liquid biopsy assays based on genetic

alterations, such as serum DNA, microRNA and others, have been

actively investigated. However, they are too expensive and have low

diagnostic sensitivity, such reducing the ESCC screening reliability

(9–11). Due to the lack of non-invasive, simple, and accurate

screening biomarkers, the early diagnosis rate of ESCC in China is

extremely low.

Metabolism reprogramming is considered a hallmark of cancer.

Each cancer has its unique metabolic characteristics, which are closely

related to the occurrence and progression of the tumor, thus

providing a biochemical basis to define disease biomarkers for early

cancer diagnosis. Nuclear magnetic resonance (1H NMR)-based

metabolomics provides simple, efficient and inexpensive technical

support to discover potential cancer metabolic biomarkers for ESCC

detection, mainly focusing on the analysis of urine, serum and tissue

samples (12–15), respectively. Tissue is the lesion site of cancer, which

contains global biological metabolic information at the levels of

metabolic enzymes and metabolite levels. Therefore, in situ targeted

detection of cancer tissue is the direct method to identify tumor-

specific metabolic biomarkers. However, the tissue sampling process

is invasive and prone to missing small lesions or sampling errors.

Recently, we identified distinct NMR-based serum and urine

metabolic signatures, respectively, which were linked to the

metabolic profiles of esophageal-cancerous tissues (16, 17).

However, single serum or urine metabolism can only partially

characterize the metabolic characteristics of the body. Urinary

metabolism is mainly derived from the metabolic state of the

urinary system, while blood metabolism is the phenotype of the

interaction between gut microbes and the host, including the

circulatory system, endocrine system and immune system, etc. If an

optimal metabolic panel through combining the biomarkers in serum

and urine can be constructed, it is possible to achieve more

comprehensive metabolic information of ESCC, so as to improve

the efficiency of ESCC non-invasive screening.

The aim of this study was to establish an optimized metabolic

profile to improve the non-invasive diagnosis of ESCC by combining

serum and urine biomarkers that could reflect the malignancy of
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tumor tissues. Urine and serum specimens representing the healthy

controls and ESCC individuals were examined using the high-

resolution 600 MHz 1H NMR technique. Meanwhile, the paralleled

patient-matched metabolites of ESCC cancer tissue together with

their non-cancerous mucosa in the distant areas were investigated,

which were used as references to determine biofluids metabolic

biomarkers. Pattern recognition was applied on NMR processed

data to acquire detailed metabolic information. Finally, an

optimized panel of differential metabolites based on serum and

urine metabolic biomarkers were selected and then constructed as a

predictive nomogram to predict the risk of ESCC occurrence using

multiple regression analysis.
Materials and methods

Clinical samples

The Ethical Review Board of Shantou University Medical College

approved the metabolic analysis of the samples in this study. This

study involved 70 ESCC individuals and 70 healthy controls (HCs)

with signed informed consent. ESCC patients were matched with HCs

according to age and gender. The experimental group included 50

ESCCs patients who underwent esophagectomy and provided their

esophageal cancer tissues (ECT), distant non-cancerous tissues (DNT;

about 5 cm away from the cancer tissue and hematoxylin and eosin

staining proved no malignancy), along with preoperative serum and

urine samples. Control serum and urine samples were obtained from

50 HCs with no history of associated gastrointestinal problems. As for

the validation group, serum and urine obtained from 20 ESCCs and

20 HCs were collected for verifying the predictive ability of the

metabolic model in the experimental group. All samples were

stored in a low-temperature refrigerator (−80°C) until further

metabolic extraction. ESCC patients who received radiotherapy or

preoperative chemotherapy were excluded. Table 1 summarizes the

clinical characteristics of the subjects included in this study.
Sample preparation

Esophageal tissue, serum and urine were pre-processed according

to our previous publications (16, 17). Basically, frozen tissue samples

(about 300 mg) were thawed at 25°C, then sliced and homogenized at

16,000 rpm for 80 seconds in a solution consisting of 0.6 mL distilled

water and 1.2 mL methanol. Subsequently, chloroform and distilled

water were further added with 1.2mL each and the samples were

vortexed for 60 seconds. Next, samples were incubated for 15 mins on

ice and then centrifugated for 5 mins at 2000 rpm. The resulting

supernatant was washed with nitrogen and evaporated, followed by

incubation under vacuum for at least 18 h. Finally, the lyophilized

powder was dissolved further in PBS/D2O buffer solution (550 mL, 0.1
M, pH 7.4) containing TSP/D2O stock solution (50 mL). After
centrifugation of the mixture for 5 mins at 10,000 rpm, 500 mL of

the supernatant was transferred to an NMR tube (5 mm in size) for 1H

NMR spectroscopy. As for frozen serum and urine samples
frontiersin.org
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preparation, they were thawed at 25°C, respectively. After adding 200

mL PBS/D2O buffer to 400 mL of each urine and serum sample,

respectively, the mixtures were then swirled for 60 seconds and

centrifuged at 10,000 rpm for 5 minutes. Finally, 1H NMR analysis

was carried out by using 500 mL of the serum supernatant. While for

urine, 50 mL of TSP/D2O stock solution was added to the supernatant

before 1H NMR spectral acquisition.
1H NMR spectral analysis

1H NMR spectra of all samples were acquired by using a Bruker

Avance NMR spectrometer (Bruker Corporation, Germany)

operating at 600MHz and 298K. NOESYPR1D pulse sequence was

used to detect the 1H-NMR spectrum of esophageal tissues and urine

samples, and the acquisition parameters were as follows: 90° Pulse

Width, 14.1 ms; Relaxation Delay (RD), 4.0 s; Echo Time (TE), 70 ms;

Spectral Width (SW), 12335 Hz; number of points (TD), 32,768;

number of scans (NS), 64; acquisition time (AQ), 2.66 s. By using the
Frontiers in Oncology 03
1D CPMG pulse sequence, serum 1H NMR spectra were recorded,

and the acquisition parameters were as follows: 90° pulse width,

12.2ms; RD, 4.0 s; TE, 70 ms; SW, 12019 Hz; TD, 32,768; NS, 64 and

AQ, 2.73 s. Irradiating a peak of water between RD and tm to achieve

water suppression.
1H NMR spectral processing

Before Fourier Transformation, all FIDs were multiplied by a 1 Hz

line-broadening to enhance the SNR. The spectrum was then

manually phase adjusted, followed by baseline correction and

frequency alignment with reference to the 0.0 ppm TSP signal. In

order to minimize the complexity of the spectrum data, the spectral

regions ofd9.0-0.5 were divided into buckets with 0.004 ppm width,

along with the removal of the residual water (4.5 to 5.5 ppm). Each

bucket was normalized to the total integral of the spectrum to reduce

concentration differences between samples while improving

sample comparability.
TABLE 1 Summary of the clinical and demographic characteristics of the study subjects.

test set validation set

characteristics ESCC health ESCC health

Number 50 50 20 20

Gender (male/female) 29/21 25/25 12/8 10/10

Age (years) medium 57 55 57 50

<40 9 6 3 4

40-49 11 11 5 6

50-59 18 19 5 5

>60 12 14 7 5

BMI (kg/m2) 27.3 ± 4.7 29.3 ± 5.3 27.1 ± 4.2 28.8 ± 4

Cancer stage

Stage I/II 32 13

Stage III/IV 18 7

CEA (ng/mL)

Positive 29 N/A 12 N/A

Negative 21 N/A 8 N/A

CA199 (U/mL)

Positive 24 N/A 12 N/A

Negative 26 N/A 8 N/A

Tumor location

cervical 1 1

upper thoracic 8 3

middle thoracic 27 9

lower thoracic 14 7
N/A, normal/absence.
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Pattern recognition

The normalized integral data were uploaded into SIMCA-P14.1

software (Umetrics AB, Umeå, Sweden) to perform pattern

recognition based on previous publications (16, 17), to separate

ESCC patients’ urine and serum samples from those of HCs, as well

as ESCC cancer tissues from their DNT samples. All NMR spectral

datasets were first mean-centered, and then performed principal

component analysis (PCA) to visualize samples` outliers or clusters.

Following PCA, the spectral data were treated with orthogonal partial

least squares-discriminant analysis (OPLS-DA) so that the

experimental groups could be better distinguished. OPLS-DA was

first established by Kirwan and Johansson based on PLS algorithm in

2002 (18). R2Y values (ranging from 0 to 1) and Q2 values (ranging

from negative to 1) were used to assess the model quality. A value of

R2Y equal to 1 indicates that the model explains 100% of the variance,

and a value of Q2 close to 1 means a reliable prediction in cross-

validation. By using a permutation test of 400-times, the quality of

OPLS-DA model was validated, where R2Y represents the degree of fit

between the model and the data, and Q2 indicates how strong the

predictive power of the model is, with a Q2 greater than 0.5

considered “good” and a Q2 greater than 0.9 deemed “excellent”.

The peak selection coefficients were the VIP (variable importance of

projection) from the OPLS-DA model. By integrating the area under

the peak, the relative levels of the chosen peaks with VIP greater than

1 were quantified. The major metabolites in the profile were identified

according to the available literature (19–21) and data from the

Human Metabolome Database. Metabolites with VIP ≥ 1 and

significant differences in abundance among study groups were

classified as candidate biomarkers, and differences were expressed

as mean fold difference (FD), which was obtained by dividing the

relative abundance of metabolites in ESCC and by that in their

corresponding controls.
Analysis of TCGA database

The RNAseq data in TCGA and GTEx TPM format were

processed uniformly by Toil process from UCSC XENA (https://

xenabrowser.net/datapages/). The expression of key genes related to

the important metabolic pathway in ESCC cancer tissues were

extracted from TCGA-ESCA (esophageal cancer) and GTEx

databases. The expression of RNAseq data in TPM (transcripts per

million reads) format and log2 transformation was compared

between samples.
Statistical analysis

The normality test was conducted for all data and the corrected p

value was obtained by using the Benjamini-Hochberg method, that is,

the False discovery rate (FDR) corrections. False discovery rate (FDR)

corrections were calculated to account for the multiple comparisons

that often occur in metabolomics studies. In order to evaluate the

diagnostic performance of metabolic biomarkers, ROC analysis was
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conducted and the area under the curve (AUC) was calculated using

SPSS 16.0, with AUC≥0.8 indicating good diagnostic ability.

Spearman correlation analysis was used to assess the association of

potential biomarkers in the urine, serum and cancer tissues of ESCC

patients using correlation coefficient (r). The cutoff value of the

correlation coefficient r was determined according to the sample

size. Correspondingly, |r|≥0.28 indicates a significant correlation

between two kinds of metabolites, based on the sample size of 50 in

the experimental group.
Results

Metabolic profiles and pattern recognition
of esophageal cancer tissue, serum and
urine samples

Figure 1 shows representative 1H-NMR spectra of ECT and DNT,

as well as those of serum and urine samples from ESCC patients and

HCs. In the pattern recognition of the processed 1H NMR spectra

from tissue extracts, serum and urine in ESCC patients and those

from their corresponding controls, the score plots revealed a

differential clustering alongside the first principal component

direction (Figure 2A). The OPLS-DA model was verified by

400 times permutation analysis (Figure 2B): DNT vs ECT: R2Y=

0.727, Q2 = 0.653; normal vs ESCC serum: R2Y= 0.950, Q2 = 0.615;

normal vs ESCC urine: R2Y= 0.767, Q2 = 0.626, indicating there was

no overfitting in OPLS-DA model.

Under such criteria (VIP > 1, fold change ≥1.1 or ≤0.9, p<0.05), a

number of potential metabolite biomarkers in the tissue, serum and

urine in ESCC patients were observed, as shown in Table 2. ESCC

tumor tissues exhibited higher levels of leucine, isoleucine, arginine,

valine, lysine, glutamate, glutamine, asparagine, choline,

phosphocholine and glycine, together with lower levels of lactate,

alanine, pyruvate, citrate, creatine, taurine, myo-inositol and glucose,

as compared to their corresponding DNT. Twelve serum metabolites

were observed to have altered notably in ESCC patients in

comparison with healthy controls, including elevated levels of

glutamate, glutamine, glycerol, myo-inositol and glucose, and

reduced levels of leucine, isoleucine, lactate, lipid, lysine, creatine

and glycine. Compared with healthy controls, urine samples in ESCC

showed increased amounts of acetoacetate, indoleacetic acid, cis-

aconitate, and reduced levels of alanine, creatine, ethanolamine,

glycine, glucose, cysteine and hippuric acid. A few overlapping

characteristic metabolites across serum, urine and tissue samples in

ESCC patients were observed from our paralleled studies, including

glycine and creatine.
Correlation analysis across serum, urine and
tissue metabolites in ESCC patients

We further analyzed the metabolic profiling association between

serum and tissue biomarkers, as well as between urine and tissues

biomarkers, being plotted as correlation heat maps (Figures 3A, B),
frontiersin.org
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which showed that changes of serum isoleucine, leucine, lysine,

glutamine, creatine, glycerol, myo-inositol and glucose in ESCC

patients were closely related to the changes of most metabolites in

ESCC cancer tissues (|r| >0.3, p<0.05). Alterations of urine creatine in

ESCC patients were negatively associated with the changes in

isoleucine, leucine, valine, arginine and lysine in ESCC cancer

tissues (|r| >0.3, p<0.05).
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Selection of an optimal biomarker
panel based on serum and urine
metabolic characteristics

The obtained differential metabolites between the ESCC cancer

tissues and DNT were subjected to MetaboAnalyst 5.0 to determine

the important disturbed pathways, with the pathway impact value≥
A

B

FIGURE 2

Pattern recognition analysis of 1H-NMR tissue, serum and urine spectra between ESCC and their respective controls. (A) OPLS-DA scores plot depicting
the difference between experimental groups; (B) Statistical validation of the corresponding OPLS-DA model by permutation analysis (400 times).
A

B

C

FIGURE 1

Representative 1D 1H NMR spectra of tissue, serum and urine from EC patients and controls. (A) Representative 600MHz NOESYPR1D 1H NMR spectra of
esophageal tissue extracts from ECT and DNT. (B) Representative 600MHz CMPG 1H NMR spectra of serum from EC and HC. (C) Representative
600MHz NOESYPR1D 1H NMR spectra of urine EC and HC. ECT, esophageal cancer tissue; DNT, distal noncancerous tissue; EC, esophgeal cancer;
HC, healthy control.
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TABLE 2 Potential biomarkers for discriminating samples from ESCC patients and HCs.

Metabolites Chemical shift(ppm) Fold difference AUC (95%CL) Related metabolic pathways

EC/HCs P value

Isoleucine 0.93-0.95 1.14↑ 0.015 0.686 (0.548-0.824) Amino acid metabolism

1.01-1.03 1.25↑ <0.001 0.826 (0.719-0.933)

Leucine 0.95-0.98 1.27↑ <0.001 0.841 (0.736-0.945) Amino acid metabolism

Valine 0.99-1.00 1.19↑ 0.001 0.765 (0.643-0.886) Amino acid metabolism

1.03-1.06 1.22↑ <0.001 0.775 (0.656-0.894)

Arginine 1.65-1.78 1.14↑ 0.001 0.719 (0.586-0.829) Amino acid metabolism

Lysine 3.01-3.03 1.06↑ <0.001 0.749 (0.618-0.854) Amino acid metabolism

Glutamate 2.02-2.10 1.24↑ <0.001 0.847 (0.728-0.928) Glutaminolysis, gluconeogenesis

2.31-2.40 1.31↑ <0.001 0.895 (0.787-0.960)

Asparagine 2.79-2.99 1.15↑ <0.001 0.735 (0.603-0.842) Amino acid metabolism

Choline 3.20-3.21 1.41↑ <0.001 0.795 (0.669-0.890) Choline metabolism

Glycine 3.56-3.57 1.35↑ <0.001 0.860 (0.743-0.937) Amino acid metabolism

Glutamine 2.10-2.19 1.09↓ 0.003 0.710 (0.576-0.822) Glutaminolysis, gluconeogenesis

4.09-4.14 0.95↓ 0.038 0.653 (0.516-0.773)

Alanine 1.47-1.50 0.83↓ <0.001 0.738 (0.606-0.845) Amino acid metabolism

Pyruvate 2.47-2.48 0.91↓ 0.039 0.652 (0.515-0.772) TCA cycle activity

Citrate 2.65-2.66 0.91↓ 0.006 0.692 (0.557-0.807) TCA cycle activity

Creatine 3.93-3.94 0.90↓ 0.005 0.704 (0.570-0.817) Energy metabolism

Taurine 3.41-3.44 0.91↓ 0.041 0.652 (0.515-0.772) Amino acid metabolism

Myo-inositol 3.61-3.65 0.81↓ <0.001 0.768 (0.639-0.869) Amino acid metabolism

Glucose 3.80-3.91 0.86↓ 0.011 0.681 (0.546-0.798) Energy metabolism

Glutamate* 2.29-2.36 2.44↑ 0.004 0.672 (0.548-0.796) Glutaminolysis, gluconeogenesis

Glycerol* 3.56-3.64 1.21↑ <0.001 0.788 (0.682-0.872) Fatty acid metabolism

Myo-inositol* 3.59-3.61 1.66↑ <0.001 0.798 (0.917-0.998) Fatty acid metabolism

Glucose* 3.22-3.91 1.44↑ <0.001 0.978 (0.917-0.998) Energy metabolism

Glutamine* 3.76-3.78 1.96↓ <0.001 0.955 (0.890-0.987) Glutaminolysis, gluconeogenesis

2.41-2.46 1.52↓ <0.001 0.905 (0.825-0.956)

Lipid* 1.53-1.60 0.56↓ <0.001 0.922 (0.848-0.968) Fatty acid metabolism

2.72-2.82 0.76↓ <0.001 0.864 (0.777-0.926)

Lysine* 2.99-3.02 0.61↓ <0.001 0.953 (0.881-0.988) Amino acid metabolism

Creatine* 3.02-3.04 0.79↓ <0.001 0.820 (0.727-0.893) Energy metabolism

3.91-3.92 0.62↓ <0.001 0.956 (0.891-0.988)

Glycine* 3.54-3.55 0.83↓ <0.001 0.780 (0.673-0.865) Amino acid metabolism

Acetoacetate# 2.26-2.30 1.44↑ <0.001 0.721 (0.609-0.815) Fatty acid metabolism, TCA cycle

Cis-aconitate# 3.40-3.48 1.30↑ <0.001 0.714 (0.602-0.810) TCA cycle, glyoxylate metabolism

Indoleacetate# 3.70-3.73 1.25↑ 0.002 0.684 (0.571-0.784) Amino acid metabolism

Alanine# 1.47-1.51 0.74↓ <0.001 0.744 (0.635-0.835) Amino acid metabolism

Creatine# 3.05-3.09 0.74↓ <0.001 0.707 (0.596-0.802) Energy metabolism

4.06-4.13 0.73↓ <0.001 0.713 (0.602-0.807)

(Continued)
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0.1 and the –log(p) value≥2. As can be seen in Figure 4A), “Pyruvate

metabolism”, “Glutathione metabolism”, “Glycine, serine and

threonine metabolism” and “Starch and sucrose metabolism”

were the significant pathway alterations associated with

ESCC progression.

According to the analysis of TCGA-ESCA data, we found that the

expression of serine hydroxymethyltransferases 1, 2 (SHMT1,

SHMT2) and glycine decarboxylase (GLDC), which catalyze the

conversion of serine to glycine, were upregulated in ESCC cancer

tissues compared with normal tissues (Figure 4B). However,

guanidinoacetate N-methyltransferase (GAMT), which converts

guanidinoacetate to creatine, was downregulated (Figure 4C).

Meanwhile, subsequent reduction of creatine leads to reduced levels

of creatine kinases, including CKMT2 (Creatine kinase S-type,

mitochondrial), CKM (Creatine kinase M-type) and CKB (Creatine

kinase B-type). The alterations of metabolic enzyme gene expression

mentioned above in TCGA-ESCA database were consistent with the

elevated glycine and decreased creatine in ESCC cancer tissues

we observed.

Given that glycine and creatine were the overlapping

discriminative metabolites across serum, urine and cancer tissues

in ESCC patients, and also they were the major metabolites

involved in the perturbation of “glycine, serine, and threonine

metabolism”, the significant pathway alteration associated with

ESCC progression, an optimal biomarker panel was therefore

selected by combining glycine and creatine in both serum and

urine. Compared to the individual biomarker of glycine and

creatine in serum or urine, this panel demonstrated superior

diagnostic performance to detect ESCC, with a sensitivity,

specificity and an AUC value of 80.0%, 92.5% and 0.904,

respectively (Figure 4D). To further verify this panel’s reliability

in detecting ESCC, we established a logistic model based on the test

group (ESCC=50, HC=50) to predict the profiles of urine and

serum samples in the validation group (ESCC=20, HC=20). The

diagnostic accuracy of the test group and validation group were

72% and 80%, respectively (Figure 4E), which were significantly

higher than that of CEA (58%) and CA19–9 (48%) (Table 1).
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Nomogram construction to predict the risk
of ESCC

Glycine and creatine in both serum and urine were subjected to

Logistic single-factor and multi-factor regression analysis, and a

logistic regression model was constructed, which was visualized by

R language software as a predictive nomogram diagnostic scoring

model (Figure 5A), with the score of each variable ranging from 0 to

100. Total scores can be obtained by calculating the scores of glycine

and creatine in both serum and urine, which were then projected onto

the lower overall scale axis, with lower scores indicating a lower risk of

ESCC. As can be seen in Figure 5A, the modelling group No. 1 sample

had a total score of 210 points, and the risk of ESCC was 70%.

Endoscopy was suggested and confirmed that the No.1 sample was an

early esophageal cancer. The diagnostic efficiency of this predictive

nomogram was higher than any diagnostic model constructed by a

single serum or urine metabolic biomarkers, evidenced by a good

prediction ability of 93% for ESCC detection (Figure 5B), and the

prediction curve in the calibration graph and the standard curve fitted

well (Figure 5C).
Discussion

The diagnosis of esophageal cancer (more than 90% of which are

ESCC) is mainly based on the clinical symptoms and invasive

pathological examination, which lags far behind the disease

progression and has limited role in cancer early diagnosis. Non-

invasive, simple and accurate biomarkers may be more suitable for

population screening. 1H-NMR-based metabolomics provides simple,

efficient and inexpensive technical support for detecting the metabolic

fingerprints of ESCC. In this study, we identified significant NMR-

based metabolic alterations in serum, urine and tumor tissues in

ESCC patients compared to their respective controls, and significant

alterations of many metabolites in serum and urine were linked to the

metabolic profiles of ESCC cancers tissues. Creatine and glycine in

both serum and urine were selected as the potential biofluid
TABLE 2 Continued

Metabolites Chemical shift(ppm) Fold difference AUC (95%CL) Related metabolic pathways

EC/HCs P value

Ethanolamine# 3.11-3.19 0.94↓ <0.001 0.734 (0.624-0.827) Fatty acid metabolism

Glycine# 3.57-3.59 0.87↓ 0.010 0.659 (0.544-0.761) Amino acid metabolism

Glucose# 3.75-3.85 0.90↓ 0.015 0.651 (0.536-0.754) Energy metabolism

Cysteine# 3.95-3.99 0.78↓ <0.001 0.808 (0.704-0.887) Amino acid metabolism

Hippurate# 3.94-4.03 0.83↓ <0.001 0.790 (0.686-0.873) Gut microflora metabolism

7.52-7.67 0.40↓ <0.001 0.709 (0.598-0.804)

7.82-7.86 0.44↓ <0.001 0.295 (0.594-0.800)
Metabolites without label noted tissue biomarkers; metabolites labeled with “*” and “#” noted serum and urine biomarkers, respectively.
The up/down arrow indicates that the relative content of differential metabolites in tissue, serum or urine of esophageal cancer is higher/lower than that of the control group.
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biomarker panel for ESCC detection as they were the overlapping

discriminative metabolites across serum, urine and tissue samples in

ESCC patients, and also they were the major metabolites involved in

the perturbation of “glycine, serine, and threonine metabolism”, the

significant pathway alteration associated with ESCC progression.

Then, a predictive nomogram model was constructed by combining

creatine and glycine in both serum and urine (Figure 5A), which

exhibited an improved diagnostic efficiency of ESCC (with an AUC of

0.930), and the predicted curve in the calibration chart fit well with

the standard curve (Figures 5B, C). Overall, changes of serum and

urine metabolism in ESCC patients can reflect the characteristics of

metabolic disorders in tumor tissues, emphasizing the potential utility

of NMR-based biofluids metabolomics fingerprinting as a non-

invasive predictor for ESCC detection. Our study has several

strengths. First, we systematically analyzed the ESCC cancer tissues

and distant non-cancerous mucosa, as well as preoperative serum and

urine samples from the same ESCC patients, to observe the common

malignancy-related metabolic profiles in three samples. Second, in
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situ metabolic analysis based on ESCC cancer tissues was used as an

internal standard to determine tumor-related metabolic biomarkers

overlapping in serum and urine. Third, a visual predictive nomogram

model based on tumor-specific metabolic profiles overlapping in

serum and urine was constructed to improve the diagnostic

efficiency of ESCC.
ESCC-related metabolomic alterations in
serum, urine and cancer tissues

In addition to genetic and proteomic alterations, ESCC

development is in association with cellular metabolic alterations

that can give discernment into disease pathogenesis (22–24). In this

study, significant alterations of many metabolites in serum, urine and

tumor tissues were identified in ESCC patients compared to their

respective controls (Table 2), indicating a potential network of

metabolic pathway disturbances, such as TCA cycle, glycolysis,
A

B

FIGURE 3

Heat map color-coded based on the strength of spearman correlation coefficients of metabolites identified as important in tumor vs serum
discrimination (A) and urine discrimination (B) in test group. The cutoff values of |r| > 0.28 and p< 0.05 have been used (n=50). The metabolites used are
given in Table 1. Red boxes indicated positive associations and blue boxes indicated negative associations. Metabolites without label noted tissue
biomarkers; metabolites labeled with “*” and “#” noted serum and urine biomarkers, respectively.
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gluconeogenesis, glutaminolysis, amino acid metabolism, one-carbon

unit metabolism, etc (Figure 6).

As can be seen in Table 2, reduced glucose together with depleted

citrate (TCA intermediates) were observed in ESCC tumor tissues,

reflecting an enhanced activation of glycolysis, which increases the

demand and utilization of glucose and TCA intermediates to promote

tumor growth (25, 26). Lactate was previously thought to be only a

metabolic waste product of glucose metabolism. However, in recent

years, more and more studies have demonstrated that lactate can

promote tumor progression. For example, high concentrations of

lactate are delivered into cells to be metabolized as a fuel substrate

(27). Here, we did not observe an elevation of lactate in ESCC cancer

tissues compared to DNT, which may imply that it is transported into

cells as a fuel substrate. Increased glucose accompanied by decreased

lactate in serum in ESCC patients indicated that the metabolic

pathway of gluconeogenesis was enhanced to make up for the

glucose consumed by the tumor cells (25, 26). In addition, we

observed an increase in glutamate and a decrease in glutamine in

the tissues and serum of ESCC patients, suggesting enhanced

glutaminase activity for tumor development (28). Acetoacetate can

be converted from fatty acids to acetyl-CoA, and enters TCA cycle to

generate a large amount of ATP. Here, the levels of urine acetoacetate

in ESCC patients increased, along with the elevated cis-aconitate

(TCA intermediate), indicating that the TCA cycle pathway was

active to provide energy for tumor cell proliferation (29). Choline is
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an important component in maintaining the integrity of cell

membrane structure and function, and its metabolism is usually

increased in malignant tumors (30, 31). Thus, the increased choline

content observed in ESCC cancer tissues suggests that membrane

biosynthesis was activated in response to the rapid tumor cells

proliferation. The significant decrease of myo-inositol level in ESCC

cancer tissues may be related to the decreased osmoprotective effect of

cancer cells. Finally, we observed taurine depletion in ESCC cancer

tissues, indicating intracellular injury and inflammatory response

associated with ESCC (32).

Cancer cells typically exhibit high rates of anabolic metabolism,

by which they absorb large amounts of nutrients to promote TCA

cycling and oxidative phosphorylation. Thus, in addition to energy

metabolism, tumor cells exhibit changes in nutrients to meet the

increased amino acid metabolism for proliferation. Therefore, the

amounts of amino acids, such as isoleucine, valine, leucine, arginine,

lysine, and asparagine in ESCC cancer tissues, were relatively higher

than those in the distant non-cancerous tissues, implying an active

protein synthesis and amino acid metabolism in tumor tissues. This is

because they are branched-chain amino acids that can be synthesized

by condensation of the corresponding keto acids to promote protein

biosynthesis. In addition, they can enter the tricarboxylic acid cycle

through succinyl-CoA to promote energy metabolism (33, 34). The

observed alanine depletion in ESCC cancer tissues is incordance with

the use of ingested nutrients to promote TCA cycling.
A B

D E

C

FIGURE 4

(A) Metabolic pathways associated with various metabolic alterations in ESCC vs. HCs. (B, C) Comparison of the metabolic enzyme gene expression
related to “glycine, serine and threonine metabolism” between ESCC cancer tissues and normal tissues (ns, p≥0.05; *, p< 0.05; **, p<0.01; ***, p<0.001).
(D) Comparison of the ROC curves used for distinguishing ESCC patients from HCs, based on the levels of various individual serum and urine metabolites
and a combined set of metabolites. (E) Prediction and validation of the diagnostic accuracy of the optimal combined biomarker panel for ESCC detection
(“training set”: ESCC=50, HC=50; “discovery set”: ESCC=20, HC=20). ns, not statistically significant.
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Glycine and creatine were overlapping discriminatory metabolites

across serum, urine and tissue samples in ESCC patients in this study.

Besides, they were the main metabolites involved in the perturbation

of glycine, serine and threonine metabolism, the most significant

pathway alteration, suggesting that the serine/glycine synthesis and

one-carbon unit metabolism pathways were disturbed, so as to

maintain the malignant hyperplasia of the tumor. One-carbon unit

is a key metabolic pathway for cell proliferation, mainly derived from

the metabolism of glycine, serine, histidine and tryptophan. Its main

function is to participate in the synthesis of purine-pyrimidine,

choline and epinephrine, as well as the synthesis and modification

of DNA and RNA (35, 36). The glycine level was found to be

increased in tumor tissues and decreased in serum and urine in

ESCC patients. The possible reason is that glycine in both serum and

urine is delivered to the tissues, reducing their levels to supplement

the glycine supply in the tissue, such producing a large amount of

one-carbon to maintain the rapid proliferation of tumor tissue cells.

The levels of creatine in ESCC cancer tissues and biofluids were lower

than those in the normal controls, and the levels of creatine in serum

and glycine in tissues were negatively correlated. This indicated that

the metabolic pathway of glycine biosynthesis to provide one-carbon

is enhanced and the metabolic conversion to sarcosine is weakened,

thereby reducing the production of creatine. On the other hand,

reduced creatine is associated with the changes in the process of

energy transfer (37), suggesting that the activity of creatine

phosphokinase is enhanced, and creatine is consumed to produce

more phosphocreatine to meet the needs of hypermetabolism (38,

39). In addition, complementary data of enzyme genes related to

serine and threonine metabolic pathway were analyzed (Figures 5B,

C). Up-regulation of metabolic enzymes SHMT1, SHMT2 and

GLDC, which catalyzes the conversion of serine to glycine (40) may
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result in increased glycine biosynthesis, and down-regulation of

GAMT genes, using S-adenosylmethionine as the methyl donor to

convert guanidinoacetate to creatine (41) may be associated with

decreased creatine levels in ESCC cancer tissues.
Construction of a predictive nomogram
based on creatine and glycine in both serum
and urine for ESCC detection

Creatine and glycine in both serum and urine were selected as the

optimal biomarker panel for ESCC detection based on the following

criteria: (i) they were the overlapping discriminative metabolites

across serum, urine and tissue samples in ESCC patients; (ii) they

were the major metabolites involved in the disturbance of “glycine,

serine, and threonine metabolism”, the important metabolic pathway

perturbation associated with ESCC progression; and (iii) changes in

their biofluid levels were associated with changes of key genes

expression involve in “glycine, serine, and threonine metabolism” in

ESCC cancer tissues. Then, a predictive nomogram model was

constructed by combining creatine and glycine in both serum and

urine, which improved the diagnostic efficiency of ESCC compared to

individual serum or urine metabolic biomarkers.

Nomogram is a mapping prediction model that comprehensively

analyzes multiple quantitative and qualitative variables to predict the

occurrence of a specific event. It can use intuitive mapping to assess

the risk of individual patients. The model can be based on Logistic

regression model and Cox regression model, and its results can be

visualized. Specifically, the scoring standard is formulated according

to the size of the model regression coefficient, and a score is then

assigned to each value of each independent variable to calculate the
FIGURE 6

Altered metabolic pathways for the most relevant distinguishing metabolites (Red: common changed metabolites in tissue, serum and urine; Purple:
changed metabolites in both tissue and serum; Light blue: changed metabolites in both tissue and urine; Yellow: tissue-specific metabolites; Navy:
serum-specific metabolites; Green: urine-specific metabolites. Red arrow: increased or decreased with respect to control in tissue; Yellow arrow:
increased or decreased with respect to control in serum; Green arrow: increased or decreased with respect to control in urine).
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total score of each patient. Subsequently, the probability of outcome

occurrence of each patient can be calculated through the conversion

function between the score and the probability of outcome

occurrence. Its axis structure and risk points reflect the impact and

importance of each variable on the prediction results. Nomogram is a

practical and convenient tool for clinical application, which has been

widely used in the research in tumor prediction, lymph node

metastasis, prognosis, and efficacy judgment (42–44). The most

crucial benefit of nomogram is that it can assess the risk in advance

before the tumor progresses to the middle and advanced stage, and

help clinicians to decide appropriate management methods, such as

endoscopic follow-up intervals or selection of proper surgical

procedures. As can be seen in Figure 5A, the modelling group No.

1 sample had a total score of 210 points, and the corresponding

prediction probability of ESCC was 70%, which suggests that further

clinical examinations, such as esophageal endoscopy is required.

Indeed, endoscopy confirmed that the No.1 sample was an

early ESCC.
Limitations of this study

This study has limitations, including a small sample size, a limited

number of precancerous lesions and tumors at each stage, lack of

genomics-derived molecular features or validation of the metabolic

pathway disorders at other systemic biological levels, which need to be

studied and analyzed in the near future.
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Conclusion

Our paralleled investigation observed a considerable number of

changed metabolites in ESCC cancer tissue, serum and urine,

demonstrating the networks for metabolic pathway disturbance in

ESCC subjects. The changes in urine and serum metabolism in

esophageal cancer could reflect the metabolic disorders of the

cancer tissues, highlighting that NMR-based biofluids metabolomics

fingerprints, as non-invasive predictors, have the potential utility for

ESCC detection. The visual predictive nomogram model based on

creatine and glycine in both serum and urine could improve the

diagnostic efficiency of esophageal cancer. Further studies based on a

larger number size and in combination with other omics or molecular

biological approaches are needed to validate the metabolic pathway

disturbances in ESCC patients.
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