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Esophageal cancer (EC) is one of the fatal malignant neoplasms worldwide.

Neoadjuvant therapy (NAT) combined with surgery has become the standard

treatment for locally advanced EC. However, the treatment efficacy for patients

with EC who received NAT varies from patient to patient. Currently, the

evaluation of efficacy after NAT for EC lacks accurate and uniform criteria.

Radiomics is a multi-parameter quantitative approach for developing medical

imaging in the era of precision medicine and has provided a novel view of

medical images. As a non-invasive image analysis method, radiomics is an

inevitable trend in NAT efficacy prediction and prognosis classification of EC

by analyzing the high-throughput imaging features of lesions extracted from

medical images. In this literature review, we discuss the definition and workflow

of radiomics, the advances in efficacy prediction after NAT, and the current

application of radiomics for predicting efficacy after NAT.

KEYWORDS
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1 Introduction

Esophageal cancer (EC) is one of the most common cancers worldwide, ranking

seventh in incidence and sixth in its overall mortality rate (1). The prognosis after EC is

unsatisfactory, with a 5-year survival rate of approximately 25% (2). Although surgery has

been regarded as an effective treatment for EC, the higher postoperative mortality and
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recurrence rate have prompted the investigation of multimodal

treatments such as neoadjuvant therapy (NAT) (3). Currently, NAT

combined with surgery has become the standard treatment for

patients with locally advanced EC and is more effective in

improving patient survival than surgery alone (4–7).

However, the prognosis of patients with NAT varies due to

individual differences. For instance, the differences between

esophageal squamous cell carcinoma (ESCC) and esophageal

adenocarcinoma (EAC), and inconsistencies in the standard

therapy for NAT, such as the use of radiotherapy compared to

chemotherapy, pose a significant obstacle to achieving good

outcomes (8–10). In addition, ypTNM and tumor regression

grade (TRG) are used to evaluate the efficacy of NAT in EC

patients (11, 12). Though the methods described above are being

studied and proven to have a good effect on evaluating the

prognosis of EC, several limitations remain (13, 14). Numerous

researchers contend that in EC patients receiving NAT, the ypTNM

stage mainly loses its prognostic significance and may differ from

nation to nation (15–17). Meanwhile, there is still debate about the

optimal TRG system, which restricts its application (18). Therefore,

accurate prediction of outcomes in patients with EC after NAT is

still necessary, and breakthroughs are urgently needed. Most

recently, investigators have focused on novel applications such as

radiomics to improve the patient pathway.

Radiomics is a non-invasive technique that involves the

extraction of quantitative features from medical images, the

selection of features by using particular methods, and the analysis

correlating with clinical data for classification or prediction (19, 20).

Our earlier research used radiomics to predict pathological and

survival outcomes in patients with thymic epithelial tumors and to

detect lung allograft rejection in a rat lung transplantation model,

both of which demonstrated the effectiveness of radiomics in the

prognostic analysis of cancer or lung transplantation (21, 22). Other

previous studies have shown that radiomics can play an active role

in the clinical staging, outcome assessment, and prognostic analysis

of cancer. A systematic review on the value of radiomics in

predicting response to treatment in patients diagnosed with

gastrointestinal tumors showed that radiomic models and

individual radiomic features enabled better prediction (area under

the curve (AUC) or accuracy > 0.75) in 37 studies (23). In EC,

radiomics can predict adverse events after NAT, thus allowing

physicians to judge other treatment strategies for their patients. It

has been demonstrated that radiomics better predicts pathological

responses such as pathological complete response (pCR),

complications, recurrence, and survival (Table 1) (24, 34, 35,

39–43).

Nevertheless, there are still some problems with the prediction

and practical application of radiomics to EC patients receiving

NAT, such as the dilemma of individual precision therapy, the

controversy of surgical removal versus organ preservation after

NAT, and some other pitfalls. This article will review radiomics in

predicting response after NAT in EC, aiming to assist physicians in

their decision-making for treatment strategies. To the best of the

authors’ knowledge, this is the first literature review on applying

radiomics in EC patients after NAT.
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2 Radiomics

2.1 Brief introduction to radiomics

Radiomics is a high-throughput and non-invasive technique

developed by Lambin et al. in 2012 to extract numerous imaging

features from radiographic images that are hardly visible to

radiologists. It further correlates these data with clinical outcomes

like treatment efficacy, survival, or toxicity to develop identification

or prediction models using objective methods (19, 20). It cannot be

established without the development of medical imaging. Lambin

et al. summarized the relationship between the development of

medical imaging techniques and radiomics in the following four

points: 1) innovations in medical devices (hardware), 2)

innovations in imaging agents, 3) a standardized protocol

allowing quantitative imaging, and 4) innovations in imaging

analysis (19, 44). Radiomics can use high-dimensional data

generated from medical imaging, such as computed tomography

(CT), magnetic resonance imaging (MRI), positron emission

tomography (PET), and the combination of PET and CT (PET/

CT), to provide mathematical quantification of tumor phenotypes

through radiomic features, and establish identification or prediction

models to correlate with tumor characteristics, clinical results and

specific gene-expression patterns (23, 45, 46). It can capture the

heterogeneity within the tumor, which is affected by many factors

such as intracellular factors or cell microenvironment, and is the

main obstacle to the practical and individualized treatment of

tumors. Thus, it guides clinical diagnosis, such as continuing

surgery or retaining organs (20, 47, 48). However, radiomics is

still a very young and exploratory field. Most established models

have not been used for routine clinical treatment, and there is a lack

of sizeable external validation (49). The disciplines behind it may

still seem immature because of the inconsistent standards,

heterogeneous methods, and quality control, which often does not

exist (50, 51). In summary, as an emerging field, radiomics has

excellent potential to improve health care, mainly providing a solid

foundation for clinicians or radiologists to develop cancer treatment

strategies. However, its clinical application and value still need

further research and exploration due to some limitations

and problems.
2.2 The workflow of radiomics

Although there are many technical methods of radiomics, its

workflow is roughly divided into the following five parts: data

selection, segmentation, feature extraction, feature selection, as well

as modeling and validation (20, 44, 46, 52).

The first step in radiomics is determining the imaging modalities,

the tumor regions of interest (ROI), and a prediction target. Second,

we manually, semi-automatically or automatically segment the

delineated tumor ROIs in the original or processed images. 3D

Slicer (www.slicer.org/), ITK-SNAP (www.itksnap.org/pmwiki/

pmwiki.php), and MIM (www.mimsoftware.com/) are often used

for segmentation of ROI (53). Third, we extract quantitative imaging
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TABLE 1 Predictive performances and application of radiomic models in esophageal cancer.

Outcomes Imaging
modalities

Number
of

patients

Prospective Multi-
center

Modeling
methods

Predictive
Performances*

Application Reference

pCR

CT 55 No No LASSO AUC, 0.86
Prediction of pCR in ESCC

after nCRT
(24)

CT 231 No No

LR, SVM,
KNN, NB,
DC, RF,
XGboost

AUC, 0.852
Prediction of pCR to nCRT in

ESCC

(25)

PET/CT 73 No No LASSO AUC, 0.81
Prediction of response to

nCRT in EC
(26)

PET/CT 91 Yes No LASSO AUC, 0.78
Prediction of response to

nCRT in EC
(27)

PET/CT 20 No No SVM, LR AUC, 1.00
Modeling pathologic response

of EC
(28)

MRI 24 Yes No _ AUC, 0.914
Optimal timing for prediction

of pCR to nCRT in EC
(29)

MRI, PET/
CT

54 No No LR AUC, 0.914
Assessment of the response to
nCRT in locally advanced

ESCC

(30)

PET/CT 96 No No LR AUC, 0.857
Prediction of response to

nCRT in EC
(31)

Recurrence

PET/CT 44 No No _ _
Prediction of recurrence and
mortality of locally advanced

EC patients

(32)

PET/CT 44 No No _ _

Improvement of prognostic
stratification in patients with
ESCC treated with nCRT and

surgery

(33)

PET/CT 68 No No LR AUC, 0.87 ± 0.06
Prediction of pCR and loco-
regional control following

nCRT in EC

(34)

CT 206 No No LASSO C-index, 0.746

Prediction of postoperative
recurrence in patients with

ESCC who achieved pCR after
nCRT followed by surgery.

(35)

Survival

CT 239 No Yes RF AUC, 0.69
Prediction of 3-year overall

survival following
chemoradiotherapy of EC

(36)

CT 307 No No LASSO C-index, 0.700
Improvement of survival

prediction in ESCC
(37)

PET/CT 65 No No RF
AUC, 0.822 ±

0.059

Prediction of treatment
response and survival in EC
patients treated with chemo-

radiation therapy

(38)

MRI, PET/
CT

69 Yes Yes _ C- index, 0.82
Preoperative prediction of

pathologic response to nCRT
in patients with EC

(39)
F
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*Only the best prediction outcomes were chosen for use with various modeling methods. pCR, pathological complete response; AUC, area under the curve; LASSO, least absolute shrinkage and
selection operator; DC indicates decision tree; KNN, k-nearest neighbors; LR, linear regression; NB, naive bayes; RF, random forest; SVM, support vector machine; XGboost, extreme gradient
boosting; ESCC, esophageal squamous cell carcinoma; nCRT, neoadjuvant chemoradiotherapy; EC, esophageal cancer.
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features. Pyradiomics has now become a popular open-source Python

package for extracting radiomic features from medical imaging (54).

The primary categories of extracted radiomic features are shape-

based features, histogram features (first-order features), texture

features, and transform-based features. The shaped-based features

describe the geometric properties of the tumor according to Shape-

based (three-dimension) and Shape-based (two-dimension). In

addition, first-order statistics describe the distribution of voxel

intensities within the image region defined by the mask through

commonly used and basic metrics. Texture features unfold the intra-

tumoral heterogeneity. After resampling and filtering, transform-

based features describe the frequency, spatial location, gray change,

intensity, etc. Fourth, feature selection is performed on the extracted

features using the filter, embedded or wrapper methods. Filter

methods use statistics to rank and select the radiomic features, such

as Pearson’s Correlation, t-test, Mann-Whitney U test, etc.; Wrapper

methods use the chosen multi-variate model to evaluate and find the

optimal radiomic features, such as Recursive Feature Elimination, Las

Vegas Wrapper, etc.; Embedded methods embed radiomic features

during modeling, and optimal features are selected by observing each

iteration of the model training phase, such as Least Absolute

Shrinkage and Selection Operator (LASSO), Ridge Regression, etc.

Radiomic features correlating with tumor stage or gene expression

can also be selected to evaluate their value for better prediction. The

ultimate goal is to construct the targeted radiomic models, such as

regression models, support vector machine (SVM), etc., to provide

accurate stratification and assess their prognostic ability. After

modeling, validation is usually evaluated through discrimination

and calibration (55). The former, discrimination, refers to the

performance that the radiomic model differentiates patients having

a specific event at a different level of risk, and the latter, calibration,

refers to the accuracy of absolute risk estimates. For accuracy of the

performance in the radiomic model, bootstrap, cross-validation or

hold-out methods are often utilized during discrimination and

calibration. Bootstrap (or bootstrapping) is a uniform sampling

method from a given training set. As a resampling technique,

cross-validation employs various data subsets to test and trains a

model over different iterations. The hold-out method divides the data

into multiple segments, using one part to train the model and the rest

to validate and test it. Noticeably, an internal or external validation set

in the hold-out method may increase the reliability of the validation

results for estimating its real diagnostic performance (Figure 1).
3 Neoadjuvant treatment

NAT is now one of the most commonly used treatments for cancer

and has a wide range of clinical applications in the areas of pancreatic

cancer, breast cancer, gastric cancer, colorectal cancer, and

cholangiocarcinoma (56–59). To improve clinical prognosis and

outcomes, NAT has also been introduced to the treatment of EC,

especially for patients with locally advanced EC. The primary

neoadjuvant therapies (NATs) for EC are neoadjuvant chemotherapy

(nCT), neoadjuvant chemoradiotherapy (nCRT), and NAT combined

with immunotherapy (60–62).
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The British Medical Research Council (OE02) trial was the first

large-scale study to demonstrate the survival benefits of nCT for

patients with EC (63). Also, several other studies made nCT one of

the earliest standard treatments for locally advanced patients EC

(64, 65). However, some studies indicated that perioperative

chemotherapy regimens showed a survival benefit in distal

esophageal and gastroesophageal junction adenocarcinoma, but

only selected patients benefited from nCT vs. surgery alone for

ESCC (66). The clinical application of nCT is still investigated in

further trials.

According to several landmark trials, nCRT is superior to

surgery alone in some aspects, including R0 resection, survival

outcomes and recurrence, which provides excellent clinical utility

(5, 67, 68). The AGITG DOCTOR trial also showed that offering

second-line chemotherapy and radiation improved survival for

patients who did not respond to initial chemotherapy (69). And

the chemoradiotherapy for EC followed by surgery study (CROSS)

trial demonstrated a survival benefit compared to surgery alone

when using chemoradiation with the addition of paclitaxel (68).

NAT combined with immunotherapy has developed rapidly in

recent years, achieving sound therapeutic effects in various cancer

treatments. Previous studies have shown its potential therapeutic

effect (70, 71). A meta-analysis enrolled 759 patients from 21 studies

using the major pathologic response and pCR to evaluate the

effectiveness of nCT combined with immunotherapy (72). Of the

enrolled patients, major pathological remission was achieved in

52.0% (95% CI: 0.44-0.57) of patients on nCT combined with

immunotherapy, and pCR was achieved in 29.5% (95% CI: 0.25-

0.32) of patients.

Despite the widespread use of NAT in clinical practice, some

drawbacks are hard to predict, including harmful toxic effects,

outdated technology, and failure to address patients’ and

hospitals’ actual requirements (25, 73). Its future development

still depends on individual characteristics and hospital

technology, such as physical condition, pCR or recurrence

prediction, and more multidisciplinary combination therapy (61).

Noticeably, based on accurate assessment and prediction, the

application of radiomics may help to reduce these deficiencies

and prevent further complications of NAT in EC.
4 The application of radiomics for
predicting the efficacy after NAT

4.1 Pathological complete response

pCR is defined as the absence of disease in the resected

specimen’s esophagus and lymph nodes (T0N0). For patients with

locally advanced EC, it has been correlated with a better outcome

than non-pCR, which means there may be better survival and a

lower local recurrence rate, providing a much better quality of life

(74, 75). In this context, many techniques based on radiomics can

be utilized to construct prediction models for pCR in EC patients

after NAT, offering a bright prospect.
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First, the CT-based radiomicmodel to predict pCR after NAT has

a good prediction effect, especially in ESCC patients, with a high-

performing level and good discrimination ability. Yang et al. (24)

reported that three CT-based radiomic models could predict pCR in

ESCC patients after nCRT in both the training (AUC, 0.84-0.86) and

test cohorts (AUC, 0.71-0.79). In addition, peritumoral features can

also serve as powerful prognostic indicators to construct radiomic

models. Based on intratumoral and peritumoral features, Hu et al.

(26) found that the combination of the two to establish a joint CT-

based radiomic model had good identification performance and

better prediction of pCR. There are also a small number of studies

with general prediction results, which may be due to unestablished

measurement errors, inconsistent standards, poor actual imaging

quality, and small sample size (27). These aspects need to be

explored further and improved in future research.

It is noteworthy that an increasing number of studies have also

linked the radiomic features of PET alone or PET/CT to pCR.

Previous studies have found that combining clinical factors and

18F-FDG PET-based radiomic features improves the ability to
Frontiers in Oncology 05
predict pCR (28). Meanwhile, CT can make up for the low

anatomical spatial resolution of PET and provide more abundant

radiomic features. Therefore, more PET/CT-based radiomic models

are used to predict pCR after NAT in EC patients. PET/CT-based

radiomic studies improved the predictive ability of pCR compared

with PET alone and CT alone (AUCs for CT, PET, and PET/CT

models were 0.73 ± 0.08, 0.66 ± 0.08, and 0.77 ± 0.07, respectively)

(29). Beukinga et al. (30) constructed five different response

prediction models based on eighteen clinical, geometric, and pre-

processed texture features that were finally selected in PET and CT

imaging. The predictive values were better than those of the models

based on maximum standardized uptake values, demonstrating the

advantages of PET/CT radiomic features over traditional

parameters. SVM and logistic regression (LR) models can also be

further constructed to predict the pathological response of tumors

to nCRT. Lin et al. (75) reported that the SVMmodel obtained high

accuracy (AUC, 1.00) and precision (no error classification), which

was significantly better than traditional PET/CT measurements or

clinical parameters. In general, using complementarity between
FIGURE 1

Workflow of radiomics. (A) Data selection: determines the imaging modalities, the tumor regions of interest (ROI), and a prediction target;
(B) Segmentation: segments the delineated tumor ROIs in the original or processed images; (C) Feature extraction: extracts quantitative radiomic
features through software or package from the tumor ROIs; (D) Feature selection: selects the extracted features by using the filter, embedded or
wrapper methods; (E) Modeling and validation: models the selected radiomic features by specific methods, then discriminates and calibrates through
bootstrap, cross-validation or hold-out methods. EC, esophageal cancer; NAT, neoadjuvant therapy; nCT, neoadjuvant chemotherapy; nCRT,
neoadjuvant chemoradiotherapy; ROI, regions of interest; pCR, pathological complete response.
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imaging techniques such as PET/CT can effectively supplement

radiomic features, further establishing a more accurate

prediction model.

Moreover, diffusion-weighted magnetic resonance imaging

(DW-MRI) has proven its value in predicting pCR in EC after

NAT. A study by Borggreve et al. (31) was conducted to determine

the optimal timing of DW-MRI for predicting pCR to nCRT for EC.

The relative change in tumor apparent diffusion coefficient (DADC
(%)) during the first two weeks of nCRT is the most predictive for

pCR to nCRT in EC patients. They found that a model including

DADCweek 2 could discriminate between pathologic complete

responders and non-pathologic complete responders in 87%. 18F-

FDG PET/CT and dynamic contrast-enhanced magnetic resonance

imaging (DCE-MRI) have also been used to predict pCR after nCRT

in patients with locally advanced ESCC. Integrating 18F-FDG PET/

CT and DW-MRI parameters can more accurately identify the

pathological response of ESCC primary tumors to nCRT, especially

the related prediction of pCR (AUC, 0.914) (76).

In addition to clinical and metabolic parameters, radiomic

features combined with biological expression products can also

improve the accuracy of radiomic models. Biological expression

products such as the cluster of differentiation 44 (CD44) and the

hedgehog (HH) signaling pathway ligand Sonic Hedgehog (SHH),

which are closely related to the prognosis of EC patients treated

with nCRT, can be included in the comprehensive prediction model

(77). Beukinga et al. (78) included human epidermal growth factor

receptor 2 (HER2) and CD44 in the clinic-radiomic model, which

improved the overall performance of the nCRT response in EC

patients (AUC, 0.857), thus facilitating the differentiation of pCR.

Therefore, it is urgent to accurately predict the pCR of EC

patients, especially for patients with different NATs (66). Some

studies have also found that predicting pCR based on the

pathological subtypes of patients can improve the performance of

radiomic models, especially in ESCC patients relative to EAC

patients. The potential mechanisms may be the difference in pCR

rate and genomic characteristics (33, 79). In summary, radiomic

studies for predicting pCR in patients with EC after NAT have

broad prospects, and their clinical application is worthy of

further exploration.
4.2 Recurrence

A previous study reported that preoperative use of NAT, such as

nCRT, can reduce recurrence rates in EC patients (68). Although

researchers have provided recent advances in prognostic stratification

and modern multimodal treatment strategies, many EC patients still

have a tumor recurrence and eventually die of the disease, mainly in

the distance (32, 80–82). Therefore, developing a more accurate

prediction model for recurrence in EC patients is necessary. As an

emerging non-invasive method, the radiomics-based prediction

model can be a helpful tool to accurately predict the recurrence in

EC patients after NAT and has a similar effect to pCR.

The radiomic methods used to predict recurrence are mainly

carried out through PET/CT. 18F-FDG PET/CT has been

demonstrated to be an accurate and indispensable imaging
Frontiers in Oncology 06
technique in the diagnosis and staging of EC, and it is the most

useful method for detecting asymptomatic recurrence in patients

undergoing curative treatment for EC (36). During the follow-up of

a study by Chang et al. (37), higher values of 18F-FDG PET/CT

parameters were associated with poor recurrence-free survival

(RFS). Radiomics-based prediction methods can predict RFS and

other indicators and, thus, reflect the recurrence situation. In

another study to predict the prognosis of EC patients after nCRT,

all patients underwent 18F-FDG PET/CT before and after nCRT

(32). Pretreatment radiomic features and changes in the PET-

derived traditional parameters after nCRT were analyzed, and

recurrence was also well predicted. Additionally, the composite

radiomic features from pretreatment non-contrast CT and staging

PET are highly accurate in predicting response in EC, especially

recurrence (34). In short, the current studies have shown the value

of methods based on radiomics in predicting recurrence in EC

patients after NAT. In particular, the predicting model based on

PET/CT radiomic research has excellent advantages.

In addition, few studies have investigated the prediction of

recurrence in patients achieving pCR. In EC patients, pCR after

nCRT is accompanied by a lower rate of recurrence and more

prolonged survival than non-pCR (29). Hence, predicting the

likelihood of recurrence in these patients is still important, ensuring

that an appropriately tailored treatment strategy is implemented early

in the cohort of patients with a high risk of recurrence (35). Studies

based on radiomics to predict the risk of recurrence after NAT in EC

patients who achieve pCR are underway. A radiomic nomogram

incorporating radiomic features and clinical factors has been

developed and can be used in postoperative assessments of the

individual recurrence risk in patients achieving pCR (35). Comparing

the radiomic signature (P < 0.001) and clinical nomogram (P < 0.001)

in both the training (AUC, 0.746 vs. 0.685 vs. 0.614, respectively) and

validation cohorts (AUC: 0.724 vs. 0.671 vs. 0.629, respectively), an

improved ability to predict the postoperative recurrence risk in patients

with ESCC who achieved pCR after nCRT followed by surgery has

been shown. However, further research based on radiomics is required

to predict recurrence in patients who eventually achieve pCR.

Therefore, the value of using radiomics to predict the

recurrence of EC patients after NAT has been proven whether

recurrence occurs after pCR. This promising and developing

prediction method still needs to be further studied in the future

to predict post-NAT recurrence in EC patients more accurately.
4.3 Survival

Survival of EC patients can generally be improved with NAT,

but there is still the possibility of some risk factors that could

seriously affect the survival prognosis. Thus, a predictive survival

model in EC patients after NAT is necessary. In recent years,

radiomic analysis has been proven effective in predicting tumor

treatment response and patient survival (29, 38). Better survival can

be implied if radiomics can anticipate the emergence of pCR

following nCRT (75). Moreover, a radiomic model that primarily

relies on PET, CT, and MRI data can be utilized to forecast the

survival of EC patients after NAT.
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As a suitable method, PET can help predict the survival of EC

patients after NAT. The combination of traditional PET parameters

and radiomic parameters is effective in predicting the survival of

ESCC patients. Patients can be more effectively grouped into

subgroups with different survival rates by combining the

conventional and radiomic parameters of 18F-FDG PET with

clinical analysis, which is beneficial for further treatment (32).

Another valuable tool for estimating EC patients’ survival is the

CT-based radiomics model. A study based on CT by Ruben et al.

(83) developed and externally validated a random forest (RF) model

using pretreatment CT radiomic features to predict 3-year overall

survival (OS) in EC. The radiomic model had better predictive

capability than the model using standard clinical variables (AUC,

0.69 vs. 0.63). The study by Lu et al. (84) found that, compared with

the clinical nomogram, the radiomic-clinical nomogram improved

the calibration and classification accuracy for OS prediction with a

total net reclassification improvement of 26.9% (P = 0.008) and

integrated discrimination improvement of 6.8% (P < 0.001). The

results also concluded that based on CT, integrating the dual-region

radiomic signature and clinicopathological factors improves

OS prediction.

Additionally, researchers found that a combination of PET and

CT was beneficial for predicting the survival of EC patients after

NAT. The metabolic tumor volume (MTV) parameters measured

by 18F-FDG PET/CT can also predict OS and RFS in patients with

locally advanced EC (37). In addition, using an RF classifier based

on 18F-FDG PET can also improve predictive and prognostic

values, such as OS and RFS, compared to traditional survival

analysis when applied to several tens of features in a limited

database (85).

Furthermore, MRI is an excellent resource for creating predictive

models. DCE-MRI and DW-MRI have been shown to have

encouraging effects in predicting tumor response to nCRT and

patient survival (86, 87). An MRI-based radiomic study also found

that ADC skewness (AUC, 0.86) was the most useful ADC-derived

parameter for predicting pCR and survival in ESCC patients receiving

preoperative CRT therapy, which also confirms the feasibility of

MRI-based radiomics in predicting survival (43). Notably, combining

the individual and combined values of 18F-FDG PET/CT and DW-

MRI during and after nCRT can validate the value of different

radiomic approaches combined to predict survival (39).

Hence, some methods based on radiomics can predict the

survival of EC patients after NAT, especially PET, CT and MRI.

Future studies should focus on the continued optimization of

predictive models, such as the relationship between pCR and

survival. More informative radiomic features related to accurate

survival prediction should be explored while better techniques such

as artificial intelligence and deep learning can be utilized, which can

be applied to optimize the screening of radiomic features (27, 88).
5 Discussion and suggestions

Radiomics has shown promising results when used to predict

post-NAT responses in EC, particularly in predicting pCR,

recurrence, and survival. However, the practical applications of
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radiomics still have some restrictions because of numerous factors

(44). The primary sources of variability and pitfalls in radiomic

research are study design, image acquisition and processing, and

statistical analysis (89). In addition, some general defects in

radiomic studies also impact their reliability and practical

application. Thus, this article summarizes the following

viewpoints to provide valuable solutions and possible directions

for future research on radiomics in predicting the efficacy of

patients with EC after NAT.

Radiomic analysis will be affected by the systematic errors of

research design, resulting in its defects and deficiencies.

Incorporation bias and spectrum bias can often be found (89).

The outcome of using data from the analyzed images caused the

incorporation bias. Defining the outcome from the analyzed image

should be avoided. And spectrum bias is from models developed

using only extreme cases, which means that researchers must ensure

study data are generalizable to the population of interest.

Importantly, standards of radiomics must be established and

further refined among different suppliers and institutions, promoting

the standardization of radiomic research and improving its practical

application (88, 90). Moreover, image acquisition and processing

reasons include software and operator variability (89). Software

variability means that hand-engineered features, calculated using a

different software platform or version of the same software, may have

different values despite adhering to accepted standards. The operator

variability is caused by manual or semi-automatic delineation of ROI,

so ROI should be scrutinized by experienced physicians or reduce

and correct variability in ROI.

Additionally, there are still some improvements in the process

before and during statistical analysis. First, imaging professionals

should continue improving imaging quality and the method of

delineating the ROI, because tumor segmentation could be

challenging for small lesions (91), and the extracted radiomic

features may raise the question of repeatability (29, 76). For

instance, applying pre-processing before image analysis can

optimize the performance of models, and proper feature selection

methods can reduce the dimensionality of the generated data (92).

Bias from overfitting, optimistic performance bias, and bias from

the exclusion of indeterminate or missing feature data are often

found in many radiomic research (89, 92). Researchers can evaluate

the model on an independent external data set and use resampling

methods, such as cross-validation, to decrease these biases

as possible.

In many radiomic studies, some mutual deficiencies leading to

unreliability and non-repeatability of their results should be solved.

First, an increasing number of prospective, multicenter, large simple

studies with external validation are needed. Currently, most of the

studies were performed retrospectively, which means bias generated

from the retrospective review could not be avoided (32, 37). Although

limited resources restrict the development of multicenter prospective

studies, their importance cannot be overemphasized. Borggreve et al.

(39) conducted a multicenter prospective study to evaluate the

individual and combined value of 18F-FDG PET/CT and DW-

MRI. They found that changes in 18F-FDG PET/CT after nCRT

and early changes in DW-MRI during nCRT contributed to the

identification of nCRT by pCR in EC. Researchers also found that
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18F-FDG PET/CT and DW-MRI may have complementary value in

the evaluation of pCR, which is consistent with previous research

results (76). Simultaneously, large sample sizes and rich external

validation are also required to verify the accuracy of prediction

models (27, 30, 39, 76). Second, the study of targeted radiomic

prediction techniques is urgently needed for various NATs (66).

Third, the links between radiomics and other disciplines deserve

further strengthening; one example that has achieved good results in

recent years is radio-genomics, in which it is assumed that imaging

features are related to gene signatures (44). Multimodal technology

has also proven its benefits, which combine multiple imaging

techniques. PET/CT combined with MRI, is proven its benefits for

predicting models (39, 76).

At present, the application of radiomics to predict the efficacy

after NAT has become a popular and essential direction for patients

with EC. In the future, applying radiomics in EC will be conducive

to improving post-NAT efficacy prediction providing timely and

accurate treatment strategies that truly benefit EC patients.
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