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Prioritization of patients for
germline testing based on
tumor profiling of
hematopoietic malignancies
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Section of Hematology/Oncology, Departments of Medicine and Human Genetics, The University of
Chicago, Chicago, IL, United States
Germline predisposition to hematopoietic malignancies is more common than

previously appreciated, with several clinical guidelines advocating for cancer risk

testing in an expanding pool of patients. As molecular profiling of tumor cells

becomes a standard practice for prognostication and defining options for targeted

therapies, recognition that germline variants are present in all cells and can be

identified by such testing becomes paramount. Although not to be substituted for

proper germline cancer risk testing, tumor-based profiling can help prioritize DNA

variants likely to be of germline origin, especially when they are present on

sequential samples and persist into remission. Performing germline genetic

testing as early during patient work-up as possible allows time to plan allogeneic

stem cell transplantation using appropriate donors and optimize post-transplant

prophylaxis. Health care providers need to be attentive to the differences between

molecular profiling of tumor cells and germline genetic testing regarding ideal

sample types, platform designs, capabilities, and limitations, to allow testing data to

be interpreted as comprehensively as possible. The myriad of mutation types and

growing number of genes involved in germline predisposition to hematopoietic

malignancies makes reliance on detection of deleterious alleles using tumor-

based testing alone very difficult and makes understanding how to ensure

adequate testing of appropriate patients paramount.

KEYWORDS

germline predisposition, tumor profiling, molecular profiling, hematopoietic
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1 Introduction

1.1 Opening case

A 78 year-old (yo) man was diagnosed with acute myeloid leukemia during a work-up for

his worsening fatigue (Figure 1). His family history was significant for his mother, who had

been diagnosed with breast cancer at 52yo, and two uncles, who were smokers, with lung

cancer. Cytogenetic analysis from the bone marrow at diagnosis revealed a normal karyotype,
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and molecular profiling demonstrated two DNA mutations: A

DNMT3A mutation encoding R882H was present at a variant allele

frequency (VAF) of 36%, and a TP53 variant encoding R248Q was

present at a VAF of 64%. The patient received standard induction

chemotherapy with 7 days of cytarabine and 3 days of daunorubicin

and achieved a clinical remission. Molecular testing from the

remission bone marrow biopsy showed a decrease in the DNMT3A

variant to 3%, but the TP53 variant VAF remained high at 45%.

Because the patient was in a clinical remission, with one DNA

mutation decreasing to levels consistent with clonal hematopoiesis,

the TP53 variant VAF remaining about 50% suggested that this was a

germline allele. The patient’s treating physician counseled the patient

about this finding, and the patient chose to have a skin biopsy for

germline genetic testing. The TP53 variant was confirmed to be

germline based on testing from DNA derived from cultured skin

fibroblasts, and the patient was counseled about cancer risks

associated with Li-Fraumeni Syndrome. Cascade testing for family

members and cancer surveillance strategies were put into place for the

patient and his affected family members.

2 Germline predisposition
testing for patients with
hematopoietic malignancies

Germline predisposition to hematopoietic malignancies (HMs) is

being recognized increasingly (1, 2), as classification schemes (3, 4)

and clinical guidelines (5–10) advocate for germline genetic testing

for individuals with hematopoietic malignancies. Over time, such

predisposition testing is being recommended for a larger and larger

group of people. Currently, germline risk testing is advised for those

with certain physical features (5, 11), and/or a: personal history of two

or more cancers; personal history of a HM diagnosed at a much

younger age than average [e.g., MDS at <40yo]; personal history of a
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HM along with a family history of: another HM/prolonged cytopenia/

or other hematologic abnormality (e.g., macrocytosis) or diagnosis of

a non-hematopoietic tumor in an individual < 50 yo within two

generations of the proband; and/or molecular testing of tumor cells

showing a deleterious variant in a gene known to confer a hereditary

hematopoietic malignancy (HHM) at a VAF consistent with germline

inheritance (1, 2, 5–8). VAFs in the range of 30-60% are generally

considered typical for germline allele status, but this value can change

depending on the testing platform and/or any copy number variants

(CNVs) that may be present in the tissue being tested (7, 8, 12, 13).

Other centers also prioritize those with excessive toxicity from

chemo- radiotherapy for germline predisposition testing (11).

Although germline predisposition testing is recommended for those

diagnosed at particularly young ages as noted above, such testing

should be considered in all patients with HMs regardless of age

(14, 15). Certain cytogenetic and molecular abnormalities detected in

tumor cells may also provide clues as to an underlying germline

predisposition, including (i) the presence of two mutations within a

gene known to confer inherited risk, such as RUNX1 or CEBPA, one

of which is actually a germline mutation; (ii) the presence of

monosomy 7, which may suggest a deleterious germline variant in

SAMD9/SAMD9L or GATA2; or (iii) a hypermutator tumor

phenotype, which may indicate a germline alteration in a mismatch

repair gene (16) or MBD4 (17, 18).

Germline cancer syndromes were initially described by clinicians

who naturally focused on extreme personal and family histories

(5, 19). Thus, classic descriptions of these conditions were almost

always too narrowly defined, as the Opening Case illustrates. The

actual tumor spectrum of germline cancer disorders, like Li-Fraumeni

syndrome, is likely much broader than first described (5, 19). As

diagnosis becomes based more on molecular techniques rather than

history and physical examination, we may identify more subtle cancer

histories and/or physical findings associated with these classic cancer

predisposition disorders.
FIGURE 1

Persistence of deleterious variants in genes known to confer germline risk to hematopoietic malignancies suggests germline status. Top, Pedigree of an
individual diagnosed with acute myeloid leukemia (AML) at 78 years old (yo), indicated by the red arrow. Circles, women; squares, men. Strike-out line
indicates deceased individual at the time of pedigree generation. Ca, cancer. Bottom, Variant allele frequency (VAF) of deleterious variants at diagnosis
(left) versus remission (right).
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3 Prioritizing DNA variants for germline
testing identified in molecular profiling
data from hematopoietic tumors

Because germline variants are present in all of the cells within a

person’s body, malignant cells also contain that individual’s germline

alleles (6–8, 12). Molecular profiling assays may be DNA- or RNA-

based (13). In the case of platforms that use DNA derived from tumor

biopsies, detected DNA variants may be derived from admixed

normal cells and/or from germline alleles (12). Unfortunately,

often, deleterious DNA variants are assumed to be somatic in

nature and interpreted as such (20–22). Clinical reports may

indicate that a particular variant could be germline in nature, but

busy clinicians may not read these caveats closely or understand the

distinction between germline and somatic alleles.

Importantly, the clinical classification of variants detected by

tumor-based profiling are based on their assumed somatic nature,

which may differ if the variant is actually germline (2, 8, 20–22). The

impact of DNA changes is context dependent, and therefore, a

germline allele, which is present in all tissues, may have different

effects compared to a somatic allele, which is present only in a tumor

(23, 24). For this reason, germline and somatic variant curations are

distinct (23, 25). Recognizing this, it is our practice to review all DNA

variants called in genes known to confer risk for HHMs from

molecular testing of malignant hematopoietic tumor cells with the

goal of identifying those that could be germline (6–8, 21). Particular

gene alleles are overwhelmingly likely to be germline (Table 1), and

identifying these in tumor cells quickly singles out these individuals

for counselling regarding the likely germline nature of the allele

(6, 21). When DNA variants likely to be germline are found in

tumor-based sequencing assays, we notify the clinic physician in

charge of the patient and urge genetic counselling and testing. Some

centers have established parallel pipelines that assess for somatic and

germline variants simultaneously by sequencing DNA from tumor

cells and buccal swabs as well as tumor-derived RNA (13).

As indicated in Table 1, based on our clinical experience at The

University of Chicago, there are two genes in which certain variants

are overwhelmingly likely to be germline: CHEK2 and DDX41. When

these variants are detected even in a single sample, they are typically

seen at germline-range VAFs, and treating physicians are notified of

the likely germline nature of the variants. We advocate genetic

counselling, with recommendation for determination of germline

status using either (i) testing of DNA from cultured skin fibroblasts

or hair bulbs, both of which are equivalent to germline, or (ii)

segregation of the variant within the family (Figure 2). Identifying a
Frontiers in Oncology 03
DNA variant in two related individuals is sufficient to determine

germline status, and occasionally, this approach is more feasible than

testing through skin biopsy and fibroblast culture. We advise against

assuming that these variants are germline and do not provide clinical

recommendations unless these variants have been confirmed to be

germline. Importantly, founder mutations exist in other cancer

predisposing genes, such as BRCA1/2 and TP53, which may also

confer risk to HMs as well as solid tumors. For this reason, care

should be given to review all DNA variants in cancer predisposing

genes when tumor based molecular profiling is performed.

Molecular profiling in patients with HMs is often conducted

sequentially over time to document remission status. In these cases,

serial sampling over time is an excellent means of prioritizing patients

for germline testing (12), as outlined by the Opening Case. Gene

variants that persist over time despite changes in disease status,

especially those that remain in germline-range VAF from diagnosis

through clinical remission, are likely to be germline, and again

identify individuals who deserve genetic counseling and testing

(12). However, we need to be cautious and interpret variants within

the clinical context.
4 Case 2: After allogeneic
hematopoietic stem cell
transplantation (HSCT), molecular
profiling can identify donor-derived
germline variants

The pre-transplant work-up of a patient with acute myeloid

leukemia revealed two deleterious DDX41 variants: one encoding the

truncating D140fs variant with a VAF of 49%, and the other encoding

the R525H variant at a VAF of 9% (Figure 3). Because the D140fs

variant has always been seen as a germline variant (Table 1), the

patient was counseled and proper germline testing confirmed its

germline status. The transplant team decided to proceed with an

allogeneic HSCT from an unrelated donor. The post-transplant

day +30 bone marrow biopsy was performed, and several studies

were performed in parallel: engraftment analysis [to determine the

degree of donor chimerism], which showed that >95% of bone marrow

cells were donor-derived; and molecular profiling [to ensure molecular

remission from leukemia], which identified the CHEK2 I200T variant

at a VAF of 51%, an allele which is overwhelmingly likely to be

germline (Table 1).
5 Sensitivity around molecular testing
after HSCT

In Case 2, the patient and his treating team did not have consent

from the unrelated donor to know their germline genetic testing

result, nor was there a mechanism to share this information with the

donor. It is important to recognize that this situation is not unique to

unrelated donors. Since all people have deleterious germline DNA

variants, all donor types (e.g., related, unrelated, umbilical cord) have

the capacity to introduce such alleles into a transplant recipient.

Sequential testing in which engraftment analysis is performed first
TABLE 1 Gene alleles that are commonly germline.

Alleles that are overwhelmingly likely to be
germline

CHEK2
NM

007194.4

• c.470T>C, p.1200T
• c.1100delC, p.T367fs
• c.1283C>T, p.S428F

DDXI
NM

016222.3

• truncating variants
• c.3G>A, p.M1?
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and informs subsequent testing and reporting could have avoided this

situation. If chimerism were tested first and the sample were noted to

be overwhelmingly donor-derived, then reporting of molecular

profiling could have noted that fact, at a minimum, or ideally, been

restricted to leukemia-associated somatic variants. Limiting post-
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transplant clinical reports to detailing the presence or absence of

malignancy-associated somatic DNA variants (i.e., in this case, the

DDX41 R525H allele) is appropriate, but requires coordination across

clinical laboratories. Ideally, test reports should also clearly indicate

that by the nature of this type of testing, germline variants of donor or
FIGURE 2

Algorithm for testing the germline nature of a DNA variant identified in a tumor. Testing the germline nature of a DNA variant begins with recognizing a
deleterious DNA variant found in a gene known to confer cancer risk at a variant allele frequency (VAF) consistent with a germline allele. Testing can be
performed using another DNA sample derived from a tissue considered equivalent to the germline (on left, in green) or through familial segregation (on
right, in purple). Figure was generated with BioRender. *Deleterious variants are those classified as pathogenic or likely pathogenic. #VAFs from 30-60%
are generally considered to be consistent with germline status, but they can be as high as 100% depending on chromosome gains or losses. ^DNA
derived from cultured skin fibroblasts, hair bulbs, or bone marrow-derived mesenchymal stromal cells are considered equivalent to germline samples.
BA

FIGURE 3

Molecular profiling has the capacity to identify donor-derived germline variants after allogeneic hematopoietic stem cell transplantation (HSCT). (A) Molecular
profiling of a patient with acute myeloid leukemia revealed two deleterious DDX41 variants (shown in blue): the D140fs variant at a variant allele frequency
(VAF) of 49%, and the R525H variant at a VAF of 9%. Because the D140fs variant has always been seen as a germline variant (Table 2), the patient had proper
germline testing, which confirmed its germline status. (B) After allogeneic HSCT from an unrelated donor, a day 30 bone marrow biopsy was performed.
Studies performed on bone marrow cells (shown in green) included engraftment analysis, which showed that >95% of bone marrow cells were donor-
derived, and molecular profiling identified the CHEK2 I200T variant at a VAF of 51%.
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host origin could be missed. Providers and patients receiving these

reports need to know this information, as it could be clinically

relevant over time for the patient or a related donor.
6 Cautions in using tumor
profiling data

Although tumor-based molecular studies can identify some

deleterious germline variants, these platforms should not be used in

place of proper germline testing (Table 2). First, the ideal sample type

for each test is distinct. For tumor-based testing, a sample containing

tumor cells must be used. Therefore, peripheral blood with circulating

malignant cells; involved bone marrow, lymph node(s), and/or

cerebrospinal fluid; or any other tissue (e.g., extramedullary

hematopoiesis, myeloid sarcoma) containing such cells can be used

to generate DNA. In most of these cases, normal cells are also present,

with the quantity dictated by the degree of tumor burden. In contrast,

germline testing is performed ideally using tissues that are equivalent

to germline. Most clinical laboratories accept DNA derived from

cultured skin fibroblasts, and some accept DNA generated from non-

hematopoietic hair bulbs or bone marrow-derived mesenchymal

stromal cells (MSCs), which are easily cultured from a bone

marrow aspirate.

The distinction between the use of hematopoietic versus non-

hematopoietic tissue for proper germline predisposition testing is of

paramount importance. Use of non-hematopoietic tissue is critical for

germline risk assessment, because hematopoietic tissue undergoes

somatic reversion relatively easily compared to other tissues, like skin

fibroblasts (19). For some deleterious germline variants, like those in

SAMD9 and SAMD9L, somatic reversion is a common mode of

escape hematopoiesis (19). In these cases, correction in

hematopoietic tissues occurs commonly, and therefore testing for

these alleles in hematopoietic tissues fails to reveal the underlying
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germline defect. Somatic reversion has been documented for nearly all

of the genes that confer germline susceptibility to HHMs. Thus, if

hematopoietic tissue is used for germline genetic testing and a

negative result is obtained, this may be a false negative result, and

one cannot be confident that a deleterious variant is not present (19).

Traditionally, germline genetic testing has used peripheral blood

or saliva/buccal swab for testing. However, we now recognize how

frequent clonal hematopoiesis and therefore somatic mutation occurs

within the hematopoietic compartment, which complicates DNA

variant interpretation. For example, there have now been many

cases of “mosaic TP53 mutations” being confirmed to be due to CH

(26). CH is itself a form of somatic mosaicism but one that arises well

after embryogenesis and generally during adulthood. Therefore, we

avoid germline genetic testing from hematopoietic tissues.

Thus, for these reasons, we recommend germline testing using

DNA derived from tissues considered equivalent to germline (e.g.,

cultured skin fibroblasts, hair bulbs, or bone marrow derived MSCs)

(1, 6, 8, 12, 19, 27). When DNA variants are identified within germline

range from DNA derived from these tissues, the result can be

immediately interpreted as germline and is immediately relevant

when considering relatives as allogeneic HSC donors (6). Some

retrospective studies have determined germline status through

sharing of the allele in relatives (15) or the presence of an allele at a

VAF consistent with germline status obtained from hematopoietic

tissue in clinical remission (28), but we do not advocate such

approaches in general for clinical germline predisposition testing

due to the concerns of somatic reversion and somatic mosaicism, as

discussed above. When germline genetic testing is incorporated into

the initial assessment of patients with HMs, results are often available

when that individual and their family members are being evaluated for

allogeneic HSCT and for optimal post-transplant prophylaxis (29).

The assay designs used in tumor-based molecular profiling versus

germline testing are also quite distinct. Acquired mutations in HMs

typically occur in gene exons, and therefore, platform designs tend to
TABLE 2 Contrasting tumor-based versus germline testing.

Tumor-based Testing Germline Testing

Sample
type

• peripheral blood
• bone marrow
• lymph node

• CSF
• any sample with hematopoietic tumor cells

• cultured skin fibroblasts
• hair bulbs

• bone marrow-derived mesenchymal stromal cells

Benefits Sample is likely already being collected for other tests.
Result is confirmed germline and can be interpreted as such.

Result is immediately relevant when considering relatives as allogeneic
hematopoietic stem cell donors.

Cautions/
caveats

Hematopoietic tissues undergo somatic reversion easily, so the absence of a
finding does not give assurance that there is no deleterious germline variant

Non-coding regions of genes are typically not covered by these assays.
CNVs are typically not covered by these assays.

Time from sample collection to result can take up to three months, which can
complicate planning future therapy, including allogeneic stem cell

transplantation.

Platforms

Generally cover genes/exons where deleterious germline variants can be
found.

Are typically designed to detect SNVs and are capable of detecting large
CNVs, but are insensitive to small CNVs.

Coverage depth is in the hundreds-thousands depth to allow detection of
small clone sizes.

Generally are designed to cover genes/exons as well as non-coding regions (e.g.,
prornoters and enhancers) where deleterious germline variants can be found.

Are capable of identifying SNVs and CNVs.
Current platforms need to be flexible to accommodate the predisposition genes

that continue to be discovered.
Coverage depth 30-50-fold is sufficient to detect germline-range VAFs.

Specific
alleles

Often, the same allele (e.g., in TP53, RUNX1, and CEBPA, among others)
can be somatic or germline.

Specific alleles (e.g., in CHEK2 and DDX41) are overwhelmingly likely to be
germline.
CNV, copy number variant; CSF, cerebrospinal fluid; indel, insertion/deletion; SNV, single nucleotide variant; VAF, variant allele frequency.
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be capture-based amplification assays with hundreds-thousands fold

depth to allow detection of small clone sizes (30). Also, these assays

are typically designed to detect single nucleotide variants (SNVs), but

can sometimes detect large copy number variants (CNVs). In

contrast, germline variants exist as SNVs in exons and regulatory

regions like promoters and enhancers, the latter being poorly covered

generally in exon-based panels, as well as CNVs of various sizes.

Tumor-based panels generally are not designed to detect small CNVs,

and therefore, are incapable of detecting them.

In contrast, germline genetic testing platforms are designed to

cover the mutation types and genomic elements where those variants

occur (8), often performed as augmented whole exome sequencing

(aWES) in which primers designed to capture non-coding regions are

added to an exome platform, and bioinformatic pipelines capable of

identifying CNVs from such data are used. Alternatively, germline

platforms may combine aWES with microarray analysis or multiplex

ligation amplification (MLPA) to detect CNVs (6). Some advocate

performing whole genome sequencing (WGS) initially, which facilitates

CNV detection, but the current cost of running and storing such data

are prohibitive for most clinical centers (6, 31). Importantly, some

platforms separate SNV from CNV testing, so careful attention must be

paid at the time of test ordering to ensure that testing is comprehensive

for both SNVs and CNVs. Generally, a sequencing depth of about 30-

50X is sufficient to detect germline genetic variants. Finally, germline

cancer predisposition genes continue to be discovered, especially for

hematopoietic malignancies, and therefore, clinical testing platforms

need to be flexible to accommodate the increasing number of genes

recognized to confer risk.
7 Conclusion

The increasing use of molecular profiling of tumor cells for

prognostication and therapy decisions affords the opportunity to

identify DNA variants that are germline in nature and confer risk

to hematopoietic, and potentially other, cancers. These panel-based

tests do not substitute for proper germline genetic testing, which relies
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on platform designs that accommodate a growing list of cancer

predisposition genes and a myriad of mutation types and rely on

DNA that is equivalent to germline. Therefore, when a deleterious

DNA variant is identified at an allele frequency consistent with the

germline, especially when it is observed consistently across time and

during remission, it should be considered as potentially germline in

nature. Once prioritized for germline testing, individuals can undergo

assessment in time for future treatments, such as allogeneic HSCT,

which often involves relatives as the donor stem cell source.
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