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poor adenomas: a two-
institution comparative study
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Tong Zhang3, Chunfeng Hu3 and Zhijiang Han3*

1Department of Radiology, Hangzhou Ninth People’s Hospital, Hangzhou, China, 2Department of
Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China,
3Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of
Medicine, Hangzhou, China
Objective: This study aimed to investigate the application of modified region-of-

interest (ROI) segmentation method in unenhanced computed tomography in

the radiomics model of adrenal lipid-poor adenoma, and to evaluate the

diagnostic performance using an external medical institution data set and

select the best ROI segmentation method.

Methods: The imaging data of 135 lipid-poor adenomas and 102 non-adenomas

in medical institution A and 30 lipid-poor adenomas and 43 non-adenomas in

medical institution B were retrospectively analyzed, and all cases were

pathologically or clinically confirmed. The data of Institution A builds the

model, and the data of Institution B verifies the diagnostic performance of the

model. Semi-automated ROI segmentation of tumors was performed using uAI

software, using maximum area single-slice method (MAX) and full-volume

method (ALL), as well as modified single-slice method (MAX_E) and full-

volume method (ALL_E) to segment tumors, respectively. The inter-rater

correlation coefficients (ICC) was performed to assess the stability of the

radiomics features of the four ROI segmentation methods. The area under the

curve (AUC) and at least 95% specificity pAUC (Partial AUC) were used as

measures of the diagnostic performance of the model.

Results: A total of 104 unfiltered radiomics features were extracted using each of

the four segmentation methods. In the ROC analysis of the radiomics model, the

AUC value of the model constructed by MAX was 0.925, 0.919, and 0.898 on the

training set, the internal validation set, and the external validation set,

respectively, and the AUC value of MAX_E was 0.937, 0.931, and 0.906,

respectively. The AUC value of ALL was 0.929, 0.929, and 0.918, and the AUC

value of ALL_E was 0.942, 0.926, and 0.927, respectively. In all samples, the

pAUCs of MAX, MAX_E, ALL, and ALL_E were 0.021, 0.025, 0.018, and 0.028,

respectively.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1086039/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1086039/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1086039/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1086039/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1086039/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1086039&domain=pdf&date_stamp=2023-04-19
mailto:hzj1022@zju.edu.cn
https://doi.org/10.3389/fonc.2023.1086039
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1086039
https://www.frontiersin.org/journals/oncology


Zhu et al. 10.3389/fonc.2023.1086039

Frontiers in Oncology
Conclusion: The diagnostic performance of the radiomics model constructed

based on the full-volume method was better than that of the model based on

the single-slice method. The model constructed using the ALL_E method had

a stronger generalization ability and the highest AUC and pAUC value.
KEYWORDS
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1 Introduction

Incidentally detected adrenal masses, called adrenal

incidentalomas (AIs), are observed in computed tomography (CT)

at a rateof approximately3%–8% (1). In recent years, thedetection rate

of AIs has continued to increase annually with the wide application of

CT andmagnetic resonance (MR) (2, 3).MostAIs are nonfunctioning

adenomas and do not require treatment, and a small proportion is

functional adenomas, metastases, and so on, often requiring early

clinical intervention. In unenhanced CT, adenomas are often divided

into lipid-rich adenoma (≤10 Hounsfield unit, Hu) and lipid-poor

adenoma (>10 Hu) at a threshold of 10 Hu (4, 5), the former being

easier to differentiate typically due to its presentation (6). However,

about 30% of lipid-poor adenomas in adrenal adenomas (7) are

difficult to diagnose and often require additional examinations, such

as adrenal washout CT, chemical shift MRI, and so on (8, 9). These

adenomas have certain disadvantages in that they cannot completely

distinguish lipid-poor adenomas, and sometimes the cost of diagnosis

and treatment goes waste due to improper response and the risk of

additional radiation exposure (10, 11). How to make full use of the

information on unenhanced CT, accurately diagnose lipid-poor

adenoma, and avoid overdiagnosis and treatment are currently a

research hotspot.

Radiomics (12) refers to the extraction of high-dimensional data

from medical imaging and has been applied in oncology to improve

diagnosis, prediction, and clinical decision support to provide precise

medicine. In recent years, some scholars applied radiomics in the

diagnosis of adrenal diseases. For example,Moawad et al. (13) used the

single-slicemethod for ROI segmentation task, and the area under the

curve (AUC) value of their radiomics model was 0.85, while Zhang

et al. (14) used the full-volume method, and its AUC value was 0.91.

Although initial progress has beenmade in the identificationof adrenal

disease via radiomics, whether different ROIs can affect the diagnostic

performance of the model still needs further investigation. This study

used four different segmentation methods for ROI segmentation to

examine the effect of different segmentation methods on radiomics

features and model prediction ability.
2 Materials and methods

2.1 Study participants

The study was conducted according to the Declaration of

Helsinki guidelines and was approved by the Ethics Committee of

our institution.
02
The retrospective analysis of clinical imaging data of patients

was conducted at institution A (The Affiliated Hangzhou First

People’s Hospital, Zhejiang University School of Medicine) and

institution B (The Quzhou Hospital of Wenzhou Medical

University) from June 2012 to June 2022. The following inclusion

criteria were considered: all patients with adrenal lesions underwent

unenhanced CT of the abdomen or chest, and the extent of

scanning needed to include complete adrenal lesions.

The following exclusion criteria were adopted (1): mean

attenuation value of unenhanced CT <10 Hu (2); maximum

tumor diameter <1 cm (3); solid component in tumor <50% (4);

CT slice thickness >5 mm; and (5) CT poor image quality, in vitro

foreign body, or motion artifact (6). CT showed that the lesion had

been treated with radiotherapy or chemotherapy before the

examination (7). When patients had multiple lesions, only the

lesion with the largest diameter was analyzed to reduce any

clustering effect.
2.2 Reference standard

All adrenal lesions ultimately included were pathologically or

clinically confirmed (15), and the criterion for clinical confirmation

of lipid-poor adenomas was lesion size stability (transverse

diameter growth rate <10%) at an imaging follow-up of at least

12 months. The criteria for clinical confirmation of adrenal

metastases included new or increased size (30% increase in

maximum diameter) of new or existing adrenal lesions within 6

months of imaging follow-up or diagnosis of metastases using

positron emission tomography (PET)–CT when the patient had a

history of extra-adrenal malignancy. The pheochromocytoma,

cortical adenocarcinoma, and schwannoma required pathological

confirmation. Solid tumor components were defined as having a CT

attenuation value difference greater than 10 Hu before and

after enhancement.

This study reviewed and analyzed the imaging and clinical data

of 979 patients with adrenal lesions at institution A and institution

B. A total of 669 patients were excluded, and the imaging data of

only 310 patients were included in this study. Out of 310 patients,

only 165 patients with lipid-poor adenomas were finally included in

this study, as 145 patients were found non-adenomatous. A total of

69 patients with malignant tumor metastasis, 43 with

pheochromocytoma, 12 with lymphoma, 11 with ganglioneuroma,

5 with adrenocortical adenocarcinoma, 4 with schwannoma, and 1

with ectopic adrenal accessory spleen were found. In institution A,

all 135 patients with lipid-poor adenomas were pathologically
frontiersin.org
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confirmed, 64 of 102 patients with non-adenomas were

pathologically confirmed, and 38 patients were clinically

confirmed. A total of 30 lipid-poor adenomas and 43 non-

adenomas were pathologically confirmed in institution B (Figure 1).
2.3 Image acquisition and conventional
imaging analysis

All CT images at institution A were obtained using a Light-

speed 16-slice spiral CT system, Revolution 64-slice spiral CT

system (General Electric Medical Systems, WI, USA) and uCT

710 62-slice spiral CT system (United Imaging, Shanghai, China).

The imaging parameters for unenhanced CT were as follows:

120~140 kV, automated tube current modulation. reconstructed

slice thickness was 3.75 mm and 5.00 mm. All CT images at

institution B were obtained using an Optima 16-slice spiral CT

system (General Electric Medical Systems, WI, USA) and uCT 510

32-slice spiral CT communication system (United Imaging,

Shanghai, China), and all patients underwent unenhanced CT

using the following imaging parameters: reconstructed slice

thickness was 3.75 mm and 5.00 mm, 120~140 kV, automated

tube current modulation. All CT image data were uploaded to the

Picture Archiving and Communication System (PACS; Radinfo

Systems, Zhejiang, China).

The conventional image feature analysis was performed by a

radiologist A working for 5 years without knowledge of pathological

findings, and lesion diameter, mean attenuation value in

unenhanced CT, and lesion location were recorded, as detailed in

the Supplementary Material.
2.4 Radiomics analysis

The radiomics analysis included data acquisit ion,

desensitization, format conversion, image segmentation, feature

extraction, feature selection, and model building. See Figure 2

for details.
Frontiers in Oncology 03
2.4.1 Image segmentation
The ROI segmentation of all images was performed by

radiologist A without knowledge of pathological and clinical

findings by a semi-automated segmentation method named

“Lasso Tool” using uAI Research Portal software (version V1.4;

Shanghai United Imaging Company, Shanghai). Semi-automated

segmentation methods are detailed in the Supplementary Material.

The ROI segmentation should avoid obvious cystic degeneration,

necrosis, and calcification.

The ROI segmentation is divided into four methods. The first

two unmodified segmentation methods are the maximum single-

slice segmentation (MAX) and full-volume segmentation (ALL),

and the specific operation method of MAX is to select the slice

showing the maximum cross-sectional area of the adrenal tumor

and segment the ROI along the tumor margin; ALL is the layer-by-

layer delineation was performed along the boundary of tumor on

CT axial image, and a 3D ROI was generated. In the preliminary

experiment of this study, the results indicate that the volume effect

diminishes as the ROI gradually shrinks inward. The optimal

diagnostic performance of the model is achieved when the ROI is

inwardly shrunk by 3mm (Details are in the supplement). The

modified single-slice segmentation method (MAX_E): first, the

MAX method was used for segmentation, and then the erosion

function of the software was used to shrink inward by 3 mm along

the x- axis and y- axis; And the modified full-volume method

(ALL_E): segmentation was performed using the ALL method,

followed by 3-mm axial shrinkage along x-, y-, and z-axes using

the erosion function of the software. The time spent in performing

the segmentation task was recorded for the four ROIs.

Four weeks later, a radiologist B with 9-year experience, but no

knowledge of the results, randomly selected 50 samples for ROI

segmentation again for consistency testing of subsequent

radiomics profiles.

2.4.2 Feature extraction and selection
The radiomics features were extracted using uAI Research

Portal software. First, the window width window level technique

was used to normalize the images, and the “NearestNeighbor”
FIGURE 1

Flowchart of sample inclusion and exclusion in this study.
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method was used to resample the images, with specific parameters

of 3 × 3 × 3 pixel space. In addition, for discrete voxel intensities, bin

width was set to 25 HU to reduce image intensity and noise

intensity before feature extraction. The extracted radiomics

features were mainly divided into three categories: first-order

features (FF), morphological features (MF), and texture features

(TF). No filter was used for all radiomics features in this study.

The following feature screening steps were considered. First,

Stability analysis of radiomics features: The radiomics features with

inter-rater correlation coefficient (ICC) <0.75 were excluded.

Second, Univariate feature selection: The univariate analysis was

performed for the two groups of characteristics to retain the

characteristics with P < 0.05, and the feature dimension reduction

was performed using the recursive feature elimination algorithm to

retain the number of features with 30%. Third, Multivariate feature

screening: The least absolute shrinkage and selection operator

cross-validation for the final feature dimension reduction was

performed. The radiomics features were regressed and penalized

by tenfold cross-validation and selecting one standard deviation of

the minimum lambda.

2.4.3 Construction of radiomics model and
evaluation of diagnostic performance

The diagnostic target of this study was lipid-poor adenoma.

Logistic regression was used to calculate radiomics scores and in

model building. The training set and internal validation set were

randomly divided in the ratio of 8:2. The model was established in

the training set and internal validation set, and the diagnostic

performance was preliminarily assessed. The diagnostic

performance and generalization ability of the model were

evaluated in an external validation set.
Frontiers in Oncology 04
2.5 Statistical analysis

The statistical analyses were conducted using R statistical

software (version 4.0.3) and Python software (version 3.70).

Through the normality test, the continuous variables with normal

distribution (age, BMI) were expressed as mean and standard

deviation. The continuous variables with non-normal distribution

(diameter and unenhanced CT attenuation data) were reported as

median (interquartile range, IQR). The categorical variables (sex

distribution and CT thickness) were presented as number (%). The

normally distributed data were analyzed using the Student t test,

non-normally distributed data were analyzed using Mann–Whitney

U test, and categorical variables were analyzed using the chi-square

test. Multiple group comparisons were performed using Bonferroni

correction. ICCs were used to evaluate the stability of radiomics

features extracted by different physicians. The receiver operating

characteristic (ROC) curves were drawn to evaluate the diagnostic

performance of the models constructed using the four segmentation

methods. The evaluation indicators included the AUC and its 95%

confidence interval, sensitivity, specificity, and accuracy. Although

AUC can assess the entire ROC curve, it is not sufficient to include

some areas unrelated to clinical application (such as areas with low

specificity) (16). To mitigate this deficit, we calculated a pAUC

(partial AUC) with a specificity of at least 95% to distinguish

adenomas from non-adenomas because correctly diagnosing

benign adenomas in non-enhanced CT has more important

clinical implications than misdiagnosing non-adenomas (e.g.,

metastases), and McNemar’s test was used to compare the

sensitivity of the four models. Decision curve analysis (DCA) was

used to assess the net benefit of patients in each model. P value

<0.05 indicated a statistically significant difference.
FIGURE 2

Radiomics analysis flowchart.
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3 Results

3.1 Inclusion of baseline and conventional
imaging characteristics of patients

The detailed baseline characteristics of patients in the training set

(N = 189), internal validation set (N = 48), and external validation set

(N = 73) are presented in Table 1. The baseline data of all included

patients at both institutions comprised 103 women and 62 men in the

lipid-poor adenoma group, with a mean age of 53.3 ± 12.5 years, the

mean BMI was 24.5 ± 3.4, the median CT attenuation value was 20.2

[14.6;29.4] Hu, and median diameter was 24.0 [16.9;30.0] mm. In the
Frontiers in Oncology 05
non-adenoma group, 58 women and 87 men were included, with a

meanageof 56.3±16.5 years, themeanBMIwas 23.5±3.3, themedian

CT attenuation value was 37.4 [33.2;41.3] Hu, and median diameter

was 35.0 [26.3;45.0] mm (Table 1S).
3.2 Characteristics of radiomics in four
segmentation methods

The average time and standard deviation values using MAX,

MAX_E, ALL, and ALL_E segmentation methods were 19.0 s ± 7.6,

24.6 s ± 7.6, 58.9 s ± 35.6, and 64.4 s ± 39.6, respectively (Figure 3A).
TABLE 1 Baseline data of patients in training, internal validation, and external validation sets.

Parameter

Training set
(N = 189)

Internal validation
set

(N = 48)

External validation
set

(N = 73)

Training
set vs
internal
validation

set

Training set vs
external valida-

tion set

Internal validation set
vs external validation

set

LA
(N =
109)

NA
(N = 80)

LA
(N = 26)

NA
(N = 22)

LA
(N = 30)

NA
(N = 43) P value

Sex# >0.05 >0.05 >0.05

Female
67

(61.47%)
32

(40.00%)
17

(65.38%)
10

(45.45%)
19

(63.33%)
16

(37.21%)

Male
42

(38.53%)
48

(60.00%)
9

(34.62%)
12

(54.55%)
11

(36.67%)
27

(62.79%)

Age(year)* >0.05 >0.05 >0.05

Mean (std) 48.8 (9.7)
55.8
(11.9)

57.5
(12.2)

57.2
(20.0)

53.6
(13.0)

56.2
(17.7)

Distribution# >0.05 >0.05 >0.05

Left
58

(53.21%)
37

(46.25%)
12

(46.15%)
9

(40.91%)
13

(43.33%)
25

(58.14%)

Right
51

(46.79%)
43

(53.75%)
14

(53.85%)
13

(59.09%)
17

(56.67%)
18

(41.86%)

BMI* >0.05 >0.05 >0.05

Mean (std) 24.5 (3.5) 23.2 (3.6) 24.7 (3.7) 23.6 (3.3) 24.4 (2.8) 23.9 (2.6)

Diameter (mm)
& >0.05 >0.05 >0.05

Med [IQR]
25.0

[17.0;30.0]
35.0

[23.6;43.2]
22.6

[17.0;30.0]
32.0

[27.0;40.2]
21.1

[16.3;25.8]
37.8

[31.3;54.4]

Unenhanced CT
Attenuation

(Hu) &
>0.05 >0.05 >0.05

Med [IQR]
19.6

[14.6;27.8]
38.6

[34.6;42.8]
23.2

[16.4;31.5]
37.4

[33.1;42.4]
20.7

[14.7;27.1]
35.5

[32.1;37.4]

Thickness (%) # >0.05 <0.01 <0.01

3.75 mm
58

(53.21%)
38

(47.50%)
12

(46.15%)
12

(54.55%)
0 (0%) 0 (0%)

5 mm
51

(46.79%)
42

(52.50%)
14

(53.85%)
10

(45.45%)
30

(100.00%)
43

(100.00%)
*, Student t test; &, Mann–Whitney U test; #, chi-square test; Hu, Hounsfield unit; LA, lipid-poor adenoma; NA, non-adenoma; std, standard deviation. BMI, Body Mass Index; Med, Median; IQR,
Interquartile Range.
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Among 104 unfiltered radiomics features, the FF, MF, and TF

features were 18, 14, and 72, respectively. The ICC of MAX,

MAX_E, ALL, and ALL_E was 0.934 ± 0.100, 0.987 ± 0.051,

0.919 ± 0.105, and 0.929 ± 0.082, respectively (Figure 3B),

excluding eight, two, nine, and four radiomics features with ICCs

<0.75. After feature dimensionality reduction, the MAX retained six

radiomics features, MAX_E retained three radiomics features, ALL

retained eight radiomics features, and ALL_E retained six radiomics

features (Figure 3C).
3.3 Comparison of the diagnostic
performance of different radiomics models

In all samples, the median and IQR of radiomics scores were

calculated for the groups of lipid-poor adenoma and non-adenoma.

The median radiomics scores for MAX, MAX_E, ALL, and ALL_E

in the lipid-poor adenoma group were 1.5 [0.7; 2.4], 1.8 [0.6; 2.9],

1.9 [0.9; 2.8], and 2.3 [1.0; 3.5], respectively. In the non-adenoma

group, the median radiomics scores were 1.2 [0.03; 2.5], 1.7 [0.5;

3.4], 1.7 [0.6; 3.8], and 2.2 [0.7; 4.3]. The pairwise comparisons

results showed significant differences between ALL and MAX and

between ALL_E and MAX in the lipid-poor adenoma group (P =

0.0168 and 0.0002, respectively), and between ALL_E and MAX in

the non-adenoma group (P < 0.0001). No significant differences

were found in the other pairwise comparisons.

In the training set, the AUCs of MAX, MAX_E, ALL and

ALL_E for diagnosing lipid-poor adenoma ranged from 0.925 to

0.942, with sensitivities ranging from 0.889 to 0.914 and specificities

ranging from 0.753 to 0.827 (Figure 4A, Table 2S). The internal
Frontiers in Oncology 06
validation set showed an AUC range of 0.919 to 0.931, with a

sensitivity range of 0.792 to 0.926 and a specificity range of 0.833 to

0.905 (Figure 4B, Table 3S). The external validation set

demonstrated an AUC range of 0.898 to 0.927, with sensitivities

ranging from 0.767 to 0.803, and specificities ranging from 0.814 to

0.907 (Figure 4C, Table 2).

In all samples with specificity ≥ 95%, the pAUC values of MAX,

MAX_E, ALL, and ALL_E were 0.021, 0.025, 0.018, and 0.028, the

sensitivities were 0.545, 0.624, 0.551, and 0.678, and the accuracies

were 0.744, 0.770, 0.738, and 0.806, respectively (Table 3). There

were statistically significant differences between ALL and ALL_E,

MAX and ALL_E groups, with P values of 0.0243 and 0.0182,

respectively. The P values for the remaining comparisons are as

follows: MAX vs MAX_E (0.1615), MAX vs ALL (0.8330), MAX_E

vs ALL (0.1957), and MAX_E vs ALL_E (0.3507). As shown in

Figure 4D, in DCAs, the net benefit rates of the ALL_E model with

High-Risk Threshold between 0.5 and 0.8 were higher than those of

the other three models.
4 Discussion

The main finding of our study was that the ICC of the modified

segmentation method was higher than that of the unmodified

segmentation method. Furthermore, there was a statistically

significant difference in the radiomic score between the model

constructed by ALL_E in the improved group and the MAX in

the non-improved group. In the external validation set, the

diagnostic performance of the radiomics model constructed using

ALL was higher than that of MAX, with the AUC of 0.918 and
A B

C

FIGURE 3

(A) Comparative analysis of time consumption between four segmentation methods. *** Indicates P <0.01. No statistically significant difference was
found between ALL and ALL_E, MAX, and MAX_E. (B) ICC variation amplitude for different segmentation methods and radiomics features in each
group. glcm is a gray-level co-occurrence matrix; gldm is a gray-level dependence matrix; glrlm is a gray-level run length matrix; glszm is a gray-
level size zone matrix; ngtdm is a neighboring gray-tone difference matrix; and RF is radiomics features. (C) Radiomics features and weights of the
four segmentation methods finally included in the model. RF is radiomics features.
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0.898, respectively, and the diagnostic performance of the modified

ALL_E and MAX_E constructed models was better than that of the

unmodified ALL and MAX, with the AUC of 0.927 and 0.906,

respectively, with ALL_E having the highest AUC on the external

validation set. In addition, at least 95% specificity, the number of

adenomas diagnosed in the modified MAX_E (103/165 lesions),

and ALL_E (112/165 lesions) groups was higher than that in the

unmodified MAX (90/165 lesions) and ALL (91/165 lesions)

groups, respectively. Compared with the other three methods,

ALL_E had the highest number of adenomas diagnosed.

Similarly, ALL_E had the highest net clinical benefit rate in DCA.

Hence, the radiomics features revealed using ALL_E method could

more comprehensively reflect the heterogeneity between adenoma
Frontiers in Oncology 07
and non-adenoma, and the constructed radiomics model had

stronger robustness.

Although radiomics has great potential in the noninvasive and

quantitative analyses of lesion image characteristics, it still faces the

challenge of clinical translation (17) due to the high magnitude of

radiomics feature variation; the segmentation of ROIs is a key step

to solve this problem (18). The authors found via rigorous literature

search significant differences in the selection of ROIs in radiomics

studies of adrenal lesions. ROI segmentation methods were mainly

divided into single-slice methods and full-volume methods, with the

former constructing a diagnostic model with a median AUC of 0.85

(range 0.73–0.97) (13, 19–21) and the latter constructing a model

with a median AUC of 0.90 (range 0.80–0.93) (14, 22–25).
TABLE 2 ROC analysis of four ROI methods for the external validation set.

AUC SEN SPE ACC

MAX 0.898 [0.829–0.967] 0.767 [0.591–0.882] 0.814 [0.674–0.903] 0.795 [0.688–0.871]

MAX_E 0.906 [0.841–0.972] 0.701 [0.521–0.833] 0.837 [0.700–0.919] 0.781 [0.673–0.860]

ALL 0.918 [0.853–0.983] 0.800 [0.627–0.905] 0.860 [0.727–0.934] 0.836 [0.734–0.903]

ALL_E 0.927 [0.872–0.983] 0.803 [0.627–0.907] 0.907 [0.784–0.963] 0.863 [0.766–0.924]
ACC, Accuracy; AUC, area under curve; SEN, sensitivity; SPE, specificity; 95% confidence interval is within brackets.
D

A B

C

FIGURE 4

Comparison of the diagnostic performance of the four radiomics models. (A) ROC analysis of the training set, (B) ROC analysis of the internal test
set, and (C) ROC analysis of the external validation set. (D) Decision curve analysis, the net benefit rate of ALL_E model with High Risk Threshold
between 0.5 and 0.8 was the highest. AUC is the area under the curve.
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Numerically, the diagnostic performance of the full-volume method

was better than that of the single-slice method, but the patients

included in the aforementioned studies came from different medical

institutions and the sample baselines were not comparable. Moreover,

the sample size included in each study was significantly different, at

least 19 cases (22) and at most 292 cases (14). Also, the selection bias

and uneven sample size impacted the results so that different ROI

segmentation methods used could not quantitatively assess the

predictive ability of the model. At present, radiomics research

mainly focuses on predicting adrenal diseases (26), and no study has

compared and analyzed the effects of different ROIs on radiomics

models. In this study, the single-slice and full-volume methods were

modified, and the diagnostic performance of the four methods on the

external validation setwas compared andanalyzed. The results showed

that the size and location of the ROI were important factors affecting

the predictive ability of the model. Theoretically, the full-volume

segmentation could cover the tumor more comprehensively (27),

and the extracted radiomics features also reflected the FF and MF of

the tumor more comprehensively and accurately. The AUC of full-

volumemethodwas proved tobe slightly higher than that of the single-

slice method.

In CT images, the differences in density between adrenal tumors

and surrounding organs caused volume confounding effects and

reduced the reproducibility of radiomics features and accuracy of the

model.We found that therewere13and21moreadenomasdetected in

the modified MAX_E and ALL_E groups, respectively, when

specificity was set to at least 95%, compared with the unmodified

MAX andALL groups, and there was a significant statistical difference

in sensitivity between ALL_E and ALL, which verified to some extent

that volume confounding effects would affect the performance of the

model in distinguishing adenomas. Most of the studies conducted so

far circumvented the impact of volumeeffects. Shi et al. (20) andZhang

et al. (14) performed the manual circumvention of lesion margins or

removal of the first and last image data of the lesion at ROI

segmentation. However, the specific boundary of the volume effect

could not be distinguished by the naked eye and could not be

completely circumvented by manual segmentation, while removing

the image led to the loss of morphological information, resulting in a

reduced generalization ability of the model (18). In this study, the

conventional method was modified to use a semi-automatic

segmentation method and ROI inward contraction of 3 mm to

reduce the effect of volume effect and improve the stability of

radiomics characteristics, and further increase the sensitivity of the

model at high specificity. Therefore, modified ALL_E is more suitable

as an ROI segmentation method for constructing radiomics models

than unmodified ALL.
Frontiers in Oncology 08
However, this study had some limitations. First, in this paper,

only the best results of ROI inward contraction of 3 mm are shown,

and there is no detailed comparative analysis in the article on the

diagnostic performance of ROI inward contraction of 1 mm and

2 mm (see the Supplementary Material for the detailed test results).

In addition, we did not use ROI inward contraction of 4 mm for

segmentation task because large contraction ROIs will lose a large

number of valuable texture features, especially in lesions with

smaller diameters. Second, the semi-automated segmentation

method used in this study was not compared with manual

segmentation. Third, the impact of different ROIs on the

radiomics model was investigated only via unenhanced CT and

not via enhanced CT. Fourth, the retrospective studies might have

some selection bias, besides the small sample size of the external

validation set. Hence, further studies should be conducted using a

larger sample size.

In conclusion, the selection of ROI is an important factor for

reproducing radiomics features and the diagnostic performance of

the model in adrenal lipid-poor adenomas. The AUC value of the

model constructed by the ALL_E method on the external validation

set as well as the pAUC value in the whole sample were the highest.

Hence, the radiomics model established by the modified full-

volume segmentation method can increase the diagnostic

performance and generalization ability of the study results.
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