
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Juan Du,
Naval Medical University, China

REVIEWED BY

Felix Marsh-Wakefield,
Centenary Institute of Cancer Medicine
and Cell Biology, Australia
Soumya Basu,
Dr. D. Y. Patil Biotechnology &
Bioinformatics Institute, India

*CORRESPONDENCE

Qingfeng Chen

qingfeng@gxu.edu.cn

SPECIALTY SECTION

This article was submitted to
Gastrointestinal Cancers: Hepato
Pancreatic Biliary Cancers,
a section of the journal
Frontiers in Oncology

RECEIVED 01 November 2022

ACCEPTED 10 February 2023
PUBLISHED 02 March 2023

CITATION

He Z, Chen Q, He W, Cao J, Yao S,
Huang Q and Zheng Y (2023)
Hepatocellular carcinoma subtypes based
on metabolic pathways reveals potential
therapeutic targets.
Front. Oncol. 13:1086604.
doi: 10.3389/fonc.2023.1086604

COPYRIGHT

© 2023 He, Chen, He, Cao, Yao, Huang and
Zheng. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 02 March 2023

DOI 10.3389/fonc.2023.1086604
Hepatocellular carcinoma
subtypes based on metabolic
pathways reveals potential
therapeutic targets

Zehua He1, Qingfeng Chen2*, Wanrong He3, Junyue Cao1,
Shunhan Yao4, Qingqiang Huang5 and Yu Zheng6

1College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China, 2School of
Computer, Electronic and Information, Guangxi University, Nanning, Guangxi, China, 3Department of
Gastroenterology, People’s Hospital of Guangxi, Zhuang Autonomous Region, Nanning,
Guangxi, China, 4Medical College, Guangxi University, Nanning, Guangxi, China, 5Guigang City
Department of Radiology, People’s Hospital, Guigang, Guangxi, China, 6Department of Computer
Science and Information Technology, La Trobe University, Melbourne, VIC, Australia
Introduction: Hepatocellular carcinoma (HCC) is an aggressive malignancy with

steadily increasing incidence rates worldwide and poor therapeutic outcomes.

Studies show that metabolic reprogramming plays a key role in tumor genesis

and progression. In this study, we analyzed the metabolic heterogeneity of

epithelial cells in the HCC and screened for potential biomarkers.

Methods: The hepatic single-cell RNA sequencing (scRNA-seq) datasets of HCC

patients and healthy controls were obtained from the Gene Expression Omnibus

(GEO) database. Based on data intergration and measurement of differences

among groups, the metabolic epithelial cell subpopulations were identified. The

single-cell metabolic pathway was analyzed and the myeloid subpopulations

were identified. Cell-cell interaction analysis and single-cell proliferation analysis

were performed. The gene expression profiles of HCC patients were obtained

from the GSE14520 dataset of GEO and TCGA-LIHC cohort of the UCSC Xena

website. Immune analysis was performed. The differentially expressed genes

(DEGs) were identified and functionally annotated. Tumor tissues from HCC

patients were probed with anti-ALDOA, anti-CD68, anti-CD163, anti-CD4 and

anti-FOXP3 antibodies. Results We analyzed the scRNA-seq data from 48 HCC

patients and 14 healthy controls. The epithelial cells were significantly enriched in

HCC patients compared to the controls (p = 0.011). The epithelial cells from HCC

patients were classified into two metabolism-related subpopulations (MRSs) –

pertaining to amino acid metabolism (MRS1) and glycolysis (MRS2). Depending

on the abundance of these metabolic subpopulations, the HCC patients were

also classified into the MRS1 and MRS2 subtype distinct prognoses and immune

infiltration. The MRS2 group had significantly worse clinical outcomes and more

inflamed tumormicroenvironment (TME), as well as a stronger crosstalk between

MRS2 cells and immune subpopulations that resulted in an immunosuppressive

TME. We also detected high expression levels of ALDOA in the MRS2 cells and

HCC tissues. In the clinical cohort, HCC patients with higher ALDOA expression
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showed greater enrichment of immunosuppressive cells including M2

macrophages and T regulatory cells.

Discussion: The glycolytic subtype of HCC cells with high ALDOA expression is

associated with an immunosuppressive TME and predicts worse clinical

outcomes, providing new insights into the metabolism and prognosis of HCC.
KEYWORDS

hepatocellular carcinoma (HCC), metabologenomics, bioinformatics, microenvironment,
targeted therapy
Introduction

Hepatocellular carcinoma (HCC) is an aggressive malignancy

with high incidence rates worldwide and poor therapeutic outcomes

(1). Since most HCC patients are diagnosed at the advanced stage,

chemotherapy is the recommended treatment regimen (2).

However, conventional systemic chemotherapy has negligible

clinical benefits. In fact, doxorubicin, doxorubicin plus sorafenib,

and the FOLFOX4 regimen (fluorouracil, oxaliplatin and leucovorin

(folinic acid)) have failed to improve the survival rates of HCC

patients and are also associated with considerable toxicity (3, 4).

Furthermore, small-molecule tyrosine kinase inhibitors (TKIs), the

first/second-line drugs for HCC approved by U.S. Food and Drug

Administration (FDA), also have limited clinical benefits due to

frequent development of resistance (5). On the other hand,

immunotherapy has achieved significant survival benefits for

HCC patients; a recent phase III trial reported median overall

survival (OS) of 19.2 months in the atezolizumab-bevacizumab arm

compared to 13.4 months in the sorafenib arm (6). Nevertheless,

there is an urgent need to explore effective novel strategies for the

treatment of HCC.

Metabolic reprogramming is a notable hallmark of cancer (7)

that fulfills the biomass and energy demands of the rapidly

proliferating cells during tumor initiation and progression (8, 9).

Unlike normal cells, tumor cells preferentially use glycolysis to meet

the energy needs for proliferation, invasion and metastasis (10–12).

Recent studies have shown that remodeling of lipid metabolism is

essential for the proliferation and malignant transformation of

hepatocytes during HCC progression (13–15). Hall et al. (13)

reported an altered lipid signature in human HCC cells, and

showed a positive correlation between monounsaturated

phosphatidylcholine and hepatic carcinogenesis. However, (16)

found that the mitochondrial protein LACTB inhibited the

proliferation and differentiation of tumor cells by altering lipid

metabolism (13). These contraindicatory findings suggest that

metabolic reprogramming plays a far more complex role in

tumorigenesis than previously believed, and should be explored as

a novel target for inhibiting tumor growth and overcoming

drug resistance.
02
The tumor microenvironment (TME) is a critical factor in

tumor progression. Previous studies have shown that the

interaction between tumor cells and the immune or stromal cells

in the TME promote tumor development and progression (17–19),

leading to the poor clinical outcomes. In addition, the metabolic

characteristics of different immune cells and stromal cells are

promising biomarkers of tumor initiation and progression (20,

21). However, given the intra-tumoral heterogeneity, and the

crosstalk between tumor cells and immune or stromal cells in the

microenvironment, the extent of metabolic reprogramming in the

TME is unclear. Thus, exploring the metabolic heterogeneity and

diversity in HCC and other tumors can help identify potential

targets for personalized treatment.

To this end, we performed integrated single-cell transcriptomics

analysis of tumor samples from HCC patients in order to dissect the

metabolic phenotypes of cells in the HCC microenvironment. We

were able to define two metabolic subtypes of HCC with distinct

immunological characteristics and clinical outcomes, and identified

the biomarkers that can distinguish between these metabolic

subtypes. Our findings offer new insights into the metabolism and

prognosis of HCC, which can improve the diagnostic accuracy and

therapeutic outcomes.
Materials and methods

Acquisition and pre-processing of scRNA-
seq datasets

The hepatic single-cell RNA sequencing (scRNA-seq)

datasets of HCC patients and healthy controls, including

GSE112271 (22), GSE149614 (23), GSE151530 (24) and

GSE156625 (25), were obtained from the Gene Expression

Omnibus (GEO) database. Quality control and pre-processing

procedures were performed using Seurat (4.0.5, https://

satijalab.org/eurat/) R toolkit (26). To avoid the influence of

abnormal cells and technical noise on downstream analysis,

low-quality cells such as doublets and empty droplets were

removed. In addition, cells with mitochondrial gene expression
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>10%, or number of detected genes < 200 or > 5000 were also

removed. Samples with > 1000 cells were retained for the analysis.

Finally, the data of 165,932 cells, including 126,345 cells from 48

HCC patients and 39,587 cells from 14 healthy donors, were used

for further analysis.
Data integration

In order to minimize the technical batch effects among

individuals and experiments, the “RunHarmony” function in R

package harmony (27) was used to integrate all cells from HCC

patients and healthy donors. R package “Seurat” was used for

principal component analysis (PCA) and dimensionality

reduction. The top 4000 variable genes were used for PCA to

reduce dimensionality. The dimensionality of the scaled and

integrated data matrix was further reduced to two-dimensional

space based on the first 30 principal components (PCs), and

visualized by t-Distributed Stochastic Neighbor Embedding

(tSNE). The cell clusters were identified based on a shared nearest

neighbor (SNN) modularity optimization-based clustering

algorithm with a resolution of 1. According to the expression

levels of some well-known markers (24), the cells were annotated

as B cells, T/NK cells, myeloid cells, fibroblasts, endothelial cells,

and epithelial cells.

Measurement of differences among samples
To measure the differences among epithelial cells from all HCC

and healthy control samples, the expression profile was scaled using

the “scale” function. The “cor” function was then used to calculate

the correlation between samples (-1 to 1). The correlation distance

between any two samples was defined as “1-correlation”, which

ranged from 0 (highly identical) to 2 (completely different).
Identification of metabolic epithelial
cell subpopulations

To identify the metabolic subpopulations of epithelial cells from

HCC patients, the cell were first reintegrated using RunHarmony (27)

and then classified into 42 clusters in an unsupervised manner using

the first 30 PCs and the resolution of 2. The mean expression values

of metabolic genes in these cells (28) were downloaded from Kyoto

Encyclopedia of Genes and Genomes (KEGG), and was calculated for

each cluster. Consensus clustering was then performed to determine

the optimal number of stable metabolism-related epithelial

subpopulations for HCC according to the expression matrix of

metabolic genes for 42 clusters using the “ConsensusClusterPlus”

package in R (1000 iterations, 80% resampling). he 42 clusters were

divided into two metabolism-related subpopulations (MRS1 and

MRS2), and the “FindAllMarkers” function was applied to identify

the specific genes for each MRS, with log2 fold-change (avg_log2FC)

> 0.25, detectable expression in at least 25% of the cells and

percentage ratio > 1 as the criteria. The top 50 genes with higher
Frontiers in Oncology 03
avg_log2FC for each MRS were designated as the respective MRS1

and MRS2 genes.
Single-cell metabolic pathway analysis

The single-sample gene sets enrichment analysis (ssGSEA) scores

of 85 KEGG metabolic pathways was calculated for each cluster based

on the gene expression level in each cell (29). The differentially

activated pathways between MRS1 and MRS2 clusters were then

identified by Wilcoxon rank-sum test with p < 0.05 as the cut-off.
Identification of myeloid subpopulations

The myeloid cells were reintegrated using RunHarmony (27) and

classified into 22 unsupervised clusters using the first 20 PCs and

resolution of 0.8. The specific genes for each cluster were identified

using FindAllMarkers with expression percentage ≥ 0.25 and

avg_logFC ≥ 0.25 as the criteria. Based on established biomarkers,

the 22 clusters were classified into eight major subpopulations.
Cell-cell interaction analysis

The molecular interaction networks between the epithelial

MRSs and myeloid subpopulations for HCC patient were

identified using CellPhoneDB (30). The ligand-receptor pairs with

p value < 0.05 were screened for the different cell clusters.
Single-cell proliferation analysis

Single cell proliferation was estimated by predicting the cell cycle

distribution using the “CellCycleScoring” function, which is based on

the expression levels of ten genes that are upregulated in cycling cells

(ASPM, CENPE. CENPF, DLGAP5, MKI67, NUSAP1, PCLAF,

STMN1, TOP2A, TUBB) (31). For each of these genes, a

background set of 100 genes with the smallest difference in average

expression levels was selected. The average expression of the

background gene set was then subtracted from each signature gene,

and the average of the resulting values was calculated as the

proliferation score. To identify metabolic subgroups of HCC patients

at bulk levels, the MRS1 andMRS2 scores for HCC patients in TCGA-

LIHC and GSE14520 cohort were calculated by GSEA in R package

“GSVA” (32) based on the expression levels of the MRS1 and MRS2

genes at single-cell level. The samples were then assigned to the MRS1

and MRS2 subgroups on the basis of the respective scores.
Metabolic subgrouping for HCC patients

The gene expression profiles of HCC patients were obtained from

the GSE14520 (33) dataset of GEO (https://www.ncbi.nlm.nih.gov/
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geo/) and TCGA-LIHC cohort of the UCSC Xena website (https://

xenabrowser.net/datapages/). The robust multi-array average (RMA)

algorithm in the affy package was used to pre-process the array

profiles. After background correction, quantile normalization and

probe summarization, the gene expression profile was generated

based on the platform providing gene and probe mappings.

Samples with overall survival (OS) above zero-days were selected

for further analysis.
Immune analysis

The tumor purity and stromal/immune infiltration were calculated

for each sample based on bulk transcriptomic profile using the

ESTIMATE algorithm (34). The tumor purity, ESTIMATE score,

immune score and stromal score were calculated. In addition, the

signature genes of 29 immune cell types and immune-related pathways

were obtained from a previous study (35), and the abundance of these

signatures in each patient was estimated by ssGSEA using the R

package GSVA (32). Since the anti-cancer immune response

determines the fate of tumor cells (36), the specific signatures

associated with each immune response pathway were obtained from

a previous study (37) and ssGSEA was performed.

Identification and functional annotation of
differentially expressed genes (DEGs)

For single-cell datasets, the FindAllMarkers function was used

to identify the specific genes of each group. For bulk population

datasets, the R package “limma” (38) was used to screen DEGs with

adjusted P-value < 0.05 and |FC| ≥ 2 as the thresholds. Gene

Ontology (GO) and KEGG pathway enrichment analyses were

performed using the R package clusterProfile. The top ten

enriched GO and KEGG pathways were displayed.

Immunohistochemistry and immunofluorescence
Tumor tissues from HCC patients were probed with anti-

ALDOA (DF3068, Affinity), anti-CD68 (66231-2-Ig, Proteintech),

anti-CD163 (16646-1-AP, Proteintech), anti-CD4 (67786-1-Ig,

Proteintech) and anti-FOXP3 (BA2032-1, Wuhan Boster

Biologicals) antibodies. The sections were observed with the

image acquisition system of OLYMPUS UC90 (Japan) and the

positively stained regions and the number of positive cells were

analyzed using Image-Pro Plus (Media Cybernetics, USA).
Statistical analysis

All statistical analyses were performed using R software

(version 4.0.4). The continuous variables between two groups

were compared using the Wilcoxon rank-sum test, and Fisher’s

exact test was used to compare the categorical variables. The

prognostic factors were identified using the log-rank test. All

tests were two-tailed and p-value ≤ 0.05 was considered

statistically significant.
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Results

The HCC microenvironment is enriched in
epithelial cells

To explore the inter- and intra-tumoral heterogeneity of HCC at

the single-cell level, we analyzed the scRNA-seq data from 48 HCC

patients and 14 healthy controls. As shown in Figure 1A, a total of

165,932 individual cells from nine samples were clustered into six

major cell types. The clusters were explored by PCA and visualized by

t-distributed stochastic neighbor embedding (t-SNE). The cells in each

cluster were annotated with the canonical markers (Figures 1B, C;

Supplementary Figure 1A, and Supplementary Table 1) as B cells

(6150), endothelial cells (14,926), epithelial cells (44,745), fibroblasts

(4871), myeloid cells (22,834) and T/NK cells (72,406). We compared

the enrichment of these cell types between HCC patients and healthy

controls (Figures 1D, E), and found that epithelial cells were

significantly enriched in HCC patients compared to the controls (p =

0.011; Figure 1F and Supplementary Figure 1B), whereas the

percentage of endothelial cells was significantly lower in HCC

patients (p = 0.053; Supplementary Figure 1B). In addition, the T/

NK and B cells were also considerably reduced in HCC patients (T/NK

cells: p = 0.062; B cells: p = 0.025; Figure 1E and Supplementary

Figure 1B), while the percentage of myeloid cells was similar in both

groups (p = 0.17; Figure 1E and Supplementary Figure 1B). These

results indicated that epithelial cells and immune cells likely play

important roles in the pathogenesis of HCC.
Stratification of epithelial cells in
HCC patients based on metabolism-
related genes

Recent studies have shown that metabolic reprogramming is a

hallmark of cancer (7). To evaluate possible metabolic

reprogramming in the epithelial cells of HCC tumors, we extracted

1679 metabolism-related genes from the KEGG database (28).

Consensus clustering and PCA revealed a distinct metabolic gene

expression pattern of the epithelial cells from HCC patients

compared to the controls, whereas the epithelial cells from the

controls samples showed high similarity (Supplementary

Figures 2A, B). Furthermore, the global shifts in metabolic gene

expression between and within epithelial cells fromHCC patients and

healthy controls were measured by the correlation distance. The

distance between epithelial cells from HCC patients and healthy

controls or within the cells from HCC patients was significantly

greater than that within the cells from healthy controls

(Supplementary Figure 2C), indicating considerable metabolic

heterogeneity among the epithelial cells from HCC patients.

To confirm this metabolic heterogeneity, we re-clustered the

epithelial cells from HCC patients into 42 clusters (Supplementary

Figures 3A, B), which were then classified into two heterogeneous

subpopulations (MRS1 and MRS2) based on metabolism-related

genes expression matrix using consensus clustering (Figure 2A and
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Supplementary Figure 3C). We also identified the DEGs between

MRS1 and MRS2 cells at the single-cell level (Figure 2A and

Supplementary Table 2), and their functional enrichment analyses

revealed distinct metabolic patterns of the MRS1 and MRS2 cells.

As shown in Figure 2B, pathways related to the metabolism of

glycine, serine, threonine and other amino acids were obviously

activated in the MRS1 cells, while glycolysis/gluconeogenesis was

significantly activated in MRS2 cells. Furthermore, single-cell

metabolic pathway analysis also revealed activation of tyrosine,

glycine, serine, threonine, and phenylalanine metabolism, and
Frontiers in Oncology 05
phenylalanine, tyrosine and tryptophan biosynthesis in MRS1

cells. In contrast, glycolysis and gluconeogenesis were up-

regulated in MRS2 cells at the single-cell level (Figure 2C).

Consistent with the role of glycolysis in supporting tumor cell

proliferation (39), the MRS2 cells also showed higher proliferation

scores (Figure 2D), and more than 50% of these cells were either in S

or G2M phase (Figure 2E). Taken together, the epithelial cells from

HCC patients were classified into two distinct metabolic subtypes,

of which the MRS2 cells had significant activation of glycolysis/

gluconeogenesis and higher proliferation rates.
A B

D E F

C

FIGURE 1

Comparison of cellular components between HCC patients and healthy controls at single-cell resolution (A) t-distributed stochastic neighbor
embedding (t-SNE) visualization of 165,932 cells from 48 HCC patients and 14 healthy controls. (B) t-SNE visualization of cell types annotated by
classical gene markers. (C) Heatmap showing the top ten cell type-specific genes identified by the FindAllMarkers function. (D) Heatmap showing
the distribution density of cells from HCC patients and healthy controls. The UMAP visualization is split into 200×200 bins. (E) Sankey plot showing
the difference in cellular states between HCC patients and healthy controls. (F) Boxplot showing the proportion of cell types in HCC patients and
healthy controls. Wilcoxon rank-sum test was used to measure the differences between two groups. Horizontal lines in the boxplots represent the
median, the lower and upper hinges correspond to the first and third quartiles, and the whiskers extend from the hinge up to 1.5 times the
interquartile range from the hinge.
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The metabolic phenotypes of epithelial
cells are associated with the clinical
outcomes of HCC

To further explore the relationship between the metabolism-

related epithelial subpopulations and clinical outcomes, we

calculated the MRS1 and MRS2 scores for HCC patients in

TCGA-LIHC and GSE1450 cohorts. As shown in Figures 2F, G,
Frontiers in Oncology 06
higher proportion of MRS1 corresponded to favorable overall

survival (OS) (log-rank test, p = 0.00018), whereas the

predominance of MRS2 correlated to poor OS (log-rank test, p

= 0.0019). We validated these results in an independent cohort,

and the trend was consistent with the observations in TCGA-

LIHC cohort (Figures 2H, I). Accordingly, the HCC patients were

divided into the MRS1 and MRS2 groups according to the

respective enrichment scores (Figures 3A, B). As expected,
A B

D E

F G IH

C

FIGURE 2

Dissection of metabolic epithelial cell subpopulations from HCC patients (A) Heatmap showing the top 20 subpopulation-specific genes identified
by the FindAllMarkers function. (B) Functional enrichment analysis of subpopulation-specific genes. (C) Heatmap of metabolic pathways specifically
activated in MRS1 and MRS2. (D) Boxplot showing the proliferation scores of MRS1 and MRS2. Wilcoxon rank-sum test was used to measure the
differences between two groups. Horizontal lines in the boxplots represent the median, the lower and upper hinges correspond to the first and third
quartiles, and the whiskers extend from the hinge up to 1.5 times the interquartile range from the hinge. (E) Fraction of cells in the G1 (blue), S
(orange) and G2M (red) phases in MRS1 and MRS2. (F-I) Kaplan-Meier curves showing the overall survival (OS) of HCC patients in TCGA-LIHC
(F, G) and GSE14520 (H, I) cohorts. All patients were categorized into MRS1 and MRS2 groups based on the median enrichment scores of each.
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patients in the MRS2 group had significantly wore OS compared

to the MRS1 patients (log-rank test, p < 0.001, Figure 3C).

Furthermore, multivariate COX regression analysis revealed that

MRS2 was an independent predictor of worse prognosis in HCC

after adjusting for stage, grade, HBV and HCV infection, hepatic

cirrhosis and alcohol (Figure 3D). In another independent cohort

as well, the MRS2 patients showed worse OS compared to the

MRS1 patients (Figures 3E, F). Taken together, HCC can be

divided into two metabolic phenotypes, and the predominance
Frontiers in Oncology 07
of epithelial cells with enhanced glycolysis/gluconeogenesis is

linked to worse outcome.
Metabolism-related subtypes are
associated with distinct immune features

Studies show that the immune cells in the TME can promote

tumor development and progression by interacting with tumor
A B

D

E F

C

FIGURE 3

Stratification of HCC samples based on the expression of MRS1 and MRS2 genes (A) Scatter plot showing enrichment scores of MRS1 genes (x-axis)
and MRS2 genes (y-axis) in each sample in TCGA-LIHC cohort. Metabolic subgroups were assigned based on the enrichment scores of MRS1 and
MRS2 genes (see "Methods"). (B) Heatmap showing the co-expressed MRS1 and MRS2 genes in two metabolic subgroups in TCGA-LIHC cohort.
(C) Kaplan-Meier curves showing the OS of HCC patients with MRS1 or MRS2 phenotype in TCGA-LIHC cohort. (D) Multivariate COX regression
analysis of metabolic subtypes and clinical characteristics in TCGA-LIHC cohort. (E) Scatter plot showing enrichment scores of MRS1 genes (x-axis)
and MRS2 genes (y-axis) in each sample in GSE14520 cohort. Metabolic subgroups were assigned based on the enrichment scores of MRS1 and
MRS2 genes (see "Methods"). (F) Kaplan-Meier curves showing OS of HCC patients with MRS1 or MRS2 phenotype in GSE14520 cohort.
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cells (40, 41), leading to poor outcomes. Therefore, we next

analyzed the differences in various immune-related factors

between the two metabolic subtypes. Patients with the MRS2

phenotype exhibited higher ESTIMATE score, immune score

and stromal score, which corresponded to lower tumor purity

(Figures 4A–D and Supplementary Figures 4A–D). Furthermore,

most immune cell populations, and the activity of immune-

related pathways were significantly enriched in HCC patients
Frontiers in Oncology 08
with the MRS2 phenotype (Figure 4E and Supplementary

Figure 4E). The regulatory T cells (Tregs) and myeloid-derived

supp r e s s o r c e l l s (MDSCs ) t h a t c on t r i b u t e t o t h e

immunosuppressive TME (42, 43) were particularly enriched

in the MRS2 patients (Figure 4F and Supplementary Figure 4F).

These results suggested that the worse prognosis associated with

the MRS2 subtype can be attributed to greater infiltration of

Tregs and MDSCs.
A B D

E F

C

FIGURE 4

Clinical impact of immunophenotypes in the metabolic subgroups in TCGA-LIHC cohort (A-D) Boxplot showing four TME scores calculated using
the ESTIMATE algorithm in two subgroups. Wilcoxon rank-sum test was used to measure the differences between two groups. Horizontal lines in
the boxplots represent the median, the lower and upper hinges correspond to the first and third quartiles, and the whiskers extend from the hinge
up to 1.5 times the interquartile range from the hinge. (E) Heatmap comparing immune markers, immune cell infiltration and immune-related
response in the two metabolic subgroups. (F) Boxplot showing the difference in immune responses between MRS1 and MRS2 in TCGA-LIHC cohort.
*p-value < 0.05, **p-value < 0.01, ***p-value < 0.001, ****p-value < 0.0001, and ns p-value ≥ 0.05.
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STMN1+ monocyte and macrophages
contribute to the immunosuppressive
microenvironment of HCC by interacting
with MRS2 cells

Given the positive correlation observed between the MRS2 epithelial

cells and immune cells in HCC (Supplementary Figures 5A–D), we
Frontiers in Oncology 09
validated this result at the single-cell level. While MRS1 cells were not

significantly correlated to the different immune cell populations, the

MRS2 cells were co-enriched with myeloid cells (Supplementary

Figures 5E–G). In addition, the percentage of MRS2 cells was

positively correlated with that of myeloid cells (R2 = 0.29, p = 0.00011;

Supplementary Figure 5G), indicating that these co-enriched myeloid

cells may contribute to tumor progression. Thus, we dissected the
A B

D E

F

G

IH

C

FIGURE 5

Cell-cell interaction between MRS2 cells and myeloid cells (A) t-SNE visualization of eight subpopulations of myeloid cells. (B) The difference in the
number of ligand-receptor interactions between MRS1 and MRS2 cells. (C) Inhibitory interactions between IL32+ mono/macrophage and MRS2 cells.
(D) Inhibitory interactions between FCN1+ mono/macrophages and MRS2 cells. (E) Inhibitory interactions between STMN1+ mono/macrophages and
MRS2 cells. (F) Correlation between the percentage of STMN1 mono/macrophages and the fraction of MRS2 cells in HCC patients at single-cell
level. (G) Correlation between the enrichment scores of STMN1+ mono/macrophages and MRS2 cells of HCC patients in TCGA-LIHC cohort.
(H, I) Kaplan-Meier curves showing OS of HCC patients in TCGA-LIHC (H) and GSE14520 (I) cohorts. All patients were categorized into two groups
based on the median of enrichment scores of STMN1+ mono/macrophages.
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myeloid subpopulations by integrating their single-cell transcriptomic

data from HCC patients (Supplementary Figure 6A), and found that the

myeloid cells were re-clustered into 22 clusters (Supplementary

Figure 6B). According to the cluster-specific genes and established

myeloid markers, the 22 clusters were divided into eight major

subpopulations (Figure 5A; Supplementary Figures 6C, D and

Supplementary Table 3).

We also explored the ligand-receptor interactions between the

epithelial and myeloid subpopulations using CellPhoneDB (30),

and detected significantly more interactions between the MRS2 cells

and myeloid subpopulations compared to that among MRS1 cells

and myeloid subsets (Figure 5B). The MRS2 cells interacted the

most with the IL32+, FCN1+ and STMN1+ mono/macrophages

(Figure 5B). Since these myeloid subpopulations contribute to the

immunosuppressive TME (44, 45), we analyzed the type of

interactions between MRS2 cells and these myeloid populations,

and detected significant enrichment of CD47-SIRPA, TGFB1-TGFb
and other inhibitory ligand-receptor interactions (Figures 5C–E).

The CD47-SIRPA interaction between tumor cells and myeloid cells

is critical to phagocytosis blockage and immune escape (46), which

further supports the immunosuppressive role of MRS2 cells

in HCC.

We also explored the potential myeloid subpopulations co-

enriched with MRS2 cells. The STMN1+ mono/macrophages were

positively correlated with MRS2 cells at the single cell and bulk

levels (Figures 5F, G and Supplementary Figure 7A, B).

Furthermore, patients with high levels of STMN1+ mono/

macrophages showed worse OS (TCGA-LIHC: log-rank test, p =

0.004; GSE14520: log-rank test, p = 0.011; Figures 5H, I). Thus, the

interaction between STMN1+ mono/macrophages and MRS2 cells

via SPP1 and CD44 (Figure 5E) may result in a persistent

immunosuppressive M2 state of myeloid cells (47), leading to the

inhibition of immune surveillance. Taken together, the

communication between MRS2 cells and myeloid cells shapes the

immunosuppressive microenvironment of HCC, resulting in poor

clinical outcomes in HCC patients with the MRS2 phenotype.
ALDOA is associated with immunosuppressive
microenvironment of HCC

In order to identify biomarkers of MRS2, we screened for the

DEGs between the two metabolic groups, and found that only

ALDOA was up-regulated in the MRS2 cells and in patients with

MRS2 phenotype (Figures 6A–E). Consistent with the prognostic

outcomes observed in the MRS2 group (Figures 3C, F), patients

with higher ALDOA expression had worse OS compared to those

with lower ALDOA expression in both TCGA (log-rank test, p =

0.0019, Figure 6C) and GSE14520 cohorts (log-rank test, p = 0.033,

Figure 6E). Immunohistochemical staining also revealed significant

differences in ALDOA protein expression between the ALDOAhigh

and ALDOAlow groups (Figure 6F). Furthermore, ALDOAhigh

patients had a higher fraction of CD68+CD163+ M2

macrophages (p = 0.0019) and CD4+FOXP3+ Tregs compared to

the ALDOAlow patients (p < 0.0001, Figures 6G, H). Thus,

immunosuppressive cells are enriched in patients with high

ALDOA expression, which may result in poor outcomes.
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Discussion

Cancer cells undergo metabolic adaptations in response to extrinsic

and intrinsic stimuli. Some of these adaptations initiate the malignant

transformation, while others promote the growth of malignant cells.

Most studies conducted on cancer metabolism so far have focused on

clinically detectable tumors or phenotypes observed in emergent

experimental models. Thus, the terms cancer metabolism and

metabolic reprogramming are commonly used to denote a shared set

of pathways observed in highly proliferating tumors or cancer cells (48).

Tumor initiation and progression requires the metabolic

reprogramming of the malignant cells (20). Furthermore, the

endothelial cells, fibroblasts and immune cells in the TME play a key

role in promoting tumor progression (49). The cytotoxic T cells (CTLs)

that block tumor progression are also inhibited by some bone marrow

cells and Tregs to maintain tumor growth (50). We analyzed the single-

cell transcriptomics data of multiple HCC datasets in the GEO database

(25), and found that epithelial cells were significantly more enriched in

HCC patients compared to healthy controls, while the percentage of

endothelial cells, T/NK cells and B cells were significantly reduced inHCC

patients. Epithelial cell adhesion molecules are biomarkers of cancer stem

cells, and can remodel tumors and induce resistance to chemotherapy and

radiotherapy. One study showed that epithelial cell adhesion molecules

were downregulated by 5-fluorouracil (5FU) in human HCC cell lines

(HepG2, Hep3B and HuH-7) and upregulated by cisplatin in the HuH-7

cells, indicating that these molecules are targets of chemoresistance (51)

and play an important role in tumor recurrence and progression.

Furthermore, the expression levels of APOA2, RPB4, TTR, APOH and

some HCC-related genes were significantly different between HCC and

control samples (45, 52–54). These findings are consistent with the roles

played by different stromal cells during tumor growth (55).

The rapidly proliferating cancer cells use a large amount of glucose to

produce lactic acid even under aerobic conditions. This phenomenon is

called aerobic glycolysis orWarburg effect (56). However, since glycolysis

and TCA cycle are also used by the stromal cells and immune cells,

tumor cells must compete with different cell populations in the TME

(50). Nevertheless, the conserved metabolic pathways in cancer cells are

promising therapeutic targets. Therefore, we also analyzed the expression

ofmetabolism-related genes in the epithelial cells fromHCCpatients and

healthy controls, and detected two distinct metabolic subsets of the

epithelial cells from HCC patients based on the predominance of amino

acid metabolism (MRS1) and glycolysis/gluconeogenesis (MRS2).

Amino acid metabolism plays an important role in tumor progression

(57), and pathways involved in tyrosine, glycine, serine, threonine and

phenylalanine metabolism, and phenylalanine, tyrosine and tryptophan

biosynthesis are activated during the process. In addition, various solid

tumor cells die rapidly inmedium lacking arginine (58). Likewise, proline

dehydrogenase (oxidase) (PRODH/POX), which catalyzes proline to

P5C, functions as a tumor suppressor (59). Glycolysis provides carbon

intermediates for the biosynthesis of nucleotides, amino acids and lipids,

which is essential for the growth of cancer cells (50). HCC patients with a

greater abundance of the MRS2 cells had significantly worse survival

compared to those with more MRS1 cells. TFF3 is a member of MRS2

and has been noted by researchers in recent years, which promotes
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tumorigenesis and metastasis by promoting cell proliferation, invasion,

metastasis and angiogenesis, and inhibiting cell apoptosis (60).

Most tumor cells express antigens that can be recognized by CD8+

T cells. Therefore, cancer cells have evolved multiple mechanisms to

evade anti-tumor immune responses (61). A previous study identified 9

immune-related genes involved in tumor cell proliferation, cell-

mediated immunity and tumorigenesis (62). Patients with the MRS2

phenotype exhibited the highest ESTIMATE score, immune score and

stromal score, along with the lowest tumor purity. Furthermore,

pathways involved in the recruitment of Tregs and MDSCs, which

are known to contribute to the immunosuppressive TME (42, 43), were

enriched in theMRS2 group.We also identified ALDOA as a biomarker

of the MRS2 phenotype, and detected considerable infiltration of M2
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macrophages and Tregs in the ALDOAhigh tumor tissues of the MRS2

patients. Overall, our findings suggested that higher abundance ofMRS2

epithelial cells portends worse prognosis due to increased infiltration of

the immunosuppressive Tregs and MDSCs.

Myeloid cells, including tumor-associated macrophages and bone

marrow-derived suppressor cells, are abundant in the HCC

microenvironment and are associated with poor prognosis since they

support tumor initiation, progression, angiogenesis, metastasis and drug

resistance (63). We found that MRS2 cells rather than MRS1 cells were

significantly co-enriched with myeloid cells. In addition, the MRS2 cells

and myeloid subpopulations presented significantly more interactions

than MRS1 cells and myeloid subsets. A study observed that IL-32 was

involved in MRS2, and interacted with STMN1+ mononuclear/
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FIGURE 6

ALDOA overexpression is associated with an immunosuppressive TME (A) Venn plot showing the shared up-regulated genes with prognostic
relevance in the MRS2-epithelial cells and patients with the MRS2 phenotype. (B) ALDOA expression in the MRS1 and MRS2 groups in the TCGA
cohort. (C) OS of the ALDOA high and ALDOA low HCC patients in TCGA-LIHC cohort. The patients were stratified based on the median expression.
(D) ALDOA expression in MRS1 and MRS2 groups in the GSE14520 cohort. (E) OS of the ALDOAhigh and ALDOA1o HCC patients in GSE14520
cohort. (F) Representative images showing low immunostaining of ALDOA in the tumor tissues from ALDOAhigh and ALDOA' groups. (G) Left:
Representative images of HCC tissues stained with anti-CD68 (red) and anti-CD163 (green) antibodies. Arrows depict the CD68+CD163+
macrophages. Scale bar, 100mm. Right: Representative images of HCC tissues stained with anti-CD4 (red) and anti-FOXP3 (green) antibodies. Arrows
depict the CD4+FOXP3+ Treg. Scale bar, 100mm. DAPI (blue) was used to counterstain the nuclei. (H) Percentage of CD68+CD163+ macrophages
(upper) and CD4+FOXP3+ Tregs (bottom) between ALDOAhigh and ALDOA low groups. Wilcoxon rank-sum test was used to measure the
differences between groups.
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macrophage cells, thereby inhibiting tumor development (64). STMN1+

mono/macrophages mediated the immunosuppression via interacting

with MRS2 cells and resulted in poor clinical outcomes, while the

opposite was found for methylation of the gene body region.

To summarize, we identified two distinct metabolic subtypes of

HCC that differed in terms of the immunological characteristics of the

TME and prognosis, and can be useful for developing targeted

therapies. Studies show that there is considerable spatial heterogeneity

among cells obtained from the same tissue (65–67), and differences in

the enriched cell populations among tumor tissue regions can influence

the clinical outcomes of patients (65). The cellular composition of

samples used in the scRNA-seq datasets could not reflect the real

situation of HCC tissues. Therefore, further analysis is needed to explore

the spatial heterogeneity of distinct tissue regions, and identify the

predominant subpopulations at different stages of tumor development.
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