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How smart is artificial intelligence
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Learning tool using multiple
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Background: A CE- and FDA-approved cloud-based Deep learning (DL)-tool for

automatic organs at risk (OARs) and clinical target volumes segmentation on

computer tomography images is available. Before its implementation in the

clinical practice, an independent external validation was conducted.

Methods: At least a senior and two in training Radiation Oncologists (ROs)

manually contoured the volumes of interest (VOIs) for 6 tumoral sites. The auto-

segmented contours were retrieved from the DL-tool and, if needed, manually

corrected by ROs. The level of ROs satisfaction and the duration of contouring

were registered. Relative volume differences, similarity indices, satisfactory grades,

and time saved were analyzed using a semi-automatic tool.

Results: Seven thousand seven hundred sixty-five VOIs were delineated on the CT

images of 111 representative patients. The median (range) time for manual VOIs

delineation, DL-based segmentation, and subsequent manual corrections were

25.0 (8.0-115.0), 2.3 (1.2-8) and 10.0 minutes (0.3-46.3), respectively. The overall

time for VOIs retrieving and modification was statistically significantly lower than

for manual contouring (p<0.001). The DL-tool was generally appreciated by ROs,

with 44% of vote 4 (well done) and 43% of vote 5 (very well done), correlated with

the saved time (p<0.001). The relative volume differences and similarity indexes

suggested a better inter-agreement of manually adjusted DL-based VOIs than

manually segmented ones.
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Conclusions: The application of the DL-tool resulted satisfactory, especially in

complex delineation cases, improving the ROs inter-agreement of delineated VOIs

and saving time.
KEYWORDS

deep learning tool, segmentation, independent external validation, quality metrics,
time saved
1 Introduction

Automation-based solutions are spreading in several medical

sectors, including radiotherapy (RT), finding applications in the

entire workflow (1).

Advanced techniques for optimal RT require the careful

delineation of the target and organ at risk (OARs) to obtain an

accurate and precise dose distribution for fixed and moving targets.

Unfortunately, one of the critical issues remains the accuracy and

reproducibility of target and OARs segmentation on Computed

Tomography (CT) images in the treatment planning stage.

Although contouring guidelines of the OARs for the different

anatomical districts have been proposed (European Society for

Therapeutic Radiology and Oncology (ESTRO) and Radiation

Therapy Oncology Group (RTOG) guidelines) (2–12), significant

inter-/intra- user variability has been reported (13, 14), mainly

correlating with prior knowledge and experience of radiation

oncologists (ROs). Such inconsistencies from manual contouring

can affect the evaluation of effective doses delivered to the OARs,

maximizing toxicity or biasing target coverage. In addition, manual

segmentation might be subject to human error and requires the

application of robust checklists and guidelines.

One of the main applications of artificial intelligence (AI)-based

tools to RT-based patient workflow is organ and target segmentation.

In this context, different commercial systems developed AI-based

auto-segmentation tools such as MVision AI Oy (Helsinki, Finland)

(15), Limbus (Limbus AI Inc, Regina, SK, Canada) (16), MIM

Contour Protégé AI™ (MIM Software Inc., Cleveland, OH) (17),

promising support, standardization and shortening the time of

manual segmentation. However, the number of cases used to assess

AI tool-added value and accuracy in RT departments is limited to a

few tumor sites, a few patients, and a few VOIs.

MVision AI Oy is a CE- and FDA-approved cloud-based Deep

Learning (DL) software for automatic OAR segmentation of CT

images, trained and tested on VOIs delineated according to the

ESTRO and RTOG guidelines in training and test centers. To date,

organ auto-segmentation efforts have been mainly focused on adult

populations using a unique manual segmentation as the gold

standard. However, multiple manual segmentations per structure

coming from different medical experts are recommended to

produce high-quality results (18). The variability in contouring

among ROs is a crucial issue because manual contouring still

represents one of the significant causes of uncertainty in the RT

workflow, although ROs follow the same international guidelines. So,
02
when a system trained and tested in some centers is applied in a new

center, proposing to the ROs different contours from those manually

made in the new center.

This study aims to present the developed frameworks and the

platform for assessing the agreement of the unmodified automatic

VOIs obtained from MVision, the manual/semi-automatic VOIs, and

the modified MVision VOIs performed by experienced or in-training

ROs. Based on expert contours of ROs with different levels of

experience and trained in multiple centers, we measured inter-ROs

variability of manual contours and estimated the agreement or

disagreement of DL-tool-based contours accordingly to the district

and VOIs. In addition, we estimated the inter-ROs variability of DL-

tool-based contours manually adjusted. Moreover, we investigated the

impact of the type of scanner, acquisition and reconstruction

parameters, presence of contrast medium, and the potential reasons

for which the DL-tool correctly did not perform the contour or failed

to identify a VOI. In addition, we studied the degree of satisfaction

with the tool from poor to good, and the possible causes of contours

rejected or requiring substantial modifications.

For the above reasons, this study represents an additional

independent external validation of this DL-based algorithm before

its application in our RT department, which already follows

international guidelines for contouring. To our knowledge, a

comprehensive platform for assessing the accuracy and

reproducibility of introducing a new AI tool for automatic

contouring in different anatomical districts is still missing.
2 Materials and methods

2.1 Patients & investigated tumor sites

To investigate the performance of MVision, we selected six

anatomical districts with VOIs of different sizes, shapes, and

electron densities and its robustness regarding the CT acquisition

and reconstruction parameters adopted in our center. A minimum of

20 patients per district were selected except for female pelvis to

generate a dataset representative of patients treated in our Institute.

We aimed to cover most of the districts treated in our everyday

clinical practice.

CT images were acquired with CT Brilliance Big Bore

(Koninklijke Philips Electronics NV, Amsterdam, NL) or Discovery

STE (GE Healthcare, Chicago, Illinois, USA). The native slice

thickness of the acquired images was 3.75 mm for the GE scanner
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(10% of the cases), while it was variable for the Philips scanner,

resulting in 2 mm (3% of the cases), 3 mm (60% of the cases), 5 mm

(27% of the cases), according to our institutional disease-specific

clinical protocols. In addition, the contrast medium was used in 20

patients (i.e., 18% of the investigated cohort) belonging to three

districts (i.e., abdomen, H&N, and thorax). In details, 15 subjects

received a CT with intravenous contrast medium to better define

vascular structures and one received a CT with oral contrast medium

to better visualize the gastrointestinal tract. In four cases both contrast

media were administered during the imaging.

One-hundred-eleven patients were extracted from our Record &

Verify (R&V) system (Mosaiq, Elekta Medical Systems), transferred,

and imported to Pinnacle v.16.2 (Philips Medical Systems®, 61

Fitchburg, WI) treatment planning system (TPS).

The dataset represents random cancer patient cases undergoing

RT according to standard clinical indications in our department. The

investigated patients’ age ranged from 32 to 87 years, with a median

age of 65 years. The cohort included 61 males and 50 females

extracted from the database of patients treated in IRCCS Azienda

Ospedaliero-Universitaria di Bologna institute and included in sub-

studies approved for each district by the Ethics Committee of IRCCS

Azienda Ospedaliero-Universitaria di Bologna (Identification codes

of the projects: ICAROS 311/2019/Oss/AOUBo, ES-THER 973/2020/

Oss/AOUBo, PORTO 533/2021/Oss/AOUBo, PAULA 201/2015/O/

Oss, BREATH 229/2019/Oss/AOUBo). Table 1 shows the number of

patients for each anatomical district, tumor type, and contoured

OARs with the corresponding name.
2.2 Study design

The study was based on patients’ CT images from the six human

body districts most frequently treated in our Institute (i.e., head-neck,

breast, abdomen, thorax, male and female pelvis).
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CT images were randomly extracted from our clinical database to

represent the patients treated in each investigated district. In

particular, our study focused on the delineation of OARs, clinical

target volumes (CTVs) (i.e., breast and seminal vesicles), and elective

lymph nodes (LNs) (i.e., loco-regional LNs for breast). Window/levels

were selected by each physician based on the contouring consensus

guidelines of the specific district and according to the RO expertise.

All the contours were delineated on axial slices.

The Volumes of interest (VOIs) were delineated by senior

(S=senior) and in-training (J=junior) radiation oncologists (ROs)

according to our institutional protocols based on ESTRO and

RTOG guidelines. S and J indicated ROs with at least ten years and

at least three months of experience in cancer or pathologies of a

specific district, respectively.

Contours were grouped according to the experience of ROs for

each analyzed tumor site. At least one S and two Js manually

contoured the investigated OARs summarized in Table 1 using the

Pinnacle TPS. The VOIs of the OARs manually contoured were

identified as manually delineated (MD). Atlas-based approach

available in Pinnacle was permitted only for lung segmentations as

in clinical practice.

Subsequently, CT images were sent to the MVision cloud-based

software (algorithm version 1.2.1 and research version for LNs

delineation) for the automatic OAR segmentation and reimported

in the Pinnacle workstation. Of note, for breast and prostate cancer,

MVision delineates the breast, the prostate, and LNs, included in the

OARs delineation analysis (See Table 1). All the OARs and targets

available in the versions mentioned above of the software were used

for the subsequent VOI comparisons. Details about MVision model

architecture and libraries are reported by Olsson et al. (19).

The VOIs automatically segmented by MVision (in the following

indicated as MV) were sent to MIM. A copy of MV VOIs was also

manually adjusted by all the involved operators (named MD&MV), if

necessary, as illustrated in Figure 1. The time between manual and
TABLE 1 Number of patients and delineated OARs for each investigated anatomical district.

#Pts [M/F] Anatomical district #OARs OARs name RO &
experience

# of
analyzed VOIs

20
[15/5]

Head & Neck 15 Bone_Mandible, Brainstem, Cavity_Oral, Esophagus_S, Eye_L, Eye_R,
Glnd_Thyroid, Glottis, Lens_L, Lens_R, OpticNrv_L, OpticNrv_R,
Parotid_L, Parotid_R, SpinalCanal

1 S 2 J 2100

20
[0/20]

Breast 14 Breast_R, Breast_L, Heart, LN_L1, LN_L2, LN_L3, LN_L4, LN_IMN,
LN_Intpect, Lung_L, Lung_R, SpinalCanal, Trachea

1 S 2 J 1960

21
[13/8]

Abdomen 5 Kidney_L, Kidney_R, Liver, SpinalCanal, Stomach 2 S 2 J 945

20
[13/7]

Thorax 6 Esophagus, Heart, Lung_L, Lung_R, SpinalCanal, Trachea 2 S 2 J 1080

20
[20/0]

Male pelvis 8 Bag_Bowel, Bladder, Femur_L, Femur_R, PenileBulb, RectoSigmoid,
Rectum, SeminalVes

1 S 2 J 1120

10
[0/10]

Female pelvis 8 Bag_Bowel, Bladder, Femur_L, Femur_R, Kidney_L, Kidney_R,
Rectum, SpinalCanal

1 S 2 J 560

111
[61/50]

Total 59 7765
The OARs names are self-explaining. The letters L and R indicate left and right, instead LN stands for lymph node. J and S indicate junior and senior radiation oncologists, respectively.
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MV-modified VOIs segmentation was at least six months to reduce

potential bias.

For each patient and contour session, we also registered the

contouring task’s duration (in minutes) and a satisfactory grade

according to the Likert scale related to the automatic contour. The

satisfactory grade ranged from poor (1) to excellent (5). More in

detail, the adopted scale corresponded to MVision VOIs rejected and

needing complete re-contouring by ROs (1), or needing major (2),

some (3), minor editing (4), or not needing editing (5).
2.3 Data extraction and analysis

All the sets of DICOM RT structures and CT images were

transferred to the MIM software (MIM Software Inc., Cleveland,

OH) for the subsequent data export and analysis.

The “Statistics” module of the MIM software was used to extract

the volumes (in mL) of the delineated VOIs for each district, patient,

segmentation strategy, and physician code (e.g., S1 identifying the S-

RO #1). The volumes were compared using the relative volume (rV)

measure described in paragraph 2.3.1.

For each VOI, the “Compare Contours” module in the MIM

software was used to compare the segmentation strategies (e.g., MD

or MD&MV) and the physician experience (S or J) versus MV using

similarity metrics. Specifically, the DICE Similarity Coefficient (DSC)

and the Mean Distance to Agreement (MDA) were calculated to

compare volumetric regions and voxel-wise distances, respectively.

The definition of these indexes is reported in paragraph 2.3.2.

2.3.1 Relative volume
The rV index is the ratio of investigated volume VX (i.e., MD or

MD&MV) compared to one obtained using MVision (VMV), and it is

determined as:
Frontiers in Oncology 04
rV =
VX

VMV

This index (expressed in an arbitrary unit, i.e., a.u.) is a metric

equivalent to the relative volume difference (i.e., RVD) defined by Ahn

et al. (20) and is:

rV = RVD + 1

This index allows for assessing the organ volume variability

among delineated VOIs. A good agreement among VOIs was

assumed when the rV was between the same percentage of

agreement observed among senior ROs.
2.3.2 Similarity metrics
The DSC describes the similarity of two regions by relating the

overlapping volume and the volumetric average of the volumes of

interest (21), indicated as volumes V1 and V2 by:

DSC(V1,V2) =
2 V1 ∩

  V2j j
V1 + V2

A DSC of zero indicates that the two volumes do not overlap;

instead, a DSC of one indicates that the volumes V1 and V2

are identical.

The DSC values were used as a metric for the evaluation of the

DL-tool performance. Specifically, the impact on DSC values of CT

slice thickness and scanner type, dependent on the acquisition and

reconstruction parameters clinically adopted in our Institute,

was assessed.

MDA describes the mean voxel-wise comparison of the distance

between two associative points in the contour sets A and B (22),

defined by:

MDA(A,B) = meana ∈A,b∈B (d(a,B) ∪ d(b,A))
FIGURE 1

The workflow of this study for the generation of the VOIs is illustrated by using the box and solid arrows. MD, MV, and MD & MV indicate manual,
automatic, and manual adjustment of the automatic delineated VOIs, respectively. The dashed arrows indicate the data comparison versus the MV VOIs
for all the investigated metric indexes. A similar comparison was performed using the relative volume (rV) of manually and manually adjusted MV VOIs
versus the MV ones.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1089807
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Strolin et al. 10.3389/fonc.2023.1089807
MDA denotes a measure of average similarity between two

contour sets with a MDA=0 indicating that sets A and B are identical.

2.3.3 Data analysis
To consider the RO variability of VOI delineation, we calculated

the median [range] of similarity indexes among groups for each

investigated district and OAR (data not shown). For all the VOIs with

DSC<0.5 between MV and MD or MD&MV, a board-certified RO

analyzed in blind the VOI adherence to ESTRO guidelines and

registered the potential causes of the discrepancies.

The similarity indices, the satisfactory grade of using the DL-tool,

and time saved were shown using boxplots, Pyramid plots, or tables.

The level of satisfaction and the saved time was analyzed using the

Spearman test. Receiver Operating Characteristic (ROC) curve

analysis was conducted to investigate the predictors of a satisfactory

score≥4, (i.e., DSC and MDA). The significance among groups was

assessed by using Wilcoxon or t-test when comparing two groups, as

appropriate, while using ANOVA or Tuckey in case of more than two

groups. A p-value<0.05 indicated the statistical significance

between groups.

We developed all the data analysis using an ad hoc R tool,

described in more detail in paragraph 2.3.2, on available datasets

generated using MIM software.
2.3.4 Description of R tool for data analysis
We created an R tool that allows the automatic import of the.csv

files related to volumes and similarity comparison, respectively, for

each investigated district.

The possible different VOI names were harmonized, and the data

were reorganized in a database. The VOIs with different laterality

(e.g., breast, lung, etc.) were aggregated in a single OAR except for

breast lymph nodes.

For each district, we calculated the occurrences of DSC and MDA

values overcoming a threshold as defined in (13) in MD and

MD&MV, respectively. Specifically, we used a threshold of 0.8 and

3 mm for DSC and MDA values, respectively. The results were shown

using Pyramid plots, where the height of the bar is proportional to the

number of cases in each group. Moreover, the boxplots of volumes

among groups for the most representative differences highlighted

using Pyramid plots were shown.

For each investigated expertise, district, and VOI, we performed a

boxplot of MV, MD, MD&MV volumes (cc), and rV(a.u.). The ANOVA

one-way test was performed to assess the overall statistical significance

between groups, and the two-way t-test was used to compare theMD and

MD&MV volumes against MV ones, taken as the reference.
3 Results

3.1 Delineation time, quality of auto-
contouring, and segmented VOIs

Seven thousand sixty-five (7765) VOIs were delineated on the CT

images of 111 patients, representative of 6 tumor sites. The median

(range) time for manual contouring was 25.0 minutes (8.0-115.0), for

retrieving auto-segmented VOIs was 2.3 minutes (1.2-8.0), while for the
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subsequent manual corrections was 10.0 minutes (0.3-46.3). The overall

time for retrieving VOIs and their modification was 12.3 minutes (1.9-

48.8), resulting in statistically significantly lower than that of the manual

contouring (p<0.001). The median (range) time for manual contouring

in S and J subgroups was 25.0 minutes (11.1-57.9) and 24.0 minutes (8.0-

115.0), respectively, while the total time for retrieving auto-segmented

VOIs and performing the subsequent manual corrections was 12.0

minutes (1.9-25.3) and 13.3 minutes (2.1-48.8), respectively. For both S

and J subgroups, the time required for obtaining and eventually manually

adjusting the VOIs from the DL-tool was statistically significant to the

time employed for the manual contouring alone (p<0.001), thus not

depending on the MDs’ experience.

By considering each investigated district separately, the median

(range) difference time between manual contouring compared with

manual adjustment after the retrieving of auto-segmented VOIs was

21.5 minutes (0.4-52.7) for the abdomen, 11.2 minutes (6.7-17.9) for

the thorax, 9.5 minutes (4.5-66.3) for the H&N, 8.7 minutes (-0.3-

25.7) for the breast, 6.9 minutes (-3-16.0) for the female pelvis, and

13.7 minutes (3.5-18.4) for the male pelvis. The median percentage of

time saved was 69%, 79%, 67%, 48%, 29%, and 53% for the abdomen,

thorax, H&N, breast, female and male pelvis, respectively, while the

maximum percentage time saved was 92%, 89%, 63%, 73%, 54%, 72%

for abdomen, thorax, H&N, breast, female and male pelvis,

respectively. Only in three cases (one breast and two female pelvis)

the time difference of a single RO was negative, mainly due to the

prolonged time employed for the manual adjustment after the auto-

segmented VOIs retrieval.

Overall, the system was generally appreciated by ROs, with 44% of

vote 4 (well done) and 43% of vote 5 (very well done) correlated with

the spared time for the delineation correction after MV automatic

contouring (p<0.001).

The time for the contouring was similar in terms of manual

delineation, irrespective of ROs’ experience or satisfactory grade with

the tool (Figure 2). Moreover, the time of manual adjustment was

statistically significantly lower in all the above scenarios (ROs’

experience or satisfactory grade). The satisfactory grade increases

according to the time saved and indirectly according to the

complexity of patients’ volume delineations. The average score was

4.08, 4.23, 4.45, 4.86, 3.7, and 4.79 for the abdomen, H&N, breast,

thorax, female and male pelvis, respectively. This score was

statistically significantly higher in S than in J ROs (p-value=0.01).

The area under the ROC curve predicting a satisfactory grade ≥4

using the mean DSC per patient was 0.708(95% CI: 0.509-0.907),

0.665(95% CI: 0.535-0.794), and 0.673(95% CI: 0.565-0.782) for S, J,

and the whole group, respectively, while it was not statistically

significant using the mean MDA per patient.

MV generally delineated all the planned VOIs reported in Table 1

with few exceptions: a whole maxilla, two penile bulbs, four seminal

vesicles, one femoral head, and three lenses.

Examples of OARs delineated in two representative patients are

shown in Figure 3.
3.2 Volumes

The volumes were quite similar in larger organs, with a better

agreement between MD&MV versus MV than in MD versus MV
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FIGURE 2

The time for the VOI delineation in minutes versus the ROs' experience (J=junior vs S=senior) and the score representing the grade of satisfaction of the
DL tool-based auto-contouring ranging from 1 (poor) to 5 (excellent).
B

A

FIGURE 3

Examples of OARs delineated in axial (left), sagittal (right up) and coronal (right down) view of illustrative (A) abdominal and (B) H&N cancer patient. The
blue, red and green lines rep-resent the OARs delineated by MV, MD and MD & MV, respectively. See the definition of Figure 1 legend.
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(data not shown). The median agreement between VOIs among

senior ROs was lower than 10%, with few exceptions (e.g., spinal

canal, as explained in the following). Thus, we considered a good

agreement among VOIs when rV was between 0.9 and 1.1. The

differences in volumes delineated in both junior and senior RO groups

were statistically significant in the MD group but not in the MD&MV

group; thus, the modified MV contour volumes resulted independent

of the level of ROs experience.

Figure 4 shows the percentage number of VOIs delineated by the

MD or MD&MV group with rV between 0.9 and 1.1 compared to MV

ones. The number of OARs with rV within 10% (compared to the

VOIs delineated by MV) significantly increased after the manual

modification of MV VOIs for most organs (Figure 4). Of note, all the

OARs are shown except for the esophagus in the H&N district, in

which both the rVs of MD and MD&MV groups exceeded 10%.

Figure 5 shows the boxplot of rVs of organs with a lower

agreement (rV lower than 0.9 or higher than 1.1) in less than 75%

of MD&MV VOIs. The differences rVs among groups were

statistically significantly different using the ANOVA test except for

LN3 and LN4. In particular, based on the Tuckey test, there was a

statistically significant difference in rV delineated by MD versus MV

in all the organs except for LN3, LN4, and lung, while there was a

statistically significant difference in rVs delineated by MD&MV

versus MV in all the organs except for LN1, LN2, LN3, LN4, spinal

canal and lung.

Large discrepancies amongst volumes can be detected in the

spinal canal, in hollow organs (or lumen tissue type), and in small

organs (e.g., penile bulb) or lymph nodes (see Figures 4, 5).

Among organs with discrepancies, the spinal canal was

automatically contoured in all the available CT slices by MVision,

while ROs drew it in a limited number of slices, which include the

target and a few centimeters above or under the target itself. Another

exception regarded the delineation of hollow organs (or lumen tissue

type). This type of organ might be more challenging to delineate due

to the assumed thickness of the organ wall (trachea, rectosigmoid,

rectum, esophagus).
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Finally, significant discrepancies amongst volumes were also

detected in small organs (e.g., penile bulb) or lymph nodes (see

Figures 4, 5). This result is likely related to the CT windows used for

manual delineation and the preselected window.

Among cases with more significant discrepancies, the variations

in stomach delineation with or without auto-segmentation tool may

have been influenced using oral contrast or by the organ’s variability

in size and morphology. In any case, the delineation of the stomach is

a challenging task.
3.3 Metrics

Overall, DSC values increased with the volume of the investigated

VOIs in both MD and MD&MV groups. Statistically significant

smaller DSC values were obtained for the MD group when

compared to MD&MV one in the subgroups with small, medium,

and large volumes (i.e.,<50 cc, 50-500 cc and >500 cc, respectively).

In the MD subgroup, DSC values obtained when comparing

different slice thicknesses (i.e., ≤ 3 mm and > 3 mm) were not

statistically significantly different, with a median value of 0.83 and

0.81, respectively; while in the MD&MV subgroup, they were

statistically significantly different with a median value slightly

decreasing from 0.99 to 0.98, respectively. Overall, the DSC values

obtained in the MD&MV subgroup were statistically significantly

higher than MD one. In particular, in three districts (i.e., H&N, male

and female pelvis), two CT scanners were used for the image

acquisitions. Also, in these subsets of patients, the DSC values

obtained in the MD&MV subgroup were statistically significantly

higher than MD one, irrespective of slice thickness and CT scanner

(see Supplementary Material Figures S1, S2). Finally, contrast

medium was used in 67%, 80%, and 90% of the patients of the

abdominal, H&N, and thoracic districts, respectively. In these cases,

the DSC values obtained in the MD&MV subgroup were statistically

significantly higher than the MD one, regardless of the presence of the

contrast agent (see Supplementary Material Figure S3).
FIGURE 4

The percentage number of OARs with rV within 10% with the VOIs delineated by MV grouped for the tumoral district and type of delineation (i.e., MD or
MD & MV). The absence of the colored bar (e.g., for the esophagus in the H&N district) indicates that the comparison did not produce any count as rV
between each considered VOI (i.e., for each RO and type of delineation) compared to the MV-based one exceeded the 10%. See the definition of
Figure 1 legend.
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Figure 6 shows the percentage number of cases in which the DSC

and MDA indexes, obtained comparing MD and MD&MV VOIs to

the MV ones, were higher than 0.8 a.u. and lower than

3 mm, respectively.

The auto-segmentation strongly increases both DSC and MDA

values between MD&MV and MV VOIs compared to the same

indexes between MD and MV VOIs, as shown in Figure 6. Thus,

DL-tool could harmonize the delineated OARs between ROs in the

same institution and potentially improve multicentric collaborations.

Figures S4, S5 in Supplementary Materials show the DSC and

MDA values between MD&MV or MD and MV VOIs in the two

subgroups (S and J). These results are substantially similar to the ones

of the whole group.

Figure 7 shows the boxplot of DSC and MDA of organs in which

the percentage number of MD&MV higher than 0.8 a.u. and lower

than 3 mm compared to MV alone, respectively, was lower than 75%

(as shown in Figure 6). The differences among MD and MD&MV

groups were statistically significant based on the t-test, except for the

MDA values of the esophagus in the H&N district (data not shown).

As for the volumes, the DSC and the MDA coefficients have a

large variability among groups and OARs (Figure 7) in all the

districts, except for the DSC in the abdomen and thorax district

and the MDA in the thorax and female pelvis district. The manual

adjustment of MV VOIs statistically significantly increases the DSC

values (i.e., comparing the DSC between MD&MV and MV VOIs and
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the DSC between MD and MV VOIs). The median DSC values

(comparing MD&MV versus MV VOIs) were higher than 0.8 for all

the organs except for the esophagus and glottis in the H&N district.

As expected, the MDA values of MD&MV compared to MV VOIs

were statistically significantly lower than the MDA values of MD

compared to MV VOIs. The median MDA values (comparing

MD&MV versus MV VOIs) were lower than the 3 mm expected

for the esophagus in the H&N district.
4 Discussion

The increasing development of automated RT workload is

expected to lead to a growing number of patients treated with

modern accelerators enabling advanced delivery techniques. These

accelerators deliver high conformal dose distributions, demanding an

accurate delineation of target and OARs to improve tumor control

while reducing toxicity. With the rising interest and spreading of

machine learning applications in Radiation Oncology, AI auto-

segmentation is widely hypothesized to be associated with workflow

benefits and time savings, as shown in limited prospective data (23).

Automated organ segmentation from CT images has different

applications, including radiation therapy, diagnostic tasks, surgical

planning, and patient-specific organ dose estimation. One challenge

posed by the DL auto-segmentation approach is requiring a large,
B

A

FIGURE 5

Boxplot of rV of delineated OARs and districts in which the manually adjusted VOIs showed a difference higher than 10% compared to MV alone (i.e., rV
lower than 0.9 or higher than 1.1) in less than 75% of MD&MV cases. The relative volume differences observed in the abdomen, H&N, and thorax districts
are shown in panel (A), while for breast cancer patients in panel (B). See the definition of Figure 1 legend.
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manually labeled training dataset. External validation is one of the

more relevant tasks to propose a further improvement of DL models

in a real-world context (24).

In this study, we evaluated the performance of a DL-based auto-

segmentation algorithm on local data, representing an external

validation. Specifically, we compared the MD and the MD&MV

contours versus the MV ones.

Based on expert contours of ROs with different levels of

experience and trained in multiple centers, we measured inter-ROs

variability and manual contours and estimated the agreement or

disagreement of DL-tool-based contours accordingly to the district

and VOIs. In addition, we estimated the inter-ROs variability of DL-

tool-based contours manually adjusted.

Unfortunately, large datasets of CT scans for several tumoral sites

with anatomical annotations from several radiation oncologists are

lacking (25).

Several auto-segmentation methods have been developed and

investigated, with DL convolutional neural network methods

demonstrating performance improvements (15, 16, 26, 27).

To date, organ auto-segmentation efforts have been mainly focused

on adult populations, and several adult CT segmentation datasets have

been publicly released. However, Raudaschl et al. (18) indicated the need

to have different medical experts performing manual segmentations on

the same structure. In other words, assessing the inter-observer variability

can help judge the added values of the automatic segmentation.

The results obtained in volume, metrics (DSC, MDA), time saved,

and satisfactory score are discussed in the following paragraphs
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according to the ROs experience, type of scanner, acquisition and

reconstruction parameters, presence of contrast medium, and the

potential reasons for which the DL-tool correctly did not perform the

contour or failed to identify a VOI.

To the best of our knowledge, no one has evaluated the

performance of auto-segmentation software (commercial or not

commercial) on a cohort of patients comprising multiple body

districts (sites). Our dataset provides CT data of six types/sites or

RT treatment from two scanners. The images were collected to be

used in clinical practice.
4.1 Delineated VOIs and time saving

MV generally delineated all the planned VOIs with a few exceptions,

likely due to previous surgery, presence of prosthesis or modification of

patient anatomy due to external devices. More in details, we distinguished

several cases: the first consisted of VOIs not delineated because not

recognized (i.e. the bone mandible partially removed in one H&N case

due to a hemi-mandibulectomy operation), the second included VOIs

appropriately not delineated being surgically removed (i.e., one kidney

removed in two abdominal cases due to nephrectomy, seminal vesicles in

four male pelvis patients after radical prostatectomy and one lens in a

single H&N patient), the third comprised altered patient anatomy due to

organs dislocation and deformation for the application of external

perineal ultrasound probe (28) (i.e., the penile bulb), while the four
B

A

FIGURE 6

The percentage number of cases in which the (A) DSC coefficients of the MD or MD&MV VOIs were higher than 0.8 when compared to MV alone,
(B) MDA coefficients were lower than 3 mm for the same groups. See the definition of Figure 1 legend.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1089807
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Strolin et al. 10.3389/fonc.2023.1089807
involved the replacement of a femoral head with a metal implant or two

lens during cataract surgery.

We focused our analysis on all the VOIs available in the investigated

CE/FDA-approved version of MVision while acknowledging that key

structures, such as the duodenum, small bowel, large bowel, and

pancreas, are unavailable for the abdominal district. The only

exception was the investigation of loco-regional lymph nodes of the

breast, which were available in a research version that we had the

opportunity to test. Of note, we investigated the performance of MV

delineation of various VOIs included in anatomical sites not yet reported

in the literature (e.g., thorax, gynecological,…).

The time saved resulting from our study was up to 92%, 92%,

63%, 73%, 54%, and 72% for the abdomen, thorax, H&N, breast,

female and male pelvis, respectively, while the performance declared

by the Vendor is up to 95% overall.

Furthermore, a time saving from 0.6 to 17 min using a previous

version (version 1.1) of this software was reported by Kiljunen et al.

(15) only for the prostate district. These results agree with the ones

from our study, showing an absolute segmentation time saving

ranging from 3.5 to 18.4 min for the same district.
4.2 Volumes
Expert VOIs from senior and junior ROs were manually labeled

for up to 29 OARs in six districts. The volumes were similar in larger
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organs, with a better agreement between manually adjusted VOIs

versus MV. In the abdominal area (e.g., pancreas), some organs were

less defined due to the limits in the image quality of CT images.

According to the clinical practice, we selected images carried out with

or without contrast agents; thus, a possible discrepancy among VOIs

was expected. In the thorax case, we found closer overlap indices for

the breast contour, while a more significant variation was observed in

the lymph node delineation.

The spinal canal volume was generally higher in the MV

segmentation or the MD&MV one because it was automatically

delineated in all the slices of CT, while ROs normally contoured

only the volume involved in the treatment.

For this reason, the standard deviations of volumes were generally

higher among the MD group than in the MV or MD&MV, while they

were similar for larger organs, such as the stomach and liver,

completely delineated in all the groups. Overall, the variability of

the delineation among MD group was quite high in our analysis,

although lower than that reported in the literature in different

anatomical districts (15, 29).

The variability of the VOIs was higher in the MD than in the

MD&MV group, although manual adjustment of automatic VOIs was

required in several organs. For most OARs, the agreement with MV

was higher for MD&MV than for MD alone, irrespective of RO

experience. This issue is also of relevance for CTV (breast and seminal

vesicles) or LN (breast) delineation because the increased

consistencies may improve the actual target coverage (25).
B

A

FIGURE 7

Boxplot of (A) DSC and (B) MDA values of delineated OARs and districts in which the percentage number of MD&MV higher than 0.8 a.u. and lower than
3 mm, respectively, was lower than 75%. See the definition of Figure 1 legend.
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4.3 Metrics and the satisfactory grade

Many OARs required an adjustment of delineated MV VOIs.

Since the agreement between two ROs is considered acceptable with a

DSC≥0.8, we observed that the MD&MV increased the agreement

among ROs and MV VOIs. Similar consideration was found for the

MDA, for which the average distance between VOIs was lower than

3 mm for most OARs.

Similar results for the analysis of DSC and MDA values were also

found by considering the S and J subgroups separately, supporting a

small impact of the ROs’ experience.

The increase in the DSC index of MD&MV in the breast cancer

district agrees with the findings by Byun et al. (30) for delineating

several organs. Of note, in our study, the reduction of inter-ROs

variability was also found for the same district in lymph node

delineation, representing the most challenging VOIs, being smaller

volumes and target areas for breast cancer patients with LNs

involvement. Moreover, a limitation of the DSC index is that it

only considers the overlap between VOIs, irrespective of their shape

and orientation. The same limitation applies to MDA.

The average satisfactory grade per district was higher than 4,

except for the female pelvis. This score was statistically significantly

higher in S than in J ROs. The satisfactory grade was expected to

incorporate the time spared and the need for editing, considering all

the VOIs within a given district.

ROC curve analysis revealed that higher satisfactory grades (≥4)

were statistically significantly associated with the higher mean DSC

per patient in S, J, and the whole group, respectively, but not with a

higher mean MDA per patient.

4.4 Potential applications of our results

Considering the expected impact on patient-specific organ dose

estimation, strategies for commissioning and clinical implementation

of these algorithms are mandatory before introducing these systems

in clinical practice (24). Thus, a QA procedure is recommended

before implementation to guarantee that treatments are comparable

and consistent with those developed using manual approaches (18).

Our approach might be considered a platform for commissioning and

QA of DL tools thanks to many patients, districts, and VOIs

performed by at least 3 ROs. In addition, we aim to optimize the

analysis of the auto-segmentation tool, as a fundamental step in the

RT patient workflow, by allocating better resources and sparing time

for the semi-automatic analysis. For this reason, we developed a new/

innovative methodology/strategy for the QA/validation of the

segmentations, auto-segmentations, and auto-aided-segmentations

in our operative unit to support RT staff in clinical practice.

Our dataset enables the evaluation and development of organ

auto-segmentation algorithms in a large population of patients

undergoing RT who exhibit organ shape and size variations across

gender and age. We plan to use this dataset and methods to evaluate

other algorithms’ performance under standardized circumstances

comparable to clinical practice.

Of note, one issue remains on the dataset used, mainly

represented by the inter-RO variability of expert contours used for

the DL-tool training and validation. Olsson et al. (19) showed for a
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single VOI (i.e., rectum) that, the DSCs of retrained MVision model

were 0.89 ± 0.07 while the one of the clinical and the original MVision

tool were 0.87 ± 0.07 and 0.86 ± 0.06, respectively, thus suggesting

that the DSC variability remains similar after the model retraining.

Based on these results, our study focused on assessing the

performance of the MVision algorithm using an external validation

dataset, considering the inter-RO variability of several expert ROs, all

applying the ESTRO and international delineation guidelines.

As a future development, in case of unsatisfactory contouring, the

present tool could be trained, for example, using patients undergoing

surgery or with altered anatomy, to provide robust and high-

quality data.
5 Conclusion

Our analysis revealed the positive impact of introducing and

validating a novel CE- and FDA- approved commercial DL tool for

automatic segmentation in terms of; i) a high level of clinicians’

satisfaction, particularly for complex cases including large and

numerous organs, ii) saving time, and iii) improving the

consistencies of VOIs amongst different ROs.

Finally, our study permitted the creation of a platform including

CT images and multiple expert VOI contours for six districts to

commission new auto-segmentation tools and QA protocols.
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