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Cutaneous squamous cell carcinoma (cSCC) and its premalignant precursor,

actinic keratosis (AK), present a global health burden that is continuously

increasing despite extensive efforts to promote sun safety. Chronic UV exposure

is a recognized risk factor for the development of AK and cSCC. However,

increasing evidence suggests that AK and cSCC is also associated with skin

microbiome dysbiosis and, in particular, an overabundance of the bacterium

Staphylococcus aureus (S. aureus). Studies have shown that S. aureus-derived

toxins can contribute to DNA damage and lead to chronic upregulation of

proinflammatory cytokines that may affect carcinogenesis. Eradication of S.

aureus from AK lesions and restoration of a healthy microbiome may therefore

represent a therapeutic opportunity to alter disease progression. Whilst antibiotics

can reduce the S. aureus load, antibiotic resistant S. aureus pose an increasing

global public health threat. The use of specific topically delivered probiotics has

been used experimentally in other skin conditions to restore eubiosis, and could

therefore also present a non-invasive treatment approach to decrease S. aureus

colonization and restore a healthy skin microbiome on AK lesions. This article

reviews mechanisms by which S. aureus may contribute to cutaneous

carcinogenesis, and discusses hypotheses and theories that explore the

therapeutic potential of specific bacterial species which compete with S. aureus

in an attempt to restore microbial eubiosis in skin.
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Introduction

Cutaneous squamous cell carcinoma is an invasive keratinocyte

cancer arising from the basal layer of the epidermis. A longitudinal

analysis of the global burden of cSCC from 1990-2017 revealed a

310% increase in disease incidence, ranking cSCC as the sixth most

frequently diagnosed neoplasm worldwide (1). cSCC are thought to

result from the malignant transformation of actinic keratosis (AK).

AK are characterized as scaly, rough skin lesions, typically less than

1cm in diameter (2). The presence of AK is indicative of cumulative

UV-A/B exposure and a lack of regularly implemented sun protection

(3, 4). Although the risk of malignant transformation of AK to cSCC

is typically 0.0075%/lesion/year, 60% of cSCCs develop from AK

lesions (4). AKs that have undergone treatment have a recurrence rate

of 20-30% per lesion after 12 months (2, 5). Aside from originating

from AKs, an alternative pathway has also been reported where

cSCCs arise de novo from photo-damaged skin and are not

associated with AK (5). A key determinant of progression of AKs

or photo-damaged skin to cSCC is immune system competency.

Immune suppressed patients, particularly organ transplant recipients,

are 200 times more likely to develop cSCC when compared to an

immunocompetent age-matched population (6).

cSCC is a multifactorial disease, with the best recognized risk

factor being UV exposure, and is endemic amongst Caucasians in

tropical and subtropical areas of the globe. UV exposure, particularly

UV-B, is associated with epidermal erythema (sunburn), gene

mutation, immunosuppression and cancer. The shorter wavelength

and higher energy of UV-B enhances damage to DNA and is absorbed

in the superficial layers of the skin, mainly the epidermis (7).

Whilst UV exposure contributes to the development of AK and

progression of AK to cSCC, it is not currently possible to predict

which AK lesions will progress to malignancy. However, 196 genes

were found to be differentially expressed between AK and cSCC (8).

These genes impact on the mitogen active protein kinase pathways,

with overexpression of oncogenes MET, JUN, and PAK2 in cSCC

compared to AK, and are associated with loss of differentiation, and

gain of malignant properties associated with extracellular matrix

remodeling and cell migration (8, 9).

The central dogma of cancer pathogenesis is that all cancers arise

as a result of mutated somatic DNA (10). When compared with

“normal” skin, skin with solar damage (including AK), skin with

selective loss of pigmentation, and aged “normal” skin, each have a

substantially higher rate of somatic mutations. These mutations are

particularly observed in TP53, CDKN2A, KNSTRN, and NOTCH1-3

(11–13). NOTCH signaling, for example, is tumor suppressive for

squamous cell carcinomas, and loss of this signaling can create a

carcinogenic environment that promotes tumor growth (14). When

examining the NOTCH genes in particular, Matrincorena et al. found

that NOTCH1 was the most frequently mutated gene in sun exposed

skin, with NOTCH 2 and NOTCH3 also harboring a significant excess

of protein altering mutations (11). Martincorena et al. also identified

that normal skin has a high frequency of driver mutations where 20%

of cells appearing otherwise normal carried NOTCH mutations, thus

indicating that there are other factors that trigger cells to

become malignant.

In immune competent patients, the skin has a remarkable ability

to combat malignant growth by eliminating abnormal tissue
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structures (15). Brown et al. demonstrated that mutations in the ß-

catenin pathway and HrasG12V in hair follicle stem cells of mouse skin

in vivo resulted in hair shaft-like outgrowths which extended out

through the epidermis and ectopically into the dermis (15). These are

known to promote tumorigenic tissue growth in the skin due to an

impact on the WNT pathway. However, most of these outgrowths

fully regressed within 4 weeks. The study demonstrated that

envelopment of the outgrowth by normal cells consistently

preceded the expulsion of mutant cells from the tissue, and

blocking proliferation of non-mutated cells reduced lesion

regression to 2%, compared to the 68% regression in controls.

Comparable concepts also applied to mutated stem cells that build

the upper epithelium, where large benign tumors regressed over time,

and normal tissue architecture and function was re-established.

Furthermore, hair follicle ablation was also corrected and restored.

It thus appears that the skin is able to correct structural aberrancies

caused by gene mutations or physical damage. As the skin has the

capacity to eliminate genetically abnormal keratinocytes, there may be

other factors besides genetic damage that can promote transformation

of AK to cSCC.
Evidence of the microbiome as a potential
driver of skin cancer progression

A possible determinant in the progression of AK to cSCC could be

changes in the community of microorganisms (bacteria, viruses, and

fungi) that reside on the epidermis and in the dermal layers. The skin

microbiome assists in maintaining normal skin function by protecting

against invading pathogens, interacting with the skin immune system,

and processing the breakdown of dead skin cells and other skin

products (16, 17). The microbiome of non-lesional photodamaged

skin is substantially different from that of AK lesions (18, 19). Sun

damage changes the skin in a variety of ways (Figure 1). Chronic sun

exposure causes inflammation, due to UV-A/B radiation penetrating

the skin. This inflammation causes epidermal barrier dysfunction and

trans-epidermal water loss, creating the red, dry, and scaly appearance

associated with AKs (20). Patients with AK lesions often present with

Staphylococcus as the dominant taxon on the skin, and a high portion

of this taxon are S. aureus. S. aureus secrete toxins on the skin which

can cause human keratinocytes to overexpress inflammatory factors

that may promote skin carcinogenesis (21–24). While no causative

relationship between S. aureus colonization and AK to cSCC

progression has been established to date, this hypothesis presents

an interesting interdisciplinary avenue to explore in the fields of

oncology and microbiology. Other skin diseases such as atopic

dermatitis are also associated with microbial dysbiosis, as the skin’s

normal colonizers do not thrive in the altered environment, and

pathogens or opportunistic pathogens colonize the affected area.

Wood et al. noted that Malassezia and Cutibacterium (previously

known as Propionibacterium) are associated with non-lesional photo-

damaged skin, whereas S. aureus is associated with AK and cSCC

lesions (19). A number of studies have suggested a link between the

skin microbiota and cSCC progression, whereby S. aureus has been

found in high relative abundance on AK lesions, but even more so on

cSCCs (18, 19, 21–25). The presence of pathogenic bacteria on the

skin can cause an inflammatory response, and inflammation is widely
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recognized as a factor in tumorigenesis, discussed in more detail

below (26).
Relationships between bacterially induced
inflammation and tumorigenesis

Skin inflammation can be driven by a variety of factors that

ultimately cause leukocytes, phagocytic cells and cytokines to

accumulate in skin. Inflammation can induce DNA damage in

proliferating cells as it generates reactive oxygen and nitrogen

species (ROS and NOS) (27). Typically, in cSCC, UV-A/B exposure

acts as an inflammatory stimulus, which causes ROS and NOS to react

and form a mutagenic agent, peroxynitrite (27). ROS can cause

significant damage to cellular components, including proteins,

lipids, and DNA, and lead to apoptotic or necrotic cell death if not

neutralized by an antioxidant (28). UV radiation is a potent inducer of

ROS, which further accelerates intrinsic and photo-aging of the skin,

therefore playing a key role in skin cancer pathogenesis (28). Chronic

inflammation has been shown to induce a variety of cancers,

including colorectal cancer from inflammatory bowel disease,

oesophageal cancer from chronic acid reflux, and bladder cancer

from chronic cystitis (29).

Krueger and colleagues investigated the relationship between the

secretome of S. aureus strains isolated from AK and cSCC lesions, and

the induction of pro-inflammatory cytokines produced by
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keratinocytes (22). Proinflammatory cytokines such as IL-6, IL-8, and

TNF-a have previously been shown to promote tumor initiation and

progression, and expression of these cytokines is associated with a poor

clinical prognosis (30, 31). IL-6 in particular is a key factor for

mediating tumor progression. Lederle and colleagues found that IL-6

activates STAT3 and directly stimulates proliferation of benign non-

invasive HaCaT-ras A-5 cells in vitro (30). IL-6 also leads to

overexpression of the collagenase MMP1, thereby enabling migration

and invasion. IL-6 further induces a reciprocal cytokine network in

tumor tissues, including IL-8, GM-CSF, and VEGF, which supports

angiogenesis and leads to the recruitment of immunoregulatory cells

that enable tumor progression (30). Krueger and colleagues

demonstrated that the cytokines IL-6, IL-8, and TNF-a were

overexpressed in HaCaT cells and primary human keratinocytes

exposed to filter-sterilized culture supernatants from S. aureus, which

was consistent with their findings in AK and cSCC biopsies (22).

However, clinical isolates of S. aureus do not produce a homogenous

secretome, and each strain induced a different level of inflammation in

keratinocytes. Some S. aureus secretomes that were injected into

murine skin produced a high level of IL-6 expression intradermally,

and resulted in a significant increase in immune cell recruitment,

including neutrophils, monocytes, and macrophages, when compared

to mice injected with a low-level IL-6 inducing secretome (22). A study

conducted by Nakagawa and colleagues investigated the role of the S.

aureus produced toxin phenol-soluble modulin (PSM)a on

inflammation of keratinocytes. They found that this toxin induced
FIGURE 1

The role of bacteria in AK to cSCC progression: ① Sun overexposure causes UV- A/B radiation to penetrate the epidermis, resulting in ② inflammatory
cytokines accumulating in the area and causing erythema. ③ Reactive oxygen species (ROS) are produced and accrue, leading to oxidative stress. ④ The
combination of these factors cause ⑤ DNA damage to keratinocytes and ⑥ skin barrier dysfunction including transepidermal water loss and increased pH.
As more UV damage to the keratinocytes occurs, the skin barrier function deteriorates and hyperkeratosis can take place to compensate, forming an
actinic keratosis (AK) lesion. Meanwhile, a change in skin physiology results in the healthy skin microbiome becoming dysbiotic, and instead enables
pathogenic species such as ⑦ Staphylococcus aureus to proliferate and release toxins which can induce DNA damage and more ⑧ inflammation and
ROS. ⑨ Squamous cell carcinomas begin developing in the basal layer of the epidermis, and penetrate through the stratum corneum creating a cSCC,
that can spread into the basal epithelium.
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the release of various proinflammatory cytokines, including IL-1a and

IL-36, and was further associated with the induction of chronically

circulating IL-17 (32). IL-17 is a key player in the elimination and

protection of cells against bacterial and fungal infection, and its

dysregulation is known to be associated with early and late stages of

skin cancer. IL-17 signaling also plays a role in wound healing through

its association with epidermal growth factor receptor, fibroblast growth

factor receptor, and NOTCH1, resulting in keratinocyte proliferation

and repair (33, 34). Dysregulation can lead to chronic inflammation

and tumorigenesis. These studies demonstrate that S. aureus induced

inflammation has the potential to contribute to the development of AK

lesions and their progression to cSCC.
Current treatment options for AK
and cSCC

Gutzmer and colleagues conducted a comprehensive review on the

current treatment options for AK and cSCC, characterizing the AK

treatments as ‘lesion-directed’ or ‘field-directed’, and the cSCC

treatments as ‘locoregional’ or ‘systemic’ (35). Lesion- directed AK

treatments include cryosurgery, ablative and non-ablative laser

techniques, and operative techniques (35). While these treatments are

effective, some patients cannot undergo surgery due to poor general

health, and some surgery causes loss of function, such as reduced eyelid

movement, or cosmetic disfigurement to the affected area (36). Patients

undergoing these procedures commonly experience pain, bleeding,

scarring, erythema, hypopigmentation, and erosions.

The field-directed treatments include topical ointments such as 5-

fluorouracil, imiquimod, ingenol mebutate gel, photodynamic

therapy, fractional laser resurfacing, and alpha lipoic acid cream

(35). The objective of field directed therapies is two-fold. It aims

firstly to reduce the number of AKs and to prevent their recurrence.

Secondly, it aims to reduce the onset of cSCCs in the future. Among

all the immune- modulating and anti-mitotic topical creams only

topical fluorouracil has a demonstrated capacity to reduce the risk of

cSCC development for 12 months after a 2-4 week course (37). All

topical therapies are associated with adverse skin reactions such as

erythema, lesion formation, ulceration, and itching (38).

Hence, there is a clinical need for less invasive treatment options for

AK that are designed to prevent or reduce the likelihood of progression

to cSCC. With increasing recognition of the overall dominant role of

the microbiome in health and disease, and a demonstrated microbial

dysbiosis on AK and cSCC, it is reasonable to hypothesize that

restoration of microbial eubiosis on AK may lead to clinical benefits.

While this is an emerging research field, we will here review the current

evidence mostly collected from other skin diseases that manipulation of

the skin microbiome represents a potential non-invasive method to

prevent AK colonization with proinflammatory bacteria that may

promote progression of AK to cSCCs.
Antibiotic therapy

The use of topical antibiotics for skin infections is not a new

concept, and common antibiotics such as mupirocin are regularly

used for skin infections caused by staphylococci. Skin diseases
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associated with S. aureus colonization including atopic dermatitis

(AD) often use this treatment method as colonization with this

species results in disease exacerbation and skin barrier dysfunction

(39–41). Antibiotics have been shown to decrease the severity of AD,

however, there are increasing reports of antimicrobial resistance in S.

aureus strains isolated from patients with AD (42–44). In particular,

methicillin resistant S. aureus (MRSA) is becoming increasingly

prevalent on children and adults with AD, and skin colonized with

MRSA on AD affected sites is associated with a significant decrease in

microbial diversity compared to skin colonized with methicillin

sensitive S. aureus (MSSA) (45). Resistance of S. aureus to different

antimicrobial agents is typically regional, as different countries have

different antibiotic preferences to treat infection (46). Abdulgader and

colleagues investigated antibiotic resistance in 212 S. aureus isolates

obtained from hospital patients over a 6-year period in Cape Town

South Africa, and found that 12% were mupirocin resistant, and 44%

were MRSA (47). MRSA is a global concern due to the morbidity and

mortality rates compared to MSSA, and the increasing prevalence of

other antibiotic resistant S. aureus should prompt clinicians and

researchers to promote and practice good antimicrobial

stewardship. Another disadvantage of skin antibiotic treatment is

that antibiotics will disturb the entire skin microbiome, while some

bacteria are known to play beneficial roles in skin homeostasis. To our

knowledge, there are no published studies on the use of antibiotic

therapy as part of the management of AK and cSCC. It is likely that

such treatments would inhibit S. aureus colonization but may also

lead to antibiotic resistance and loss of a healthy skin microbiome that

may be able to competitively exclude S. aureus.
Bleach baths

The use of sodium hypochlorite (bleach baths) has been a

common practice in dermatology to treat AD (48). Similar to AK

and cSCC, patients with AD experience an increase in S. aureus

colonization on the skin associated with increased disease severity and

disease exacerbations, and with reduction of commensals such as

Streptococcus, Cutibacterium, and Corynebacterium during flare ups

(49). Bleach typically exhibits an effect through non-specific

antimicrobial action and is also able to reduce inflammation

through inhibition of MAPK and NF-kB signaling (50). The

reported effectiveness of bleach baths has been variable, particularly

with respect to the reduction of S. aureus, likely reflecting variability

in the skin microbiome (50–52). Kong et al. found that intermittent

bleach treatment significantly reduced S. aureus allowing expansion

of other bacterial populations and thereby increasing the overall

diversity of the skin microbiome (52). Huang et al. found that

bleach baths in combination with intranasal mupirocin decreased

the S. aureus load, and was associated with an improved clinical

condition of infection-prone AD patients, as assessed by eczema area

and severity index scores (44). However, they also noted that bleach

baths did not eradicate S. aureus. By contrast, no statistical difference

was found between the use of 0.01% bleach baths and water baths

with respect to barrier dysfunction, irritation, erythema,

transepidermal water loss and pH in both healthy and AD patients

(48). Sawada et al. found that bleach baths were only bactericidal at

concentrations >0.03%, however this concentration is cytotoxic to
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human cells and is not clinically recommended (26). Thus, the use of

bleach baths at the recommended concentration is safe but clinical

outcomes and particularly the effect on S. aureus are uncertain.
Phage therapy

Phage therapy is a century old method used for the treatment of

bacterial infection as an alternative to antibiotics (53). Phages are

non-living biological entities that are classed as viruses that inject

their genetic material into bacterial cells with high host specificity.

This can result in the hijacking of the bacterial replication apparatus

to produce phage progeny, ultimately resulting in the destruction of

the host cell (53). With the rise of antimicrobial resistance, there has

been a renewed interest in phage therapy. Phage treatments in

experimental mouse infections have demonstrated efficacy and

viability for several Gram-negative bacterial infections, including

Acinetobacter baumanii, Pseudomonas aeruginosa, and Vibrio

vulnificus (54, 55). A study by Capparelli et al. found that the

administration of S. aureus-targeting phage to mice presented with

a lethal dose of S. aureus had a 97% rescue rate, and the pathogen was

completely eradicated after 4 days of treatment (56). Recently,

Shimamori and colleagues demonstrated that a phage isolated from

a sewage treatment plant (SaGU1) selectively targeted S. aureus and

not S. epidermidis isolated from the skin of AD patients (57), which is

important as the latter is usually considered part of a healthy skin

microbiome (see below). However, the authors found that S. aureus

developed resistance to SaGU1 between 14-24 hours post-inoculation

and increasing the concentration of SaGU1 did not decrease the rate

of resistance. Interestingly, when combining phage treatment with the

secretome of S. epidermidis, the S. aureus did not regrow, indicating

the effectiveness of S. epidermidis in combination with phage

technology in controlling S. aureus colonization (57). However,

phage therapy also has several disadvantages, including phages

translocating into the blood through the intestinal epithelium when

administered orally, which could negatively impact clinical outcome

(58). It has also been suggested that phage therapy can induce

intestinal barrier dysfunction known as ‘leaky gut syndrome’, which

can have serious implications for disorders such as Crohn’s disease,

inflammatory bowel disease, and type 1 diabetes (53, 59). This

suggests that phage therapy is a potentially viable treatment for S.

aureus eradication on AK when used in combination with probiotic

strains with the additional benefit of not contributing to antimicrobial

resistance. An unmet challenge is the provision of standard defined

phage preparations, particularly if these are to be used as a

regulated therapy.
Topical probiotics as a potential non-
invasive treatment for skin diseases

Alteration of the AK and cSCC microbiome via the application of

topical probiotics has not previously been attempted. However, there

are a number of studies relating to topical probiotics for skin diseases

such as AD, acne and eczema that are also characterized by

Staphylococcus colonization (60). Benefits to local application of
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microbiota, secretion of metabolites, reduction of skin pH, and

formation of a barrier or a biofilm to protect the skin from foreign

invaders (60). A study conducted by Khmaladze and colleagues

applied a topical live probiotic ointment containing Lactobacillus

reuteri to ex vivo skin models and examined the effect of L. reuteri on

inflammation caused by UV-B radiation (Table 1) (61). The authors

found that the probiotic application reduced inflammation through

reduction of proinflammatory IL-6 and IL-8, whilst also displaying

antimicrobial activity against S. aureus, among other pathogenic

strains. However, Lactobacillus strains are sensitive and susceptible

to environmental perturbations, particularly heat, and therefore

would not have sustainable shelf life. A study conducted by

Nakatsuji et al. investigated the variability in coagulase-negative

Staphylococcus (CoNS) showing antimicrobial activity against S.

aureus in AD patients and healthy patients, and found that AD

patients rarely possess CoNS with antimicrobial activity (62). The

authors identified that two CoNS strains, S. epidermidis and S.

hominis, produced strong and selective antimicrobial peptides

against S. aureus (Table 1). The authors isolated three S. hominis

and two S. epidermidis strains from two of five AD subjects, which

were formulated into a cream that was applied to AD patients. S.

aureus abundance on the skin was measured before application, and

24 hours post-application. S. aureus was significantly decreased

compared to control cream and untreated patients, demonstrating

the potential of using topical probiotics to decrease S. aureus

colonization on the skin. This research indicates that topical

probiotics could be advantageous for modulating the AK

microbiome, where a particular strain may competitively exclude a

harmful pathogen, whilst allowing beneficial and commensal bacteria

to recolonize the area.
Staphylococcus epidermidis

S. epidermidis is one of the most common human skin colonizers,

and is typically a commensal species in the healthy population that

has important functionality for maintaining the skin barrier and

integrity (63) (Table 1). Nakatsuji et al. found that certain strains of S.

epidermidis produce a molecule known as 6-HAP, which in vitro can

selectively inhibit proliferation of tumor lines (64). Additionally, it

was found that mice colonized with 6-HAP producing strains had

reduced incidence of UV-induced tumors compared to non-6-HAP

producing strains. Another potentially important mechanism by

which S. epidermidis may be able to prevent or reduce S. aureus

colonization is via the protein factor serine protease Esp (65–67). S.

epidermidis strains containing Esp have been shown to degrade 75 S.

aureus proteins, 11 of which are needed for biofilm formation and

colonization (68). This reduces the viability and pathogenic capability

of S. aureus, whilst leaving the human host unharmed due to the

commensal nature of S. epidermidis. However, S. epidermidis can be

an opportunistic pathogen and cause nosocomial infections from

medical devices, particularly in immunocompromised patients (69,

70). Some strains of S. epidermidis also possess antimicrobial

resistance genes. Therefore it is imperative to evaluate potential

strains of S. epidermidis to ensure transfer of these resistance genes
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does not occur (70). Thus, further experimental investigations on

utilizing S. epidermidis as a topical probiotic for the treatment of AK

and cSCC lesions are warranted.
Corynebacterium striatum

Corynebacterium striatum is another commensal bacterium

residing on the human skin and on mucosal membranes (Table 1).

A study published by Ramsey et al. investigated the relationship

between Corynebacterium striatum and S. aureus, and found that C.

striatum modulated the behavior of S. aureus to exhibit commensal

rather than pathogenic behavior (71). The analysis revealed that the

transcriptome of S. aureus changed dramatically, including decreased

expression of the accessory gene regulator (agr) quorum sensing

system that controls a plethora of virulence factors (71, 72). S. aureus

also displayed decreased hemolysin activity indicating a reduction in

virulence factors, and increased epithelial cell adhesion indicating a

commensal state. This could lead to potential treatment options for

AKs and cSCCs due to the pathogenic nature of S. aureus that has

been implicated with the disease. Modulation of the microbial

community by means of bacterial behavioral changes rather than

bacterial eradication could lead to better patient outcomes

cosmetically and functionally due to a sustained healthy skin

microbiome physiology.
Cutibacterium acnes

A commensal species, Cutibacterium acnes, is a regular skin

colonizer that has demonstrated both beneficial effects and

opportunistic pathogenic effects on human skin (73) (Table 1). It

encompasses 90% of the skin microbiome in predominantly oily areas

such as the face and back (74). C. acnes has a variety of roles in

maintenance of skin homeostasis, including the degradation of long

chain fatty acids in sebum to short-chain fatty acids such as propionic

acid, which acts as a natural antimicrobial agent on the skin as well as
Frontiers in Oncology 06
modulating skin pH (74). In terms of the pathogenic effects, C. acnes

has demonstrated increased abundance on swabs of acne vulgaris and

is thought to play a pro-inflammatory role as it is able to form

biofilms and change the composition of sebum (74, 75). Whilst not

the focus of this review, acne vulgaris is the most frequent diagnosis of

skin disease in patients aged 5–44 years, and is an uncommon

diagnosis in elderly populations due to the change in the nature of

the skin (76). As AK and cSCC are most commonly diagnosed in the

elderly population, it is unlikely that a C. acnes-based topical probiotic

would result in acne vulgaris, however this would need to be

investigated further. However, when investigating AD, a lack of C.

acnes, and its inverse relationship with S. aureus, has been identified

as a potential contributor to AD pathogenicity, as it has been

suggested that patients with AD are deficient in the antimicrobial

peptides produced by skin cells (62, 77). C. acnes demonstrates a high

level of antioxidant activity due to the production of the Radical

oxygenase of Propionibacterium acnes (RoxP), which appears to be a

common property of this species (78). Of particular interest is the

relationship between RoxP, UV radiation and cSCC, as RoxP has been

shown to protect skin cells against UV radiation by preventing free

radical generation (73, 79). A study conducted by Andersson and

colleagues studied protein abundance on AKs and found that the

concentration of RoxP and C. acnes was significantly lower on AK

compared to healthy skin (73). The use of bacteria that produce a

potent antioxidant would be highly beneficial in AK and early cSCC

treatment as it could provide ongoing protection against UV-A/B

radiation, as well as neutralizing free radicals and thereby decreasing

the overall cellular damage.
Conclusion and future directions

There is mounting evidence that the progression of UV damaged

skin to AK and cSCC is multifactorial. Well recognized factors

include UV-A/B radiation and mutational burden associated with

age, immune competency, and environmental factors. The role of

pathogenic bacteria, specifically S. aureus, and microbial dysbiosis in
TABLE 1 Advantages and disadvantages of bacterial species for use as topical probiotics.

Advantages Disadvantages

Staphylococci-specific
antibiotics

Elimination of S. aureus on the skin - Can procure antimicrobial resistance
- Allows recolonization of other potential pathogens
- Eliminates other Staphylococcal species

Lactobacillus reuteri - Decreases inflammation (IL-6 and IL-8)
- Antimicrobial activity against S. aureus

- Low shelf life and specific storage conditions
- Heat sensitive

Staphylococcus hominis - Produces antimicrobial peptides that selectively kill S. aureus - Potential pathogen
- Can cause body odor

Staphylococcus epidermidis - Common skin colonizer
- Generation of 6-HAP
- Generation of Esp that inhibits S. aureus biofilm formation

- Opportunistic pathogen in immunocompromised patients
- 6-HAP generation is a rare gene not commonly isolated from S.
epidermidis

Corynebacterium striatum - Decreases agr quorum sensing system
- Decreases hemolytic activity
- Decreases epithelial cell adhesion

- Does not eliminate S. aureus

Cutibacterium acnes - Generation of RoxP resulting in protection of skin against UV-induced
free radicals
- Common skin colonizer

- Overabundance of C. acnes on the face and back can cause acne
vulgaris
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this progression is under active investigation. Although the

relationship between S. aureus and common skin conditions have

been reported in the literature, the effect of S. aureus on AK

progression to cSCC are not yet fully established. However, recent

studies have demonstrated that S. aureus-derived toxins can induce

tumor-promoting cytokines and reactive oxygen species.

While future studies are needed to determine the magnitude of

contribution of microbial dysbiosis to AK and cSCC development, the

ability to change the microbial profile by means of restoring a healthy

skin microbiome and eliminating pathogenic bacteria, specifically S.

aureus, has the potential to change the way that premalignancies are

treated, and could also lead to new treatment methods for cSCC.

While there will be challenges in preparing standardized bacterial

products to use as therapy in research studies, the hypothesis that a

healthy immune-supportive microbial community stabilized on AKs

and cSCCs may result in improved patient outcomes and lower the

rate of disease progression is warranted.
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