
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Claudia Fumarola,
University of Parma, Italy

REVIEWED BY

Rossella Rota,
Bambino Gesù Children’s Hospital (IRCCS),
Italy
Michele Bernasconi,
University Children’s Hospital Bern,
Switzerland

*CORRESPONDENCE

Lorenzo D’Ambrosio

lorenzo.dambrosio@unito.it

†These authors share last authorship

SPECIALTY SECTION

This article was submitted to
Pharmacology of Anti-Cancer Drugs,
a section of the journal
Frontiers in Oncology

RECEIVED 10 November 2022

ACCEPTED 03 January 2023

PUBLISHED 19 January 2023

CITATION

Merlini A, Pavese V, Manessi G, Rabino M,
Tolomeo F, Aliberti S, D’Ambrosio L and
Grignani G (2023) Targeting cyclin-
dependent kinases in sarcoma treatment:
Current perspectives and future directions.
Front. Oncol. 13:1095219.
doi: 10.3389/fonc.2023.1095219

COPYRIGHT

© 2023 Merlini, Pavese, Manessi, Rabino,
Tolomeo, Aliberti, D’Ambrosio and Grignani.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 19 January 2023

DOI 10.3389/fonc.2023.1095219
Targeting cyclin-dependent
kinases in sarcoma treatment:
Current perspectives and
future directions

Alessandra Merlini1,2, Valeria Pavese2, Giulia Manessi2,
Martina Rabino2, Francesco Tolomeo1, Sandra Aliberti 1,
Lorenzo D’Ambrosio2,3*† and Giovanni Grignani1†

1Candiolo Cancer Institute, IRCCS-FPO, Turin, Italy, 2Department of Oncology, University of Turin,
Turin, Italy, 3Medical Oncology, Azienda Ospedaliera Universitaria San Luigi Gonzaga, Turin, Italy
Effective treatment of advanced/metastatic bone and soft tissue sarcomas still

represents an unmet medical need. Recent advances in targeted therapies have

highlighted the potential of cyclin-dependent kinases (CDK) inhibitors in several

cancer types, including sarcomas. CDKs are master regulators of the cell cycle;

their dysregulation is listed among the “hallmarks of cancer” and sarcomas are no

exception to the rule. In this review, we report both the molecular basis, and the

potential therapeutic implications for the use of CDK inhibitors in sarcoma

treatment. What is more, we describe and discuss the possibility and biological

rationale for combination therapies with conventional treatments, target therapy

and immunotherapy, highlighting potential avenues for future research to

integrate CDK inhibition in sarcoma treatment.
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1 Introduction

Sarcomas are a heterogeneous group of rare, mesenchymal malignancies that add up to

1% of all adult cancers and 20% of pediatric cancers (1). The sarcoma family encompasses

more than 100 histological subtypes, comprising bone sarcomas and soft tissue sarcomas

(BSTS) (2). Standard treatment entails radical surgical resection with (neo)adjuvant radiation

therapy and/or chemotherapy in high-risk patients for localized disease, and systemic

chemotherapeutic treatment in advanced stages (3). However, prognosis in advanced/

metastatic stages remains dismal for the vast majority of sarcoma patients (3, 4). Hence,

finding novel, effective treatment strategies for advanced BSTS represents an unmet medical

need. Indeed, differently from epithelial cancers, mesenchymal tumors have seldom

benefitted from the advent of innovative therapeutic strategies, from targeted therapy to

immunotherapy (5, 6). Both the rarity of sarcomas, and the variety of their molecular

determinants (7, 8), have represented major challenges for the development of effective,
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innovative therapeutic strategies in the field in past years. One of the

first actionable molecular alterations discovered in sarcomas has been

the amplification of the chromosomal region encoding the murine

double minute 2 (MDM2) and cyclin dependent kinase 4 (CDK4)

genes in a subset of liposarcomas (well-differentiated and

dedifferentiated liposarcomas; WDLPS and DDLPS) (9, 10).

However, until recent years, the possibility to safely target master

regulators of the cell cycle as MDM2 and CDK4 appeared difficult to

translate in the clinical setting, for their potential off-tumor side

effects in healthy tissues (11, 12). Targeting CDK4 seemed particularly

attractive for WDLPS and DDLPS, in which it has a specific clinical

and biological significance, with respect to MDM2 amplified-only

liposarcomas. Indeed, CDK4-amplified WDLPS and DDLPS have

been associated with worse prognosis with respect to those lacking

CDK4 amplification (13). However, the CDK family is involved not

only in WDLPS and DDLPS pathobiology, but in many different

sarcoma types across BSTS (14). The comprehensive genomic analysis

via The Cancer Genome Atlas (TCGA) has shown that approximately

one quarter of all sarcomas harbor genetic alterations in the Cyclin-

Dependent Kinase Inhibitor 2A (CDKN2A) - Cyclin D (CCND) -

CDK4 - retinoblastoma (RB) axis (15, 16), providing strong rationale

for targeting this crucial pathway in sarcomas. Hence, better

understanding of the role of CDKs in cell biology and cancer,

might provide novel avenues of treatment for advanced BSTS (14, 17).
2 CDKs in physiology and cancer

The cell cycle is divided into four distinct phases: a first growth

phase (G1), a DNA replication or synthesis phase (S), a second

growth phase (G2) and the mitotic phase (M). Cyclin-dependent

kinases (CDKs) are members of the serine/threonine protein kinase

family; as master regulators of cell cycle control, transcription, and

RNA splicing, they are essential for tumor cell proliferation and

growth. CDKs do not possess autonomous enzymatic activity and

need to be bound to a cyclin subunit to function properly, hence their

designation as cyclin-dependent kinases (18). Moreover, a few CDK

family members play an important role in RNA transcription and

pre-messenger RNA (mRNA) splicing.

The activity of CDKs is respectively up and down regulated by

their cyclin partners and cyclin-dependent kinase inhibitors (CKIs).

CDKs can phosphorylate the tumor suppressor protein

retinoblastoma (Rb). This activity blocks the growth-inhibitory

function of Rb: indeed, phospho-Rb (pRb) releases its grip,

previously blocking the transactivation domain of the E2F

transcription factors, allowing the transcription of genes which are

crucial for cell cycle progression to the S-phase (19). In detail, cyclin

D-CDK4/6 kinase complexes phosphorylate multiple Rb tumor

suppressor protein residues (or its homologs, p107 and p130). As

abovementioned, in its hypo-phosphorylated state, Rb actively

suppresses G1-S progression by sequestering E2F transcription

factors, which transcribe genes needed for DNA replication (20).

The human genome encodes 20 CDKs, divided into two

subfamilies: cell cycle-associated CDKs (CDK1−7 and CDK14−18)

and transcription-associated CDKs (CDK7−13, 19, and 20). Different

CDKs interact with different cyclins to regulate numerous stages of

the cell cycle in various cells or to perform other functions. CDK1 is
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the ancestor of all mitotic kinases; CDK2, CDK4, and CDK6 regulate

progression through cell cycle phases. CDK7, instead, is peculiar in

that it has been implicated in both transcription processes and cell

cycle control (21). CDK8 and CDK9 control the RNA polymerase II

(RNA Pol II)-dependent initiation and elongation of transcription

(22). Other CDKs (5, 10, 11, 14–18, and 20) do not fit into either

canonical roles, exhibiting different functions, often in a tissue-

specific fashion. For example, CDK11 has multiple functions in

mediating apoptosis, transcription, mitosis, hormone receptor

signaling, and autophagy (23, 24). Likewise, CDK5 promotes

neuron outgrowth and synaptogenesis in the nervous system, while

in pancreatic b cells it reduces insulin secretion (25). As CDKs master

fundamental processes required for cell survival and propagation,

their hyperactivation (typically through mutation, gene amplification,

or altered expression of their regulators) is frequently reported

in cancer.

Until a few years ago, CKIs were also classified in two families of

cell cycle inhibitors: the CDK family interacting with the CIP/KIP

protein and the kinase inhibitor (INK) family. CIP/KIP family

members are specific for CDK-cyclin complexes, such as CDK2-

cyclin E, A and/or CDK1-cyclin B1, A and/or CDK2,4,6-cyclin D1,

D2, D3. Members of the INK family bind CDK4,6 to inhibit

formation of CDK4,6-cyclin D1, D2, D3 complexes (26, 27).

3 Partners in life, partners in crime: Key
players in cell cycle function and
dysregulation beyond CDKs

More recently, additional important regulatory proteins and

mechanisms involved in cell cycle control have been discovered,

such as members of CDK regulatory subunit (CKS) protein family

and new cell cycle regulators. A recent addition to the family is the

double homeobox 4 (DUX4) protein, which is of specific interest for

sarcoma pathobiology. DUX4 is a transcription factor physiologically

expressed during early embryonic development, and it is silenced by

epigenetic pathways in most adult somatic cells. Studies revealed that

DUX4 binds to CDK1, preventing the formation of CDK1-cyclin B1

complex, thus limiting its kinase activity (28). Aberrant expression of

DUX4 in skeletal muscle leads to facioscapulohumeral dystrophy (26,

29). DUX4 rearrangements have been identified in specific types of

pediatric B cell acute lymphoblastic leukemia (30, 31), in small round

cell bone and soft tissue sarcomas – the so-called CIC-DUX4

rearranged family of sarcomas (32, 33), and rhabdomyosarcoma (34).

The dysregulation of CDK activity through activation of pathways

enhancing CDK activity, or through the oncogene-induced

inactivation of apoptosis, is a common occurrence in various

cancers (35). Identifying and characterizing which cancer types

require selected CDK activities for proliferation and survival, might

enable to understand which subtypes could benefit more from specific

CDK inhibitors (CDKi). However, weighing the importance of each

CDK activity to cancer initiation, proliferation and progression is no

trivial task, given the individual, multiple roles of each CDK and

cyclin beyond cell cycle control (36).

In cancer, CDKs affect multiple targets and phosphorylate

relevant transcription factors involved in tumorigenesis. What is

more, their pathway can be altered at different stages in various
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cancer subtypes; even within the same cancer type (and, most

importantly, within the same patient), multiple CDK pathway

alterations can co-exist and, in some cases, provide escape/

resistance to CDK inhibition. Moreover, resistance almost

invariably ensues with targeted treatments in cancer, due to both

intratumor heterogeneity and tumor evolutionary dynamics, and

CDKi treatment is no exception to the rule. The emergence of

somatic RB mutations has been identified in the clinic as a relevant

resistance mechanism in breast cancer patients treated with CDKi

(37); RB mutation/deletion is a frequent event in sarcomas, with deep

deletions detected in a significant proportion of STS in the TCGA

sarcoma cohort (16).

Another commonly deleted key tumor suppressor gene is Cyclin

Dependent Kinase Inhibitor 2A (CDKN2A). CDKN2A encodes two

important cell cycle regulatory proteins, p16 (encoded by the INK4A

gene) and, in an alternative reading frame, p14 (encoded by the

Alternative Reading Frame – ARF - gene). CDKN2A deletions and

inactivating mutations seem to have a negative prognostic role across

different tumor types, including sarcomas (38–42). p16, a CDK inhibitor,

inhibits Rb phosphorylation, while p14 inhibits MDM2, resulting in a

positive regulation of p53. p16 expression increases gradually to a

sustained, significantly high level in the later stages of cellular senescence.

Indeed, in murine cells, p19/p53 pathway inactivation is generally

sufficient to escape senescence, while in human cells disruption of at

least both the p53/p21 and the p16/pRb pathways is usually needed.

Homozygous deletion of CDKN2A/ARF thus results in inactivation

of two major tumor suppressing pathways, mainly acting through Rb

and p53 (43).

Hence, a plethora of alterations beyond CDK4/6 genes emerges as

highly relevant for sarcoma pathobiology, providing several potential

actionable targets at various steps of the CDKN2A-CCND-CDK4-RB

axis. Understanding which sarcoma subtypes are most affected by

specific alterations in this axis, has provided the rational basis to select

those sarcomas which could benefit more from CDK inhibition

(14) (Figure 1).
4 Actionable targets in CDK signaling
across different sarcoma subtypes

Despite the diversity in histotypes, age at presentation, risk of

recurrence and prognosis, the most frequently altered genes in

sarcomas precisely include genes involved in cell cycle regulation,

namely TP53, CDKN2A, RB (44–46). Surprisingly, the only gene

whose alterations were associated with worse overall survival across

all types of STS was CDKN2A (39). These results confirm the biological

importance of the p16INK4a-CDK4/6-pRb pathway and/or ARF

signaling pathways in sarcoma (39). Indeed, pinpointing histotype-

specific alterations might help to dissect the most appropriate

therapeutic challenges and opportunities for each sarcoma subtype.
4.1 Undifferentiated pleomorphic sarcoma

UPS accounts for 15–20% of all STS. Typically, it occurs in the

limbs and trunk of adults >40 years of age (47). The development of

most UPS is sporadic, but approximately 3% of UPS develop in areas of
Frontiers in Oncology 03
the body that received radiation therapy to treat an unrelated disease

after a median latency of 10 years, and are consequently classified as

secondary (or, more appropriately, radiation-induced) UPS (48). The

standard of care for patients with localized UPS is surgical resection

with (neo)adjuvant chemo/radiotherapy in selected cases; for patients

with unresectable or metastatic disease, systemic chemotherapy and/or

radiotherapy may be considered with low to moderate response rates in

patients with UPS. Remarkably, UPS are also among the most

represented sarcoma histotypes with CDKN2A loss (39). About 30%

of UPS show MDM2 and CDK4 up-regulation; MDM2 ubiquitinates

the tumor suppressor p53 and promotes its proteasomal degradation,

while MDM2 overexpression leads to downregulation of the CKI p21.

P21 is a transcriptional target of p53, and its downregulation causes

hyperactivation of CDKs (49). Up to 78% of UPS tumors carry RB gene

deletions, due to losses of different regions within the long arm of

chromosome 13 (8). TP53 is also very frequently deleted in UPS, and

together with RB and ATRX, is among the few genes recurrently

showing pathogenic missense mutations in UPS (16). Intriguingly, S

phase kinase-associated protein 2 (Skp2) is required for survival of RB-

and TP53-deficient UPS cells, in which it drives cell proliferation by

degrading p21 and p27. Hence, the loss of both RB and TP53 renders

UPS dependent on Skp2, which could provide the basis for innovative

therapeutic strategies in this setting (50). However, there are no

experimental studies ongoing or published so far, about the potential

of CKIs in UPS patients.
4.2 Liposarcoma

Liposarcomas (LPS) account for a significant proportion (~13–

20%) of adult STS (13-20%). LPS are subcategorized into three main

groups, including WDLPS/DDLPS, characterized by a typical MDM2

and high-mobility group AT-hook 2 (HMGA2) gene amplification

and an inconsistent CDK4 gene amplification (the 12q amplicon can

span chromosomal regions from 12q12 up to 12q21); myxoid/round

cell liposarcoma (M/RCLPS), carrying a typical t (12, 16)(q13;p111)

translocation, and pleomorphic liposarcoma (PLPS), frequently

showing TP53 and/or RB gene losses. Roughly 60% of LPS cases

are WD/DDLPS, while PLPS is the rarest subtype (~5%). In WDLPS/

DDLPS, the CDK4 gene (12q14.1) is within a distinct, inconsistent

amplicon that is not present in about 10% of WDLPS/DDLPS (51),

and its presence has been associated with a worse prognostic outcome

(13). Moreover, patients carrying both gene amplifications (MDM2

and CDK4) have a much higher risk of local recurrence after surgery.

The WDLPS/DDLPS genetic signature shows a complex pattern of

expression for Cyclin D1, P16INK4a, P14ARF, and RB which is not

dependent on CDK4 status. Finally, alterations in CDKN2A/

CDKN2B/CDK4/CCND2 axis have been detected in almost all

CDK4 amplification-negative WDLPS/DDLPS in a cohort of 104

WDLPS/DDLPS patients (52).
4.3 Malignant peripheral nerve
sheath tumors

Malignant peripheral nerve sheath tumors (MPNSTs) add up to

3-10% of all STS diagnoses. They can arise sporadically or in patients
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affected by neurofibromatosis type I (NF1). MPNSTs are very

aggressive and the first cause of oncological death in patients

affected by NF1. In those tumors, CDK2 and CDK 4/6 are

overexpressed because of the loss of p16 and p27. This causes

constant pRb phosphorylation, fostering cell cycle progression (53).

Remarkably, up to 80% of MPNST show CDKN2A loss (54). This

leads to the upregulation of CDK4/6 and sequentially the initiation of

the S phase and promotion of mitosis. Hence, CDK4/6 inhibitors

(CKIs) hold promise as a potential innovative treatment for advanced

MPNST (55).
4.4 Synovial sarcoma

Synovial sarcoma typically arises in young adults, and is

characterized by a typical translocation between chromosome X

and chromosome 18 t(X,18;p11,q11), which generates a fusion

between SS18 and SSX1/2 or SSX4, disrupting epigenetic regulation

within the cancer cell (56, 57). CDKN2A deletion is a highly frequent

event in synovial sarcomas (58); moreover, the translocation

facilitates repression of CDKN2A activity (59) and increases the

expression of CDK4 as well as multiple cyclins (D1, B1, A2, I, and

F) (60).
4.5 Other soft tissue sarcomas

Leiomyosarcoma (LMS) accounts for 10-20% of all STS, and can

arise at any body site. LMS is characterized by spindle-shaped cells

resembling smooth muscle cells and are grouped among the so-called

“complex karyotype” STS, as they are not driven by a single
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multiple, various genetic abnormalities. Common genetic alterations

include PTEN deletion and/or mutation, TP53 mutations and,

importantly, RB loss (16, 61–63). One striking, recent finding is the

high frequency of biallelic inactivation of the above mentioned by

various mechanisms, in the vast majority of LMS samples analyzed in

the study by Chudasama P. and colleagues (61). Rb inactivation casts

some doubt on the clinical utility of CDK inhibition, as Rb

inactivation affects the CDK pathway downstream of CDKs,

presenting a potential mechanism of both primary and secondary

resistance to CDKi in LMS, similarly to Rb-mediated resistance

mechanisms in CDK-treated breast cancer patients (37).

Intimal sarcomas (INS) are rare STS which can be particularly

aggressive also because of their site of origin, most frequently affecting

the wall of large vessels or the heart (64–66). INS are characterized by

the peculiar presence of large gains/amplifications in the 12q12-15

chromosomal region, encompassing MDM2 and/or CDK4. CDKN2A

deletions are also very frequent in INS (65). Taken together, these

recent molecular findings might provide the rationale for trials with

CDKi in this set of STS patients burdened by very poor

prognosis (67).

Rhabdomyosarcoma (RMS) is the most common STS in children

and adolescents; alveolar rhabdomyosarcomas (ARMS) are

characterized by either PAX3-FOXO1 or PAX7-FOXO1 fusion

genes; ARMS with the former fusion most often carry additional

12q13-q14 amplifications, therefore including the CDK4 gene, which

has been correlated with poor survival outcomes (68).

Disappointingly, in fusion-positive RMS, CDK4 amplification has

not been linked to increased sensitivity to CDKi, but, rather

counterintuitively, to the opposite condition (resistance to CDKi),

at least in in vitro studies (69).
FIGURE 1

Key players in cell cycle dysregulation in STS. CDK, Cyclins, CKI, and other key molecular players in CDK activity/inhibition. Clockwise, starting from G1 to
S phase progression: CDKN2A is transcribed by alternative splicing either into p16 or p14, which respectively inhibit CDK4/6/Cyclin D complexes and
MDM2 activity. MDM2, an ubiquitin ligase, ubiquitinates p53 targeting it to the proteasome; p53 has p21 as a direct transcriptional target, and p21 in turn
inhibits CDK2/Cyclin E complexes. Cyclin E expression is regulated by E2F transcription factor, which in turn is released from Rb protein grip (usually
blocking its transactivation domain) when CDK4/6/Cyclin D complexes phosphorylate Rb, facilitating G1 to S phase progression. The ubiquitin ligase
Skp2 targets p21 and p27 for proteasomal degradation, thus promoting CDK2/Cyclin E, CDK2/Cyclin A activity in S phase progression, CDK1/Cyclin A
activity for G2 to M transition, which is also fostered by releasing p21 inhibitory activity on CDK1/Cyclin B; DUX4 can also bind CDK1, thus preventing
CDK1/Cyclin B interaction. MDM2 activity can also be inhibited with MDM2 inhibitors (MDM2i), while CDK inhibitors (CDKi) currently in use in clinical
practice are mainly CDK4/6 inhibitors. MDM2i and CDKi are highlighted in bold (red) in Figure 1. Created with BioRender.com
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4.6 Bone sarcomas

Osteosarcomas (OS) represent the most common primary

malignant tumors of bone. They can arise at any skeletal site, but

they more frequently develop in the long bones of the extremities. OS

has a bimodal age distribution (adolescents between 14-18 years and

older adults, > 40 years old) and, even though it is sensitive to

chemotherapy, prognosis in advanced stages remains dismal (2, 70).

Intriguingly, TP53 is inactivated in >90% of OS, contributing to cell

cycle dysregulation; RB1 is also among genes most frequently mutated

in OS (>50%) (71). Indeed, individuals affected by Li-Fraumeni and

hereditary retinoblastoma syndromes have an increased risk of

developing OS (72). Other genes commonly altered in OS and

involved in cell cycle regulation include CDK4, MDM2, PTEN,

CDKN2A, CCND3, and CCNE1 (14, 49, 73). The clinical utility of

CDKi in OS has not yet been tested in dedicated clinical trials, but

advanced osteosarcoma patients with CDK4 overexpression could be

included in the phase II PalboSarc trial with the CDKi palbociclib

(NCT03242382) (14).
5 Targeting CDKs in cancer

The history and success of CDKi in cancer have now come a long

way, with more than 25 years of preclinical and clinical development

(74). The first generation of CDKi was constituted by pan-CDKi (e.g.

flavopiridol, olomucine, roscovitine) (75, 76), which were designed to

halt cell cycle and cell proliferation by inhibiting CDK enzymatic

activity. This first generation of pan-CDKi had limited selectivity and

was burdened by high toxicity in normal cells, preventing their

clinical development. For these reasons, almost all first generation

CDKi failed to meet their endpoints in early-stage clinical trials (77,

78). Second-generation CDKi (e.g. dinaciclib, CYC065) have been

developed with greater selectivity and fewer side effects (79). Finally,

third-generation, selective CDK4/6 inhibitors were the first CDKi

which received FDA approval in March 2017, for the treatment of

postmenopausal women with hormone receptor (HR)-positive

metastatic breast cancer, in combination with an aromatase

inhibitor as initial endocrine-based therapy.

Currently, the three FDA- and EMA-approved CDK4/6

inhibitors are palbociclib, ribociclib and abemaciclib. While

palbociclib is equally active against CDK4 and CDK6, ribociclib

and abemaciclib show higher efficacy in CDK4 inhibition (80).

Indeed, all these approved compounds act by inhibiting Rb

phosphorylation, thus blocking cell cycle progression from G1 to S

phase. However, their action extends beyond simple enzymatic

inhibition, with likely direct effects on cell metabolism, senescence,

and possibly immune modulation (81, 82).
5.1 Anti-CDK targeted therapy in
sarcomas: Ongoing clinical trials
and future perspectives

Sarcomas have been included in clinical studies on CDKi since

early phase I trials; however, only very few CDKi trials enrolled
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association with doxorubicin (14, 75). Among these, two studies are of

peculiar interest. In particular, the study “PD0332991 (Palbociclib) in

Patients with Advanced or Metastatic Liposarcoma”, NCT01209598,

demonstrated a favorable progression free survival (PFS) in a mixed

WDLPS/DDLPS patient cohort, which included advanced/metastatic

WDLPS/DDLPS patients who had received at least one line of

systemic treatment (patients previously untreated for systemic

disease were allowed to join the expansion cohort) (83). Another

study, NCT02846987, still active although closed to enrollment, has

investigated the role of abemaciclib monotherapy in advanced

DDLPS, assuming that this novel, more potent CDK inhibitor

might achieve better results in the sarcoma population. So far, the

study has met its primary endpoint (12-week PFS ≥ 60%) and final

results are awaited (84).

One highly attractive combination treatment opportunity in

WDLPS/DDLPS is represented by the possibility to combine novel

MDM2 inhibitors (85, 86) with CDKi. Preclinical studies

demonstrated both evidence of synergism (87), and efficacy of

MDM2 inhibitors in overcoming resistance to CDK4/6 inhibitors

(88). However, the significant risk of unacceptable combined

toxici t ies of MDM2 and CDK4 inhibitors - especial ly

myelosuppression - casts some doubt over the clinical applicability

of their combination.

Concerning other possible targeted treatment combinations, one

interesting opportunity could be the association of CDKi with PI3K

inhibitors. Indeed, PTEN downregulation and AKT increased

phosphorylation were shown to be associated with increased

CDK2/cyclin E2 expression in breast cancer cell lines resistant to

CDKi, rendering PI3K inhibitors (capable of downregulating cyclin

E2) an attractive partner to overcome resistance to CDKi (89).

Finally, studies on the association (combination/sequence) of

CDKi with immunotherapy are currently ongoing in many cancer

types, including sarcomas (e.g. study NCT04438824, listed in

Table 1). Indeed, CDKi seem to have a relevant immune-priming

effect (81). Preliminary data are not available yet for BSTS, but similar

studies in breast cancer with combination of palbociclib,

pembrolizumab and letrozole have yielded promising results (90).

In Table 1, a list of ongoing, actively recruiting clinical trials with

CDKi (alone as monotherapy, or in combination) in BSTS

is provided.
6 Conclusions

The presence of molecular alterations affecting the CDKN2A-

CDK4-CCND1-RB axis is an important opportunity for innovative

targeted treatments for patients with BSTS, typically burdened by

dismal prognosis in advanced/metastatic stages. Knowledge of the

fine-tuning of these pathways across different sarcoma subtypes is

instrumental to develop rationally-based clinical trial proposals in this

setting. Indeed, presence of multiple alterations in different steps of

cell cycle regulation might provide primary/secondary resistance

mechanisms to CDK inhibition; moreover, when present, CDK4

amplification is the main oncogenic driver of only a subset of

CDK4-amplified sarcomas. Hence, thorough understanding of the
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TABLE 1 Ongoing clinical trials with CDKi in BSTS (source: www.clinicaltrials.gov, accessed on October 20th, 2022).

ClinicalTrials.gov
identifier

Study Title Status Interventions Study
Type,
Phase

NCT03242382 Trial of Palbociclib in Second Line of Advanced Sarcomas with CDK4 Overexpression. Recruiting • Drug: Palbociclib Study Type:
Interventional
Phase: Phase
II

NCT04040205 Abemaciclib for Bone and Soft Tissue Sarcoma with Cyclin- Dependent Kinase (CDK)
Pathway Alteration

Recruiting • Drug: Abemaciclib Study Type:
Interventional
Phase: Phase
II

NCT03604783 Phase 1, First-in-human Study of Oral TP-1287 in Patients with Advanced Solid
Tumors

Recruiting • Drug: TP-1287 Study Type:
Interventional
Phase: Phase
I

NCT05159518 A Study of PRT2527 in Patients with Advanced Solid Tumors Recruiting • Drug: PRT2527 Study Type:
Interventional
Phase: Phase
I

NCT04941274 Abemaciclib in Patients With HIV-associated and HIV-negative Kaposi Sarcoma Recruiting • Drug: Abemaciclib Study Type:
Interventional
Phase: Phase
I-II

NCT02644460 Abemaciclib in Children with DIPG or Recurrent/Refractory Solid Tumors Recruiting • Drug: Abemaciclib Study Type:
Interventional
Phase: Phase
I

NCT04557449 Study to Test the Safety and Tolerability of PF-07220060 in Participants with Advance
Solid Tumors

Recruiting • Drug: PF-07220060 Study Type:
Interventional
Phase: Phase
I

NCT04438824 Palbociclib and INCMGA00012 in People with Advanced Liposarcoma Recruiting • Drug: INCMGA00012 Study Type:
Interventional
Phase: Phase
II

NCT03784014 Molecular Profiling of Advanced Soft-tissue Sarcomas Recruiting • Drug: Nilotinib
• Drug: Ceritinib
• Drug: Capmatinib
• Drug: Lapatinib
• Drug: Trametinib
• Combination Product:
Trametinib and
Dabrafenib
• Combination Product:
Olaparib and
Durvalumab
• Drug: Palbociclib
• Drug: Glasdegib
• Drug: TAS-120
• Other: Next Generation
sequencing exome

Study Type:
Interventional
Phase: Phase
III

NCT05252416 (VELA) Study of BLU-222 in Advanced Solid Tumors Recruiting • Drug: BLU-222
• Drug: Carboplatin
• Drug: Ribociclib
• Drug: Fulvestrant

Study Type:
Interventional
Phase: Phase
I-II

NCT03709680 Study Of Palbociclib Combined with Chemotherapy In Pediatric Patients With
Recurrent/Refractory Solid Tumors

Recruiting • Drug: Palbociclib Study Type:
Interventional
Phase: Phase
II

NCT04238819 A Study of Abemacicli (LY2835219) in Combination with Other Anti-Cancer
Treatments in Children and Young Adult Participants With Solid Tumors, Including
Neuroblastoma

Recruiting • Drug: Abemaciclib Study Type:
Interventional
Phase: Phase
I-II
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molecular basis of cell cycle dysregulation in each specific histotype,

will be crucial for the development of tailored treatment

combinations with CDK inhibitors and other innovative targeted

therapies or immunotherapeutic strategies.
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47. Carvalho SD, Pissaloux D, Crombé A, Coindre JM, Le Loarer F. Pleomorphic
sarcomas: The state of the art. Surg Pathol Clin (2019) 12:63–105. doi: 10.1016/
j.path.2018.10.004

48. Riad S, Biau D, Holt GE, Werier J, Turcotte RE, Ferguson PC, et al. The clinical and
functional outcome for patients with radiation-induced soft tissue sarcoma. Cancer (2012)
118:2682–92. doi: 10.1002/cncr.26543

49. Kohlmeyer JL, Gordon DJ, Tanas MR, Monga V, Dodd RD, Quelle DE. CDKs in
sarcoma: Mediators of disease and emerging therapeutic targets. Int J Mol Sci (2020) 21
(8):1–30. doi: 10.3390/ijms21083018

50. Li GZ, Okada T, Kim YM, Agaram NP, Sanchez-Vega F, Shen Y, et al. Rb And p53-
deficient myxofibrosarcoma and undifferentiated pleomorphic sarcoma require Skp2 for
survival. Cancer Res (2020) 80:2461–71. doi: 10.1158/0008-5472.CAN-19-1269

51. Italiano A, Bianchini L, Keslair F, Bonnafous S, Cardot-Leccia N, Coindre JM, et al.
HMGA2 is the partner of MDM2 in well-differentiated and dedifferentiated liposarcomas
whereas CDK4 belongs to a distinct inconsistent amplicon. Int J Cancer (2008) 122:2233–
41. doi: 10.1002/ijc.23380

52. Louis-Brennetot C, Coindre JM, Ferreira C, Pérot G, Terrier P, Aurias A. The
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