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Background: Immune checkpoint blockade (ICB) therapy has brought remarkable

clinical benefits to patients with advanced non-small cell lung carcinoma (NSCLC).

However, the prognosis remains largely variable.

Methods: The profiles of immune-related genes for patients with NSCLC were

extracted from TCGA database, ImmPort dataset, and IMGT/GENE-DB database.

Coexpression modules were constructed using WGCNA and 4 modules were

identified. The hub genes of the module with the highest correlations with tumor

samples were identified. Then integrative bioinformatics analyses were performed

to unveil the hub genes participating in tumor progression and cancer-associated

immunology of NSCLC. Cox regression and Lasso regression analyses were

conducted to screen prognostic signature and to develop a risk model.

Results: Functional analysis showed that immune-related hub genes were involved in

the migration, activation, response, and cytokine-cytokine receptor interaction of

immune cells. Most of the hub genes had a high frequency of gene amplifications.

MASP1 and SEMA5A presented the highestmutation rate. The ratio of M2macrophages

and naïve B cells revealed a strong negative association while the ratio of CD8 T cells

and activated CD4 memory T cells showed a strong positive association. Resting mast

cells predicted superior overall survival. Interactions including protein–protein, lncRNA

and transcription factor interactions were analyzed and 9 genes were selected by

LASSO regression analysis to construct and verify a prognostic signature. Unsupervised

hub genes clustering resulted in 2 distinct NSCLC subgroups. The TIDE score and the

drug sensitivity of gemcitabine, cisplatin, docetaxel, erlotinib and paclitaxel were

significantly different between the 2 immune-related hub gene subgroups.

Conclusions: These findings suggested that our immune-related genes can

provide clinical guidance for the diagnosis and prognosis of different

immunophenotypes and facilitate the management of immunotherapy in NSCLC.
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1 Introduction

Lung cancer is the most common malignant tumor in China and

worldwide, which has the highest mortality rate for both men and

women and is responsible for 23% of cancer-associated related deaths

(1). Non-small cell lung cancer (NSCLC) accounts for more than 85%

of lung cancer cases and can be further divided into three subtypes:

lung adenocarcinomas (LUAD), squamous cell carcinomas, and large

cell carcinomas (2).With the decreasing of smoking rates, LUAD has

become the most prevalent histological subtype. LUAD is

characterized by high metastasis rate and notable invasiveness.

Despite new developments in surgery, chemotherapy, radiotherapy,

and molecularly targeted therapy, the prognosis for LUAD patients

remains unsatisfactory, with a 5-year survival rate of around 18% (3).

With rapid advancement of precision medicine, the clinical

benefits of checkpoint blockade therapy have rekindled the hope for

better outcome of LUAD immunotherapy. Immune checkpoint

inhibitors target tumor-specific antigens which are utilized by

cancer cells to evade tumor-reactive immune cells. To date,

immune checkpoint molecules mainly include programmed cell

death protein 1 (PD-1), mucin domain-containing 3 (TIM3),

lymphocyte-activation gene 3 (LAG3), and cytotoxic T-lymphocyte

antigen-4 (CTLA-4). Antibodies blocking PD1/PDL1 have been

approved for clinical use and have received impressive clinical

responses in some patients with LUAD (4–11). Unfortunately, only

around 20% of NSCLC patients benefit from anti-PD-1/PD-L1

therapy. It has been speculated that the heterogeneity of LUAD and

the tumor microenvironment may contribute to the diverse

antitumor immune responses (12).Thus, regarding their prognostic

potential in LUAD, the molecular events of tumor cell immunocyte

interactions in LUAD microenvironments need to be further

summarized and the expression level of immune related genes

(IRGs) in LUAD needs to be comprehensively explored (13).

Although there have been some research findings regarding IRGs

and LUAD prognosis, they were focused on single biomarkers and a

prognostic model based on IRGs that can systematically assess the

prognosis of LUAD patients is not available (1, 2, 6, 13). Therefore,

there is an urgent need to construct a robust and simple IRG

prognostic signature model.

In this study, we combined all known IRGs from multiple

immunology databases and then performed weighted gene co-

expression network analysis (WGCNA) to identify hub IRGs in

TCGA-LUAD cases. After that, we evaluated the mutation rate of

the hub IRGs and tried pathway and GO enrichment. Then, we

evaluated immune cell infiltration by using CIBERSORT and merged

the results with hub IRGs for correlation analysis. Next, we selected

IRGs associated with the survival outcome of LUAD patients and

constructed a gene prognostic model based on Lasso Cox regression.

Finally, we clustered hub IRGs in an unsupervised fashion and

compared the differences of immune cell infiltration as well as the

sensitivity to anticancer drugs in different groups. These could be

ultimately used to assist clinicians in prognostic evaluation and

therapeutic selection of LUAD patients and to provide further

insights into the molecular mechanism of immune-related genes in

tumor immune evasion.
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2 Methods

2.1 Downloading of data source and
clinical information

The overall analysis scheme is illustrated in Figure 1. The mRNA

expression, somatic single-nucleotide mutation, and clinical data of

TCGA-LUAD and TCGA-LUSC were downloaded from the UCSC

Xena database. Immune-related genes were downloaded and merged

from the InnateDB, Immport, and IMGT/GENE-DB databases. Then,

we combined the gene expressions and acquired the immune-related

gene expression matrix.
2.2 Weighted gene co-expression network
analysis and identification of key modules
and hub genes

The WGCNA methodology analysis was performed according to

Langfelder’s instructions. We used R package WGCNA 1.69 to

identify the crucial immune-related gene modules. The expression

matrix was confined to only immune-related genes. The soft

threshold was calculated, and the screening threshold was set as R2

>0.85 (power = 7). Then, the one-step function was used for network

construction and detection of consensus modules. Similar modules

were clustered and merged in accordance with the threshold of height

less than 0.25. Finally, we obtained four modules and associated

molecular features with clinical information for predicting outcomes

for LUAD patients. The turquoise molecular structure had the

strongest association with the prognosis and was selected for

further analysis.
2.3 Functional analysis and mutation analysis
of hub genes

We selected the hub gene from the turquoise module based on the

values of GS and MM (GS >0.3, MM >0.5). Functional enrichment

analysis was performed using R package cluster Profiler, and the

threshold sets were p-value <0.05 and q-value <0.2. We also

conducted mutational analysis of hub genes, and genes with a

mutation rate of more than 5% were exhibited.
2.4 Tumor immune infiltration analysis

We used the R package CIBERSORT to evaluate 22 immune cell

types in each sample of the LUAD cohort. Samples with p < 0.05 were

considered eligible and used for subsequent studies. Kaplan–Meier

survival analysis was applied first to explore the prognostic value of

tumor-infiltrating immune cells. Then, Pearson’s correlation test was

performed to evaluate the correlation between tumor-infiltrating

immune cells and the correlation between tumor-infiltrating

immune cells and hub genes.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1095313
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Han et al. 10.3389/fonc.2023.1095313
2.5 Construction of the lncRNA/mRNA/TF
co-expression network based on hub genes

In brief, interaction network data were downloaded from RAID

and TRRUST databases. LncRNAs, mRNAs, and TFs, which are

associated with hub genes, were extracted and introduced into

Cytoscape 3.71 to generate the interaction network.
2.6 Construction and validation of an
immune prognostic model for LUAD

The prognostic model was developed in the following steps.

First, univariate Cox analysis was used to determine the

connection between hub genes and prognosis. Genes with p-

value <0.05 were selected. Then, Lasso regression was performed

to remove highly correlated genes and build survival models.

Patients were divided into high-risk and low-risk groups, and

Kaplan–Meier survival curves were plotted. Next, the area under

the receiver operating characteristic curves (AUC) at different

cutoff values of overall survival time was calculated to evaluate

model discrimination. Finally, independent GEO LUAD dataset

GSE30219 was used to further validate the prognostic value of

our model.
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2.7 LUAD molecular subtypes based on
unsupervised hierarchical clustering

We also divided patients into two groups through unsupervised

clustering analysis of hub genes. We first compared the survival

curves between the two groups. Then, we used a heatmap to show the

distribution of tumor immune cell infiltration between the two

groups. Finally, we evaluated the efficacy of immunotherapy and

drug sensitivity between the two subgroups by using Tumor Immune

Dysfunction and Exclusion (TIDE) web application (http://tide.dfci.

harvard.edu) and the R package “pRRophetic,” respectively.
3 Results

3.1 Data downloading and integration

Gene expression, phenotype, and clinical data of LUAD and LUSC

were downloaded from the UCSC Xena database. After removing the

missing samples of clinical data, we collected a total of 1,114 samples,

including 1,006 cancer samples and 108 pericarcinomatous samples. A

total of 3,511 IRGs were screened out from the InnateDB, Immport, and

IMGT/GENE-DB databases. Combined with the expression data, the

expression matrix of 2,531 IRGs was finally obtained.
B

C D

A

FIGURE 1

WGCNA analysis result. (A) Soft threshold; (B) cluster analysis; (C) correlation analysis between different modules and sample traits; (D) average value of
gene significance (GS) across module.
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3.2 WGCNA

We utilized the WGCNA to construct the link among the 2,351

immune-related genes from 1,114 NSCLC samples. A total of five

modules were obtained through a one-step network construction

method, where power = 7. Then, we performed a correlation analysis

between different modules and sample traits. The distributions of the

modules’ average gene significance related to OS were identified,

among which the turquoise module (including 709 genes) was found

to have the strongest association with the sample feature. This module

was selected for further analysis (Figure 1).
3.3 Hub gene selection

The GS value and module membership (MM) value of genes in

the turquoise module were calculated. There were 280 hub genes

screened by the threshold of GS >0.3 and MM >0.5 .

(Supplementary Figure 1).
3.4 Functional enrichment analysis
(GO/KEGG)

Gene ontology (GO) enrichment analysis was divided into three

categories: Biological Process (BP), Cellular Component (CC), and

Molecular Function (MF). The BP enrichment pathway was mainly of

regulation of inflammatory response, positive regulation of response

to external stimulus, and leukocyte migration. The CC enrichment

pathway was mainly of the external side of the plasma membrane,

tertiary granule, and secretory granule membrane. The MF

enrichment pathway was mainly of cytokine binding, G protein-

coupled peptide receptor activity, and cytokine receptor activity. The

KEGG enrichment pathway was mainly of cytokine–cytokine

receptor interaction, Staphylococcus aureus infection, and

phagosome. These pathways suggested that the related genes mainly

functioned by regulating immune reaction (Supplementary Figure 2).
3.5 The characteristic of hub genes by the
whole genome

Samples of lung adenocarcinoma (TCGA, Firehose Legacy) and

lung squamous cell carcinoma (TCGA, Firehose Legacy) were

selected from the cBioPortal database. Mutations were detected in

280 genes. A total of 54 genes had a mutation rate of over 5%. The

mutation rate of MASP1 was the highest (22%) according to the gene

mutation map, followed by SEMA5A (18%). All the mutational genes

in the map were associated with NSCLC (Supplementary Figure 3).
3.6 Analysis of immune cell infiltration

The ratios of 22 infiltrated immune cells in cancer samples were

calculated. According to the proportion level of infiltrated immune cells

in cancer samples, we calculated the Pearson correlation coefficient

between the different infiltrated immune cells and drew the heatmap.
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The results indicated that macrophages M2 and naive B cells showed a

significantly negative correlation, whereas CD8+ T cells and activated

CD4+ memory T cells, naive B cells, and plasma cells displayed a

significantly positive correlation (Supplementary Figure 4).
3.7 Survival analysis of infiltrated
immune cells

Firstly, we divided the infiltrated immune cells into high- and

low-ratio groups based on the median infiltrating level of immune

cells. Then, we calculated and drew Kaplan–Meier (KM) survival

curves between the two groups based on the survival data. The results

revealed that the high-infiltration group of resting mast cells

displayed remarkably better overall survival (OS) than those with

low infiltration and the high-infiltration group of activated mast cells

and neutrophil displayed remarkably worse OS than those with low

infiltration (Figure 2).
3.8 Correlation analysis between infiltrated
immune cells and hub genes

The Pearson correlation coefficient was calculated between hub

genes and infiltrated immune cells. The results suggested that almost

all the genes were positively associated with resting CD4+ memory T

cells and negatively correlated with T follicular helper cells and

activated mast cells (Figure 3).
3.9 Univariate Cox regression analysis

We constructed a regulatory network based on 181 TFs, 144

lncRNAs, and 424 mRNAs, which were interacting with hub genes

from different databases (Supplementary Figure 5). After the analysis

of univariate Cox regression, a total of 15 prognosis-related genes of

NSCLC were selected from an expression matrix of 1,006 cancer

samples, such as ANO6, FPR2, PDGFB, TRIM58, CD300E, CXCL3,

HLA-DMA, CTSM, ANOS1, NR3C2, BMP5, TLR7, FCGRT, LIFR,

and PTGDR2. The KM survival curves were generated in six of them.

The curves revealed that the high expression group of ANO6, FPR2,

PDGFB, and TRIM58 displayed remarkably worse OS than those with

a low expression. The curves also revealed that the low expression

group of LIFR and PTGDR2 displayed remarkably worse OS than

those with a high expression (Figure 4).
3.10 Validation of gene prognostic signature

We performed Lasso-penalized Cox regression analysis with

cross-validation to pick out nine genes from the 15 candidates.

Furthermore, among the nine genes, TRIM58, PDGFB, FPR2, and

ANO6 were prognostic risk factors (HR >1), whereas TLR7,

PTGDR2, NR3C2, LIFR, and ANOS1 were prognostic protective

factors (HR <1). To evaluate the nine-gene prognostic signature, we

calculated the risk score for each sample in TCGA according to the

expression levels of nine genes weighed by their relative coefficient
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using the following formula: risk score = PTGDR2*(-0.140) +

ANOS1*(-0.115) + LIFR*(-0.091) + TLR7*(-0.052) + FPR2*(-0.026)

+ NR3C2*(0.020) + PDGFB* (0.090) + TRIM58*(0.127) + ANO6*

(0.176). The risk scoring section of each sample was (-0.762–1.910),

and high-/low-risk groups were divided with the median of risk score

as the cutoff (Supplementary Figure 6).

All samples were separated into high- or low- risk groups

according to the median of risk score. K–M curves showed that

patients in high-risk group had significantly worse prognosis than

those in the low-risk group (log-rank, p < 0.0001), which suggested

that the model had favorable efficiency. ROC curves were also applied

for the prognosis of samples depending on risk scores. The AUC

values of 360d, 540d, 720d, 900d, and 1080d were all above 0.6,

whereas the value of 180d was 0.59 (Figure 5).

The GSE30219 dataset was selected as the validation set to further

verify the prognostic predictive value of the nine-gene signature.

Survival analysis of the validation dataset also showed a significant
Frontiers in Oncology 05
difference in OS between the high- and low-groups (p = 0.012). The

AUC values of 180d, 360d, 540d, 720d, 900d, and 1080d were all

above 0.6 according to ROC curves (Figure 6). The results

demonstrated that the nine-gene signature was reliable and effective

for prognostic prediction in NSCLC.
3.11 Classification by unsupervised
clustering analysis

We employed an unsupervised clustering algorithm to classify the

1,006 samples of NSCLC patients. They were classified into two

clusters, cluster1 with 474 samples and cluster2 with 532 samples.

The heatmap showed that the expression of hub genes was different in

the two subtypes. Survival analysis showed significant differences

between the two clusters (p = 0.048) (Supplementary Figure 7).
3.12 Immune infiltration landscape and
difference in proportion of infiltrated
immune cells

We investigated possible clinical factors related to the two

clusters, including age, gender, TNM stage, tumor stage, risk score,
FIGURE 3

Correlation analysis between infiltrated immune cells and hub genes.
FIGURE 2

Survival analysis of infiltrated immune cells between high- and low-infiltration groups.
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and immune cell abundance. There were no statistical differences

between the two clusters in terms of age, gender, TNM stage, and

tumor stage; however, the risk score in cluster1 was higher than that

in cluster2.
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Then, we estimated the proportion of immune cells in the two

clusters and found that the tumor infiltration of resting memory T

cells, naïve B cells, macrophages M0, and macrophages M2 were

highly expressed in all samples. The proportion of macrophages M0
FIGURE 4

The KM survival curves of six prognosis-related genes.
B

CA

FIGURE 5

Validation of model effectiveness. (A) KM curves of high- and low-risk scores. (B) The AUC value of 180d, 360d, 540d, 720d, 900d, and 1080d by ROC
curves. (C) Heatmap of gene expression in model.
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was extremely higher in cluster1 than that in cluster2, whereas the

proportion of resting memory T cells and macrophages M2 was

extremely lower in cluster1 than that in cluster2 (Kruskal–Wallis, p <

0.0001) (Figure 7).
3.13 Effect of immunotherapy in
different subtypes

An analysis of expression levels for 44 immune checkpoints

between the two clusters were performed (Supplementary Figure 8).

The expressions of almost all the immune checkpoints were

significantly different in the two clusters. TIDE scores of the two

clusters were calculated by the TIDE online analysis tool. The

statistical results showed that the TIDE scores of most samples

were lower than 0, which indicated that immunotherapy might be

effective for most samples. Furthermore, the TIDE score for samples

in cluster1 was extremely lower than that for samples in cluster2 (t-

test, p < 0.0001) (Supplementary Figure 9).
3.14 Chemosensitivity in different subtypes

Chemosensitivity prediction was further investigated in the two

clusters. The t-test analysis indicated that there was a significant

difference between the two clusters in sensitivity. Patients in cluster1

were more sensitive to paclitaxel, gemcitabine, vinorelbine, gefitinib,
Frontiers in Oncology 07
and afatinib (BIBW2992) (Figure 8). However, patients in cluster2

were more sensitive to cisplatin, docetaxel, erlotinib, and crizotinib

(PF-02341066) (Figure 9). The results could provide a convincing

basis for the use of related drugs in treating patients with

different clusters.
4 Discussion

Lung cancer is the leading cause of cancer-related deaths in the

world, with an average 5-year survival rate of 21% (1). Lung cancer

initiation and progression depend not only on the evolving genomics

and molecular properties of cancer cells but also on their interaction

with the tumor environment, specifically with the immune system (4).

The immune system is now recognized as having the potential to

destroy cancer cells and inhibit tumor growth through the activation

of innate and adaptive immune responses; however, the immune

system may also promote tumor progression (5).

Based on the statistical analysis of the whole-genome

characteristics, we found a total of 54 mutated IRGs with mutation

rate >5% and most of them were amplified in the genome. It is

confirmed that tumor mutational burden is associated with improved

survival in patients receiving immune checkpoint inhibitors across a

wide variety of cancer types. The most frequently mutated IRGs is

MASP1 (22%), followed by SEMA5A (18%), which has never been

reported previously in NSCLC. MASP1 is an abundant component of

the lectin pathway of complement (14, 15). The complement pathway
B

CA

FIGURE 6

Validation of model effectiveness by dataset. (A) KM curves of high- and low-risk scores. (B) The AUC values of 180d, 360d, 540d, 720d, 900d, and
1080d by ROC curves. (C) Heatmap of gene expression in the model.
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FIGURE 8

Drugs sensitive in cluster1.
B

A

FIGURE 7

(A) Heatmap of clinical factors and infiltrated immune cells in the two clusters. (B) Proportion of immune cells in the two clusters. ****p<0.0001,
**p<0.01, *p<0.05.
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plays an essential role in innate and adaptive immune responses. The

mutation in MASP1 may cause cancer because of immunological

abnormality. Semaphorin 5A, a member of the semaphorin family,

plays an important role in axonal guidance. The downregulation of

SEMA5A in lung adenocarcinoma tissues was associated with a poor

overall survival. A suppressive role for SEMA5A in lung

adenocarcinoma involves the inhibition of the proliferation and

migration of lung transformed cells (16). Our findings have

identified certain mutational characteristics of IRGs in NSCLC,

offering new perspectives in the etiology and treatment of NSCLC.

IRGs have been used to predict the prognosis of NSCLC patients

in previous research (6, 7, 17). In the present study, nine IRGs

associated with cancer prognosis were screened out from TCGA

data. Among the nine genes, PDGFB, FPR2, ANO6, and TRIM58

were prognostic risk factors, whereas PTGDR2, ANOS1, LIFR, TLR7,

and NR3C2 were prognostic protective factors. PDGFB encodes a

member of platelet-derived growth factors, playing a role in a wide

range of developmental processes. An investigation on 442 patients

with LUAD indicated that a high expression of PDGFB and

presentation of mesenchymal-like tumors were significantly

associated with poor prognosis for both OS and disease-free

survival (18). FPR2 (formyl peptide receptor 2), as a G-protein-

coupled receptor, was involved in a broad spectrum of

pathophysiologic processes. It was found that a high expression of

FPR2 was associated with a lower OS in LUAD patients (8). ANO6 is

a member of the TMEM16 family, which was initially discovered as
Frontiers in Oncology 09
Ca2+-activated Cl-ion channels (19). The TMEM16 family was found

to be overexpressed in cancer cells associated with poor prognosis and

cancer development. ANO6 was also associated with metastatic

capability of mammary cancers in mice and was related to poor

prognosis of patients with breast cancer (20). It has been

demonstrated that ANO6 is an essential component of the immune

defense by macrophages (21). However, the role of ANO6 in lung

cancer has not been illustrated. TRIM58 is a prognostic indicator for

LUAD and LUSC. KRAS-driven LUAD samples with a higher

expression level of TRIM58 were found to have a relatively high

expression level of immune checkpoints genes, including PD-1, PD-

L1, and CTLA-4 (22). LUSC patients with high methylation levels of

TRIM58 had a longer survival time (23). On the contrary, in our

study, TRIM58 was considered as a risk factor for the prognosis of

NSCLC patients. In addition, TRIM58 was positively correlated with

abundance of M2 macrophages and resting mast cells and negatively

correlated with follicular helper T-cell abundance in KRAS-driven

LUAD (22). Thus, the role of TRIM58 needs to be further identified.

PGD2/PTGDR2 signaling was found to inhibit tumorigenesis,

tumor growth, and metastasis in gastric cancer (24). However,

PTGDR2 was rarely reported in lung cancer. CRTh2, encoded by

PTGDR2, is preferentially expressed in CD4+ effector T helper 2

(Th2) cells. T-cell activation could reduce the expression of CRTh2 at

the level of both transcription and protein expression (9). LIFR, the

receptor of the leukemia inhibitory factor, was reported as a

prognostic protective factor in LUAD patients (25). A low LIFR
FIGURE 9

Drugs sensitive in cluster2.
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expression was associated with shorter survival in pancreatic cancer

and NSCLC patients with mutated KRAS (10). TLR7 is expressed on

endosomes in immune cells including plasmacytoid and conventional

dendritic cells, macrophages, B lymphocytes, and NK cells (26).

Stimulation of these immune cells with TLR7 ligands induces their

maturation and activation, leading to antitumor therapeutic efficacy

in colon, renal, and breast carcinomas. By contrast, several studies

have shown that TLR7 is highly expressed in lung cancer cells, leading

to increased tumor cell survival, chemoresistance, and poor clinical

outcomes (27–29). A genome-wide lethality screening in NSCLC

reported that NR3C2 might be a potential tumor-suppressing gene

(30). Other researchers also found that NR3C2 was downregulated in

metastasis samples and the OS rate in patients with a high expression

of NR3C2 was higher than that in patients with a low expression of

them in LUAD (31–34).

Infiltrated immune cells in the tumor microenvironment of lung

cancer play a key role in tumor progression and have been widely

studied in recent years. In our research, we found that the infiltration

degrees of mast cells and neutrophils were associated with prognosis

of NSCLC. Mast cells are well known for their roles in allergic

disorders (35). However, the consequences of their presence in the

tumor microenvironment still remain unclear as it is associated with a

good or poor prognosis based on the type and anatomical site of the

tumor (36). Mast cells through releasing IL-1, IL-4, IL-6, and TNF-a
can actively participate in the elimination of tumor cells and rejection

of tumors (37). Conversely, mediators released by mast cells such as

FGF-2, NGF, PDGF, VEGF, IL-8, and IL-10 can promote the

expansion of tumor cells (38). Mast cell infiltration has been

implicated in metastasis and angiogenesis in several human

malignancies (38). Our results indicated that a high level of resting

mast cell infiltration was associated with better prognosis, whereas a

high level of activated mast cells was significantly related to worse OS.

Neutrophils have been implicated in all stages of the oncogenic

process. However, the effect of neutrophil maturity on their

antitumor or protumor properties remains understudied. A meta-

analysis of nearly 4,000 patients has found high levels of intra-tumoral

neutrophils to be associated with unfavorable survival outcomes (39,

40). In accordance with these studies, a high proportion of

neutrophils was significantly related to worse OS in our research.

The CD4+ memory T cells were constitutively presented in the

microenvironment of lung cancer, which could be mobilized by IL-12

to proliferate and kill tumor cells in the xenograft (41). T follicular

helper cells were likely to be involved in the antitumor immunity and

were associated with better clinical outcomes in NSCLC (42). For

adenocarcinoma patients, memory B‐cell and resting CD4+ T-cell

fractions were associated with better OS, whereas the neutrophil,

follicular helper cell, M0 macrophage, and M2 macrophage fractions

were associated with a shorter OS. For squamous cell carcinoma

patients, a higher percentage of regulatory T cells and naïve CD4+ T

cells was associated with a marginally poorer overall OS (43). In our

research, almost all the hub genes were positively correlated with

resting CD4+ memory T cells.

In the present study, we identified a novel and independent

classification based on the IRG expression profiles. According to

research, the patients in cluster2 had a better OS. Interestingly, we

found that the proportion of infiltrated immune cells was remarkably

different in the two subtypes, especially in resting memory T cells,
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macrophages M0, and macrophages M2. However, these immune

cells mentioned above presented no difference in OS.

The therapies for NSCLC, including chemotherapies, targeted

therapies , and immunotherapy , have undergone great

advancements over the past two decades. Cytotoxic therapies

have demonstrated a remarkable effect on early-stage NSCLC,

whereas adjuvant cytotoxic therapy with a cisplatin-based doublet

is associated with improved survival in patients with resected

advanced NSCLC (44). The standard therapy for patients with

unresectable advanced NSCLC is the combination of cytotoxic

therapy and thoracic radiation (45). Molecularly targeted

therapies prove to have a good prognosis in non-squamous

NSCLC patients with EGFR, ALK, ROS1, BRAF, and NTRK

mutations (45–50). However, activating mutations are rare in

LUSC and targeted therapies for LUSC patients remain less

effective (51). Fortunately, several studies have demonstrated that

monotherapies with antibodies against PD-1 or PD-L1 can

significantly improve OS for LUAD and LUSC patients (3).

Although both PD-1 and TMB may be used to select patients for

immunotherapy, most patients will not fit the ideal profile based on

these two biomarkers (52). In our study, the two clusters classified

by a new method presented different sensitivities to chemotherapy

and immunotherapy. The samples of cluster1 were more sensitive

to gemcitabine and paclitaxel, whereas the samples of cluster2 were

more sensitive to cisplatin, erlotinib, and docetaxel. All the samples

might have a high likelihood of responding to immunotherapy.

Compared with cluster1, however, the samples of cluster2 seemed

to be more sensitive to immunotherapy. The molecular differences

between the identified subtypes may facilitate the development of

more appropriate therapeutic approaches.

There are still some limitations to the research. Because of

retrospective data gained from public databases, the model needs to

be further validated by a larger number of clinical samples.

Additionally, bias of expression exists in IRGs, which has been

caused by heterogeneity in NSCLC.
5 Conclusion

The IRGs and the related immune cells may be used to guide

prognosis prediction and clinical decisions for NSCLC patients. These

findings may be considered as therapeutic targets as well as possible

playmakers in the antitumor immune response to newer targeted

cancer drugs.
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