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Objective: This study aimed to establish a predictive model for occult lymph

node metastasis (LNM) in patients with clinical stage I-A non-small cell lung

cancer (NSCLC) based on contrast-enhanced CT.

Methods: A total of 598 patients with stage I–IIA NSCLC from different hospitals

were randomized into the training and validation group. The “Radiomics” tool kit

of AccuContour software was employed to extract the radiomics features of GTV

and CTV from chest-enhanced CT arterial phase pictures. Then, the least

absolute shrinkage and selection operator (LASSO) regression analysis was

applied to reduce the number of variables and develop GTV, CTV, and GTV

+CTV models for predicting occult lymph node metastasis (LNM).

Results: Eight optimal radiomics features related to occult LNM were finally

identified. The receiver operating characteristic (ROC) curves of the threemodels

showed good predictive effects. The area under the curve (AUC) value of GTV,

CTV, and GTV+CTV model in the training group was 0.845, 0.843, and 0.869,

respectively. Similarly, the corresponding AUC values in the validation group

were 0.821, 0.812, and 0.906. The combined GTV+CTV model exhibited a better

predictive performance in the training and validation group by the Delong test

(p<0.05). Moreover, the decision curve showed that the combined GTV+CTV

predictive model was superior to the GTV or CTV model.

Conclusion: The radiomics prediction models based on GTV and CTV can predict

occult LNM in patients with clinical stage I–IIA NSCLC preoperatively, and the

combined GTV+CTV model is the optimal strategy for clinical application.

KEYWORDS

radiomics, occult lymph node metastasis, non-small cell lung cancer, chest-enhanced
CT, prediction model
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1 Introduction

Lung cancer has been identified as the leading cause of cancer-

related death worldwide, accounting for 18.0% of all cancer deaths.

Non-small cell lung cancer (NSCLC) accounts for 80%–85% of all

lung cancer cases (1). Low-dose computed tomography (CT)

screening programs can identify the majority of patients with

early-stage NSCLC. Currently, surgery combined with systemic

therapy is dominant in the treatment of early resectable NSCLC

(2, 3), and anatomical lobectomy and lung mediastinal lymph node

cleaning are recommended. A larger range of lymph node cleaning

can reduce the risk of lymph node metastasis, but physical trauma

to the patient is also greatly increased, such as unnecessary normal

tissue damage, pneumothorax, lymph node leakage, prolonged

hospital stay, and other risks (4). Incidence of lymph node

metastases (LNMs) in early lung cancer cases could reach 10%

(5), but in some cases, the LNMs are occult. Consequently, if

preoperative imaging can reliably identify negative lymph nodes,

these patients can avoid lymph node dissection and lower surgical

risks or receive stereotactic radiotherapy and other local treatments

as alternative approaches. At present, CT, magnetic resonance

imaging (MRI), and positron emission computed tomography

(PET-CT) are commonly used clinically for the non-invasive

evaluation of lymph nodes, among which PET-CT is the best

method to evaluate lymph node status (6–8). However, currently,

there is no imaging diagnostic method with high accuracy for occult

LNM (short diameter ≤1 cm) (9).

In recent years, the wave of precision medical radiomics drew

widespread attention (10–12). Radiomics refers to the high-

throughput extraction and analysis of a large number of advanced

and quantitative imaging features from medical imaging such as

CT, PET, or MRI (13–15). The features in radiomics provide

information about tumor phenotype and microenvironment that

is far richer than that obtained visually. Accumulating studies have

attempted to predict the status of lymph node status using the

radiomics features of the primary lesions in lung cancer (16).

However, these features were mostly derived from (primary

tumor volume) GTV, and the features of the microinvasion area

around the tumor, termed as clinical target volume (CTV), were

ignored. Herein, the authors extracted radiomics indexes of GTV

and CTV from CT images using the radiomics tool. Based on GTV,

CTV, and GTV+CTV indexes, we developed three predictive model

for occult lymph node metastasis (LNM) in stage I–IIA NSCLC and

validate radiomics prediction models to predict occult LNM in

NSCLC with clinical stage I–IIA.
2 Patients and methods

2.1 Patients

In this retrospective study, all data have been de-identified, and

no experiments were performed on patients. Therefore, the

Institutional Review Board of Tangshan People’s Hospital allowed

waiver of informed consent. All methods were carried out in
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All experimental protocols were approved by the Institutional

Review Board of Tangshan People’s Hospital. A total of 401

patients with lung cancer undergoing radical surgery in Tangshan

People’s Hospital from September 2017 to December 2019 and 197

patients in Yantai Yuhuangding Hospital from 2016 to 2020 were

included. The age range was 29–83 years old, with a median age of

62 years old, including 273 men and 325 women. The status of

lymph node was classified as lymph node metastasis or no lymph

node metastasis based on postoperative pathological results as

shown in Table 1. Inclusion criteria were the following: [I]

patients with preoperative clinical stage I–IIA (UICC eighth

edition TNM staging) underwent radical surgery and systemic

lymph node dissection; [II] postoperative pathology was NSCLC

with or without lymph node metastasis; [III] all patients received

contrast-enhanced chest computed tomography (contrast-

enhanced computed tomography) with the same type of CT

equipment 1 month before the operation; and [IV] short diameter

of Lymph nodes were <1cm on CT images. Exclusion criteria were

as follows: [I] patients had received neoadjuvant therapy before

surgery, [II] had other malignant tumors, and [III] had

distant metastasis.
2.2 CT Imaging acquisition
and preprocessing

All patients were in supine position and scanned from the

thoracic entrance to the base of the diaphragm. Scanning setting

was as follows: scanning thickness, 5.0 mm; tube voltage, 120 kVP;

and tube current, 80–300 mAs. All images were displayed in the

standard lung (width, 1,200 HU; level, 600 HU) and mediastinal

(width, 350 HU; level, 40 HU) Windows settings. An iodinated

contrast agent of 1.5–2 ml/kg was injected through the cubital vein

at a rate of 3 ml/s, and the venous phase scan was delayed by 90 s.

All images were saved to a hard drive in the DICOM (Digital

Imaging and Medical Communication) format. Images were then

imported into the Accu Contour software from Manteia (version

3.1), where GTV was manually delineated by radiologists with more

than 5 years of experience who were not aware of any clinical or

pathological information. Tumor GTV includes tumor

parenchyma, interstitial blood vessels, and vacuoles within

nodules, excluding normal lung tissue. CTV refers to the area

around the GTV with an external expansion of 5 mm, excluding

the GTV area (Figure 1). The manual repair was performed if the

outer expansion came into contact with the chest wall, diaphragm,

main trachea, great blood vessels, or heart.
2.3 Radiomics feature extraction

The “Radiomics” tool kit in AccuContour software was used to

extract the radiomics features of GTV and CTV delineated. It

includes 14 shape features and 252 first-order statistics), 336 gray

level co-occurrence matrix (GLCM) features, 70 neighborhood gray
frontiersin.org
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level difference matrix (Ngtdm) features, 180 running length matrix

(RLM) features, 224 gray level region matrix (GLSZM) features, and

238 gray level dependence matrix (GLDM) features, a total of 1,314

radiomics features.
2.4 Model construction

The cases were divided into a training group and validation

group with a ratio of 2:1. Models were constructed in the training

group and were validated in the external validation group. A total of

three prediction models were built by incorporating different

feature types, namely, the GTV radiomics model, the CTV

radiomics model, and the GTV+CTV hybrid radiomics model.
2.5 Analysis of data

Statistical analysis was performed using R software (R-

4.1.3patched) A total of 1,314 extracted radiomics features were

first screened using the least absolute shrinkage and selection

operator (LASSO) logistic regression algorithm to select features

with non-zero coefficients. The screened features were used to build

logistic regression models, and the stepwise regression method

(stepAIC) was employed to test and remove the non-significant

variables. A radiomics nomogram was constructed to quantify the

individual probability of OLNM for the significant variables, and

the relationship between the predicted and ideal values was assessed

using calibration curves. The area under the curve (AUC) was

calculated by receiver operating characteristic (ROC).
3 Results

3.1 Clinical characteristics and
univariate analysis

A total of 598 enrolled patients were randomized into the

training (N=401) and validation (N=197) cohorts. As can be seen

from Table 1, no significant difference in clinical characteristics

(age, gender, T stage, tumor site, and pathological classification) was

found between lymph node metastasis positive and negative
Frontiers in Oncology 03
subgroups, whether in training or validation cohort. Therefore,

patients in two subgroups were comparable for all clinical factors

whether in training or validation cohort.
3.2 Radiomics feature extraction
and screening

After identifying the region of interest (ROI) for the tumor

volume, the CTV was created through Boolean logic extrapolation.

The “Radiomics” plugin in AccuContour software (https://

www.radiomics.io/PyRadiomics.html) was then utilized to extract

image histology features from each ROI. The plugin automatically

extracted 1,314 radiomics features from GTV and CTV images, and

a hybrid model combining the GTV and CTV features was also

developed. Finally, the most effective variables were selected from

the training set of the three models by employing 10-fold cross-

validation using LASSO regression (Table 2).
3.3 Model construction and
model evaluation

To avoid overfitting of the model, LASSO regression was first

employed to reduce the number of variables (features). As can be

seen from Figure 2, 4, 2, and 11 features in GTV, CTV, and

combined model, respectively, were filtered out for subsequent

multi-Cox regression, respectively. Through multi-Cox regression

analysis, the variable number of GTV, CTV, and combined GTV

+CTV model was further reduced. Ultimately, a total of eight

features, including feature 92, feature 131, feature 220, feature

371, feature 902, feature 1,132, feature 1,205, and feature 1,306,

were identified (Table 2). Moreover, six nomogram plots were

drawn to present the built models (Figure 3). On the left side of

the nomogram plots, risk factor variables, the overall score, and the

likelihood of predicted lymph node metastasis were displayed from

top to bottom. The nomogram method involved finding the

corresponding scores according to the assigned values of each risk

factor variable, adding the scores to obtain the total score, and then

determining the risk of lymph node metastasis that corresponds to

the total score. Several groups of multi-factor logistic regression

models were built using different features for GTV, CTV, and GTV
A B C

FIGURE 1

Representative images of Chest enhanced CT illustrating gross tumor volume (GTV) and clinical target volume (CTV) with 5mm expansion from the
coronal (A), sagittal (B), and axial (C) view. The inner and outer red circle represents GTV and CTV, respectively.
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+CTV. The models were subsequently tested for their effectiveness

using an external validation group. Calibration curves were plotted

to evaluate the agreement between the predicted incidence and

actual incidence in the training group, external validation group,

and mixed group models, respectively (Figure 4).
3.4 Comparison of models

The AUCs of the GTV model based on the features from GTV

was 0.845 (95% CI, 0.801–0.888) in the training and 0.821 (95% CI,
Frontiers in Oncology 04
0.749–0.894) in the validation group, respectively. The AUC values

for the CTVmodel were 0.834 in the training (95% CI, 0.787–0.834)

and 0.812 (95% CI, 0.780–0.912) in the validation group,

respectively. The AUC values for the GTV+CTV hybrid model

were 0.869 (95% CI, 0.842–0.896) and 0.906 (95% CI, 0.757–0.953)

in the training and validation group, respectively (Table 3). The

higher the AUC value, the better the prediction effect of the model,

and the ROC curve of each model is shown in Figure 5. The AUC

values of the CTV model compared with the GTV model in the

external validation group did not show any advantage (Delong’s test

p-value both GTV and CTV groups were all >0.05, 0.735 in the
TABLE 2 Parameters applied in the constructed predictive models.

Features Name Feature type Image type

Feature92 Dependence variance GLDM Original

Feature131 Correlation GLCM Wavelet-LLH

Feature220 Cluster prominence GLCM Wavelet-LHL

Feature371 Dependence variance GLDM Wavelet-LHH

Feature902 Run entropy GLRLM Square

Feature1132 90th percentile First order Exponential

Feature1205 Dependence entropy GLDM Exponential

Feature1306 Large dependence high gray level emphasis GLDM Gradient
GLCM, gray level co-occurrence matrix; GLDM, gray level dependence matrix; GLRLM, gray level travel length matrix.
TABLE 1 Clinical characteristics of patients with lung cancer.

Training group Validation group

LNM (+) LNM (−) p-value LNM (+) LNM (−) p-value

Age 60.03 ± 9.80 61.35 ± 8.01 0.248 59.67 ± 9.50 60.22 ± 9.36 0.718

Gender

Male 28 149 0.644 25 68 0.916

Female 39 185 27 77

T stage

T1 50 284 0.000 27 130 0.071

T2 17 50 25 15

Tumor site

Upper right 19 105 0.381 19 47 0.056

Right middle 15 59 6 28

Lower right 5 21 1 9

Upper left 18 82 9 38

lower left 10 67 17 23

PC

AdC 53 290 0.281 43 127 0.350

SCC 14 44 9 18
LNM, lymph node metastasis; PC, pathological classification; ADC, adenocarcinoma; SCC, squamous cell carcinomas.
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training group and 0.855 in the validation group, which was not

statistically significant). The AUC values of the hybrid GTV+CTV

model were higher than those of the GTV and CTV validation

group models (the AUC of the hybrid model was 0.869 in the

training group and 0.906 in the validation group). The Decision

curve is used to check the net benefit of each model, among which

the hybrid model has the best net benefit (Figure 5). The p-values of

the Delong test between the training and validation groups hybrid

model and the remaining two groups were <0.05, which was

statistically significant (the p-value of the Delong test between the

hybrid and GTV training groups was 0.01, the p-value of the Delong

test between the hybrid and GTV training groups was 0.02, the p-

value of the Delong test between the hybrid and GTV validation

groups was 0.04, and the p-value of the Delong test between the

hybrid and CTV validation groups was 0.01).
Frontiers in Oncology 05
4 Discussion

In this study, we constructed three models to predict occult

lymph node metastasis in NSCLC based on radiomics features. In

particular, the hybrid GTV+CTV model exhibited the best

performance in predicting the status of lymph node (AUC of

0.869 in the training group and AUC of 0.906 in the

validation group).

In the prediction of occult LNM in lung cancer, two types of

radiomics features, GLCM (25%) and GLDM (50%), were found to

be the most prevalent. Compared with clinical features, the

radiomics features demonstrated better predictive efficacy. The

continued predictive value of these features for other types of

cancer requires further confirmation. The predictive ability of the

GTV or CTV model was not satisfactory, probably due to the
D

A B

E F

C

FIGURE 2

Radiomics features screened using the LASSO regression model. (A, C, E) the mean squared error of radiomics features displayed by the Lasso
regression analysis in GTV, CTV and GTV+CTV model. Two vertical lines represented the lambda values when number of variables decreased to two
lowest levels. (B, D, F) The trajectory of each radiomics feature in GTV, CTV and GTV+CTV model. The horizontal axis represents the log lambda of
each radiomics, and the vertical axis represents the coefficient of each radiomics.
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relatively small sample size in this study (only 401 cases were

included in our hospital, and an additional 197 cases came from

elsewhere). However, the mixed training model and validation

model by combining GTV and CTV demonstrated improved

predictive power, probably due to the larger sample size and

increased exposure rate of effective features. Therefore, radiomics

studies may achieve more accurate results with larger sample sizes.

A multicenter study design employed in this study aimed to

eliminate any potential single-center bias. Many studies

predicting lymph node metastasis in a variety of fields, including

lung cancer, bile duct cancer, gastric cancer, and colorectal cancer,

facilitated the development of radiomics in recent years (10, 16–18).

The majority of studies concentrated on features extracted from the

primary tumor area in images, ignoring the role of the environment

around the primary tumor, which we called CTV in this study (19,

20). According to the definition of CTV in radiotherapy, the CTV is

GTV and the area around GTV, which is suspected to be

microscopic extension of the tumor. Although CTV is invisible, it

may contain some microscopic information, which can be reflected

by the features of radiomics, and these features can predict LNM

(11, 21). In fact, this study did find that the joint GTV and CTV

model had stronger predictive power than the GTV model.

Some studies reported that clinical features such as tumor size,

density, morphological features, and serum CEA were highly

correlated with lymph node metastasis in lung cancer (22, 23),

and some studies confirmed that radiomics features combined with
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clinical features could predict lymph node metastasis (10, 24, 25).

There are two well-known models that were constructed to predict

the probability of lymph node metastasis in NSCLC patients. The

Help with the assessment of adenopathy in lung cancer (HAL)

model was used to predict pN2/N3 in patients with NSCLC, and the

Help with Oncologic Mediastinal Evaluation for Radiation

(HOMER) model can estimate the probability of N0+N1 in

patients with NSCLC (26–28). Unlike our model, which was used

to predict the presence or absence of lymph node metastasis, these

two models were used to predict N0+N1 and N2+N3 in patients

with NSCLC. Our model and these two models have different

clinical uses, so the two types of models cannot replace each other.

Fluorine-18-fludeoxyglucose (18F-FDG) positron emission

tomography/computed tomography (PET/CT) can non-invasively

detect the metabolic activity of the disease. Compared with

traditional CT images, PET images contain more metabolism

information, which reflects the aggressiveness of the tumor. The

models based on PET-CT imaging performed well in the prediction

of occult LNM, with AUC values ranging from 0.769 to 0.881 (29,

30). Surprisingly, similar models based on traditional CT imaging

could achieve comparable predictive efficacy. For example, the

model of Zhang et al. based on CT and clinical features could

predict the lymph node status of stage I–II NSCLC, with the AUC

value of 0.88 (31). However, Das et al. developed a model to predict

the lymph node status of cT1N0M0 lung adenocarcinoma, either

alone or in combination with clinical features. The external
D
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C

FIGURE 3

Nomograms for predicting lymph node metastasis. (A, B) Nomograms using the GTV algorithm in the training and validatiaon cohort. (C, D)
Nomograms using the CTV algorithm in the training and validatiaon cohort. (E, F) Nomograms using the GTV+CTV algorithm in the training and
validatiaon cohort.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1096364
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zeng et al. 10.3389/fonc.2023.1096364
D

A B

E F

C

FIGURE 4

Calibration curves of nomograms. (A, B) Calibration curves for GTV predictive model at the training and validation cohort. (C, D) Calibration curves for
CTV predictive model at the training and validation cohort. (E, F) Calibration curves for GTV+CTV predictive model at the training and validation cohort.
TABLE 3 Parameters of ROC curves in GTV, CTV, and GTV+CTV model.

GTV model CTV model GTV+CTV model

Training group

Sensitivity 0.673 0.650 0.783

Specificity 0.912 0.940 0.838

Youden index 0.585 0.590 0.621

AUC
(95%CI)

0.845
(0.801–0.888)

0.834
(0.787–0.834)

0.869
(0.842–0.896)

Validation group

Sensitivity 0.731 0.885 0.902

Specificity 0.848 0.636 0.814

Youden index 0.579 0.521 0.716

AUC
(95%CI)

0.821
(0.749–0.894)

0.812
(0.780–0.912)

0.906
(0.870–0.942)
F
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validation group yielded an AUC of 0.79 (95% CI, 0.66–0.93) (32).

In our study, the combined GTV+CTV model based on traditional

CT imaging also exhibited a comparable predictive ability with an

AUC value of 0.845. In view of acceptable predictive ability and

lower price of CT imaging, the combined GTV+CTV predictive

model based on traditional CT imaging is worthy of

clinical application.

The small number of cases and inclusion of clinical features in this

study, however, were thought to be related to the clinical features’ poor

predictive performance, so only radiomics features were included. The

predictive advantage of the radiomics model was also significant, and in
Frontiers in Oncology 08
comparison to the radiomics model based on the bulk tumor volume,

the combinedmodel including the CTV had a higher predictive efficacy,

which was thought to be related to the increased patient population.

This study solely focused on NSCLC, where the tumor bulk volume

under enhanced CT was explicitly outlined. To predict occult lymph

node metastasis, patients with positive lymph nodes in their imaging

report were excluded. Complete data, including the CT report and

postoperative pathological reports, were collected, and an external test

groupwas added to investigate the influencing factors thoroughly. Three

different models were generated by incorporating various traits. The

integrated radiomics model of tumor bulk volume and CTV displayed
D
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FIGURE 5

Receiver operating characteristic (ROC) curve and decision curve. (A, B) The ROC curves illustrating AUC values of GTV model at the training and
validation cohort. (C, D) The ROC curves illustrating AUC values of CTV model at the training and validation cohort. (E, F) The ROC curves illustrating
AUC values of GTV+CTV model at the training and validation cohort. (G) Decision curve analysis for GTV, CTV and GTV+CTV models.
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superior predictive efficacy for occult lymph node metastasis in NSCLC,

which was better reflected through comparing the three models.

This study has several limitations: first, despite being a multicenter

study, the number of cases with positive lymph nodes was much smaller

than the number without lymph node metastasis. Second, this study

only explored the relationship between radiomics features and LNMand

did not explore the relationship between other factors such as clinical

information and LNM. We will further refine our study in the future.
5 Conclusion

Overall, there is currently a shortage of affordable, convenient,

and safe methods for predicting LNM in patients with early-stage

lung cancer. The radiomics prediction models based on GTV and

CTV can predict occult LNM in patients with clinical I–IIA stage

NSCLC preoperatively, and the combined GTV+CTV model is

optimal strategy for clinical application.
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