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Integrated single cell and
bulk sequencing analysis
identifies tumor reactive CXCR6+

CD8 T cells as a predictor of
immune infiltration and
immunotherapy outcomes in
hepatocellular carcinoma
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Xin Zhang1,2, Ao Huang1,2, Qiang Gao1,2, Aiwu Ke1,2,
Jian Zhou1,2,3, Jia Fan1,2, Xiutao Fu1,2* and Zhenbin Ding1,2,3*

1Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan
University, Shanghai, China, 2Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry
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Background: Various immune cell types in the tumor microenvironment (TME)

of hepatocellular carcinoma (HCC) have been identified as important parameters

associated with prognosis and responsiveness to immunotherapy. However,

how various factors influence immune cell infiltration remains incompletely

understood. Hence, we investigated the single cell multi-omics landscape of

immune infiltration in HCC, particularly key gene and cell subsets that influence

immune infiltration, thus potentially linking the immunotherapy response and

immune cell infiltration.

Methods: We grouped patients with HCC according to immune cell infiltration

scores calculated by single sample gene set enrichment analysis (ssGSEA).

Differential expression analysis, functional enrichment, clinical trait association,

gene mutation analysis, tumor immune dysfunction and exclusion (TIDE) and

prognostic model construction were used to investigate the immune infiltration

landscape through multi-omics. Stepwise regression was further used to identify

key genes regulating immune infiltration. Single cell analysis was performed to

explore expression patterns of candidate genes and investigate associated

cellular populations. Correlation analysis, ROC analysis, Immunotherapy

cohorts were used to explore and confirm the role of key gene and cellular

population in predicting immune infiltration state and immunotherapy response.

Immunohistochemistry and multiplexed fluorescence staining were used to

further validated our results.

Results: Patients with HCC were clustered into high and low immune infiltration

groups. Mutations of CTNNB1 and TTN were significantly associated with
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immune infiltration and altered enrichment of cell populations in the TME. TIDE

analysis demonstrated that T cell dysfunction and the T cell exclusion score were

elevated in the high and low infiltration groups, respectively. Six risk genes and

five risk immune cell types were identified and used to construct risk scores and a

nomogram model. CXCR6 and LTA, identified by stepwise regression, were

highly associated with immune infiltration. Single cell analysis revealed that LTA

was expressed primarily in tumor infiltrating T lymphocytes and partial B

lymphocytes, whereas CXCR6 was enriched predominantly in T and NK cells.

Notably, CXCR6+ CD8 T cells were characterized as tumor enriched cells that

may be potential predictors of high immune infiltration and the immune-

checkpoint blockade response, and may serve as therapeutic targets.

Conclusion: We constructed a comprehensive single cell and multi-omics

landscape of immune infiltration in HCC, and delineated key genes and cellular

populations regulating immune infiltration and immunotherapy response, thus

providing insights into the mechanisms of immune infiltration and future

therapeutic control.
KEYWORDS

hepatocellular carcinoma, immune infiltration, single cell sequencing technology,
biomarker, tumor reactive T cells, immunotherapy
Introduction

Hepatocellular carcinoma (HCC) is the third leading cause of

cancer-associated death worldwide (1). Immune-checkpoint

blockade (ICB) has revolutionized the approach to cancer therapy

and has shown strong anti-tumor activity in a subset of patients

with advanced HCC (2, 3). Various immune cells in the tumor

microenvironment (TME) play important roles in patient prognosis

and the immunotherapy response (4–8). Accumulating evidence

indicates that several factors influence infiltration of immune cells

in tumors, including somatic mutations, epigenetic modulation,

microbial components and chemokines (9). Dissecting the tumor

immune microenvironment (TIME) and immune infiltration status

of HCC could help guide the cl inical application of

immunotherapy. However, how key gene regulators and cell

populations modulate the immune cell composition within the

TME have not been completely understood. The rapid

development of single cell RNA sequencing (scRNA-seq)

technologies has accelerated the identification of diverse cellular

populations and phenotypic states within tumors, thus providing

unprecedented opportunities for revealing gene expression patterns

in individual cells and determining functional differences among

clinical phenotypes, particularly regarding the immune cells that

have infiltrated into tumors (10, 11). In addition, single cell analysis

enables the effects of specific genes and cellular populations on

tumor immune infiltration to be disentangled.

Here, we performed combined bulk sequencing and single cell

RNA sequencing analysis in patients with HCC, and investigated

their immune infiltration characteristics and potential regulators.

We found that CTNNB1 and TTN mutations were significantly
02
associated with immune infiltration. Patients in the high infiltration

group showed enrichment in both tumor infiltrating effector and

exhausted T cells, whereas those patients in low-infiltration group

exhibited higher T cell exclusion scores, which were associated with

poor prognosis. Furthermore, LTA and CXCR6 were identified as

key genes influencing immune infiltration, which are expressed

mainly on T cell/B cell, and T cell/NK cell populations, respectively.

In particular, CXCR6+ CD8 cells were characterized as tissue

resident and tumor reactive T cell populations, and were

associated with high infiltration and responsiveness to ICB. This

study revealed the single and multi-omics landscape of immune

infiltration and key mediators influencing immune infiltration and

immunotherapy response, thus providing insights into how

immune cell infiltration in the TME occurs and may be

therapeutically targeted in the future.
Methods

Datasets and gene list

In this investigation, HCC dataset (n=476) in The Cancer

Genome Atlas (TCGA, RRID: SCR_003193) database (https://

www.cancer.gov/about-nci/organization/ccg/research/structural-

genomics/tcga) was used to identify high and low immune

infiltration groups and obtain differentially expressed genes

(DEGs). In addition to TCGA database, data from a Japan HCC

dataset from the International Cancer Genome Consortium (ICGC,

RRID : SCR_021722) (https://dcc.icgc.org/repositories) and the

GSE25097 dataset from Gene Expression Omnibus (GEO, RRID :
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SCR_005012) (https://www.ncbi.nlm.nih.gov/geo/) were collected

for further immune infiltration classification. After exclusion of

combined HCC and cholangiocarcinoma, recurrent HCC and other

rare HCC pathological types from the TCGA LIHC cohort, we

selected 355 patients with HCC in TCGA cohort for

downstream analysis.

Single cell sequencing data for 18 patients with HCC was

procured from the dataset CNP0000650. Another single cell

dataset of CD45+ cells isolated from tumors and four immune-

relevant sites (adjacent liver, hepatic LNs, blood and ascites) of 16

treatment-naïve patients with liver cancer were obtained from

GSE140228. Two bulk sequencing immunotherapy cohorts were

enrolled for the validation of key genes in immunotherapy response

including melanoma cohort (GSE91061) and IMvigor210 cohort.

Four single cell immunotherapy cohorts were used to validate the

role of key cellular populations in immunotherapy response,

including primary liver cancer cohort (GSE125449),melanoma

cohort 1 (GSE120575), melanoma cohort 2 (GSE115978) and

basal cell carcinoma cohort (GSE123813).

The immune meta gene lists for 28 immune cell types were

downloaded from the Tumor Immune System Interactions

Database (12) (http://cis.hku.hk/TISIDB/index.php). The

immune associated gene lists were obtained from the Immport
Frontiers in Oncology 03
database. The workflow for this investigation is provided

in Figure 1.
Calculation of immune infiltration scores
and differential expression analysis

In our analysis, single sample gene set enrichment analysis

(ssGSEA) (13, 14) for immune infiltration annotation was

performed to calculate the immune infiltration scores of 28

immune cell types, including activated CD4 T cells, activated

CD8 T cells, activated dendritic cells, CD56 bright NK cells,

central memory CD4 T cells, central memory CD8 T cells,

effector memory CD4 T, effector memory CD8 T, NK cells, NKT

cells, type 1 T helper cells, type 17 T helper cells, CD56 dim NK

cells, immature dendritic cells, macrophages, myeloid-derived

suppressor cells (MDSCs), neutrophils, plasmacytoid dendritic

cells, regulatory T cells (Tregs), type 2 T helper cells, activated B

cells, eosinophils, gamma delta T cells, immature B cells, mast cells,

memory B cells, monocytes and T follicular helper cells (15).

Clustering of patients into a high and low immune infiltration

group was performed through hierarchical clustering (16). DEGs

between patients with high versus low immune infiltration were
FIGURE 1

Work flow of study.
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analyzed with the DESeq2 package (RRID : SCR_015687) (https://

bioconductor.org/packages/release/bioc/html/DESeq2.html)

(17, 18).
Functional enrichment analysis

For Gene Ontology (GO) and pathway enrichment, the DAVID

database was used for GO analysis, including biological processes,

cellular compartments and molecular functions(https://

david.ncifcrf.gov/summary.jsp) (19). Protein domain and KEGG

pathway analyses of DEGs between groups were also performed on

data downloaded from DAVID database. The REACTOME

database was also used for annotation of significantly differing

pathways between groups (www.reactome.org) (20). Gene set

enrichment analysis (GSEA, RRID : SCR_003199) (http://

www.broadinstitute.org/gsea/) was used to demonstrate altered

pathways, on the basis of DEGs between the high immune

infiltration and low immune infiltration groups with the software

GSEA v4.2.3 (SeqGSEA RRID : SCR_005724) (http://

bioconductor.org/packages/devel/bioc/html/SeqGSEA.html)

(Broad Institute, Inc., Massachusetts Institute of Technology, and

Regents of the University of California) (13, 14). The annotation of

changed pathways in this investigation was performed with the

hallmarks gene set (version: 7.5.1) (21). Significantly enriched

pathways were defined as those with P values < 0.05, |normalized

enrichment scores (NES)| > 1 and false discovery rates < 0.25.
Construction of a prognostic model

To focus on the role of immune regulation in predicting patient

survival, we used overlapping genes between the immune associated

genes and DEGs to determine predictive gene signatures and

immune cell types. Univariate Cox regression analysis based on

the Akaike information criterion (AIC) was performed to identify

survival-associated genes with the “survival” R package (P < 0.05).

Subsequently, on the basis of the prognosis-associated genes

obtained from the above analysis, we used the “glmnet” package

to conduct least absolute shrinkage and selection operator (LASSO)

regression Cox analysis (simulation times = 1,000). Similarly, risk-

cell types were identified with univariate Cox regression and LASSO

regression Cox analysis, on the basis of the infiltration scores of 28

immune cell types. Furthermore, the risk-gene score and risk-cell

type score were calculated by the risk gene coefficient multiplied by

the gene expression value and risk-cell type coefficient multiplied by

the infiltration score in each sample, respectively. Subsequently,

patients in TCGA-HCC were divided into a high/low risk-gene

group and high/low risk-cell type group on the basis of optimal

cutoff points. Kaplan-Meier survival curves were plotted to confirm

the association between the risk-score model and patients’ overall

survival. Next, a time-dependent receiver operating characteristic

(ROC) curve was drawn to evaluate the predictive ability of this

model with the “timeROC” R package. To confirm the roles of the

risk-gene score and risk-cell type score as independent prognostic

factors, we conducted multivariate Cox regression analysis and
Frontiers in Oncology 04
assessed clinicopathological factors. To develop a nomogram to

predict the 1-year, 2-year and 3-year overall survival probabilities of

patients with HCC in TCGA cohort (22), we sequentially subjected

three independent prognostic factors—T stage, risk-gene score and

risk-cell type group—to a stepwise Cox regression model and

constructed a nomogram.
Gene mutation analysis

We used the Maftools package (https://genome.cshlp.org/

content/28/11/1747) to analyze the somatic mutations in patients

with HCC (23). Gene mutation summary plots were used to

demonstrate the statistical results for gene mutations. Waterfall

plots were used to depict and compare the top mutations and their

mutation frequencies. On the basis of the selected top gene

mutations, we grouped patients with HCC into mutant type and

wild type, and explored the association between gene mutation and

immune cell infiltration. Furthermore, we calculated tumor

mutation burden (TMB) and explored its relationship with the

ESTIMATE immune score and patients’ overall survival.
Immunotherapy response prediction

Many factors can affect ICB (immune checkpoint blockade)

response (24). Predicting tumor response to ICB accurately requires

the deep understanding to the molecular mechanism of tumor

immune escape from immune system. Recent research have

demonstrated two distinct mechanisms of tumor immune escape,

including T cell dysfunction and T cell exclusion (25, 26). T cell

dysfunction means the dysfunctional state of T cells in tumor

immune microenvironment. Although some tumors have a high

infiltration level of cytotoxic T cells, these T cells tend to be in a

dysfunctional state, which will affect ICB effectiveness (27). T cell

exclusion means some immunosuppressive factors that might

exclude T cells from tumor infiltrating, which leads to low T cell

infiltration (27).

We used the computational framework named Tumor Immune

Dysfunction and Exclusion (TIDE) to predict ICB response of

tumor patients, which consist of T cell dysfunction score and T

cell exclusion score (28). T cell dysfunction score are calculated by

the expression level of genes that can interact with cytotoxic T

lymphocyte (CTL) and inhibit T cell function. The gene signatures

that represent T cell dysfunction include TGFB1, SOX10 and so on

(28). On the other hand, T cell exclusion score is calculated by the

gene signatures that preclude the tumor infiltration of T cells, which

represent the three cell types reported to restrict T cell infiltration

including cancer-associated fibroblasts (CAFs),myeloid-derived

suppressor cells (MDSCs) and the M2 subtype of tumor

associated macrophages (TAMs) (28).

The TIDE algorithm can predict patients’ responses to

immunotherapy on the basis of RNA expression profiles (28). We

used the TIDE website algorithm to evaluate patients ’

immunotherapy responses according to the TIDE scores. We

further compared the T cell dysfunction score and T cell
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exclusion score between groups to assess differences in

immunotherapy response. Subsequently, correlation analyses

among the ESTIMATE immune score, TIDE score, T cell

dysfunction score and T cell exclusion score were used to validate

the above results. Expression levels of immune checkpoint

molecules such as PD-L1 are essential in predicting patients’

responses to immunotherapy (29). Hence, we examined the

expression levels of classical immune checkpoint molecules in the

high-infiltration and low-infiltration group to further depict the

different immune landscapes of the two groups.
Screening of genes highly associated with
immune infiltration

Bulk sequencing in the HCC cohort, including the ICGC JP and

GSE25097 cohorts, was performed to further compress immune

associated genes to identify genes highly associated with immune

infiltration status. The ssGSEA algorithm was used to calculate the

immune infiltration score for each sample. Subsequently, stepwise

regression of the gene expression and infiltration score was

performed in the ICGC JP and GSE25097 cohorts. The log

transformed TPM value of gene expression and mean value for

28 immune cell type infiltration scores in each sample were used for

stepwise regression.
Correlation analysis

The TIMER 2.0 web tool (http://timer.cistrome.org) (30) was

used to correlate gene expression with immune cell infiltration

scores, which included scores calculated with the CIBERSORT (31)

and MCP-counter methods. Scores of TCGA-HCC sequencing data

from other infiltration estimating methods were calculated with the

immunedeconv package (32). Gene Expression Profiling Interactive

Analysis (GEPIA, RRID : SCR_018294) (http://gepia.cancer-

pku.cn) (33) was used for correlation analysis among CXCR6,

LTA, immune cell markers and a series of immune regulators in

bulk sequencing data of HCC in TCGA database.
Single cell RNA sequencing
data processing

We used the Scanpy (version:1.9.1) (34) package to perform

unsupervised clustering of single cells by using the read count

matrix as input. First, the read counts for each cell were divided by

the total count for that cell and multiplied by the scaling factor

(10,000), then natural-log transformed. Cells were filtered

according to the criteria of original research. After quality control,

we performed principal component analysis on the normalized

expression matrix by using highly variable genes identified by the

‘‘pp.highly_variable_genes’’ function. After the results of principal

component analysis were obtained, the appropriate principal

components were selected for calculating neighbors and Leiden

clustering with the specific resolution parameters. After clustering,
Frontiers in Oncology 05
we used tSNE to visualize the cell clusters. Finally, to detect cluster-

specific expressed genes, we compared the clusters pairwise by using

the Scanpy ‘‘tl.rank_genes_groups’’ function andWilcoxon test. For

cell population annotation, we used the signatures chosen in the

original publication and previously reported markers. For the T cell

cluster, signatures of CD3D, CD3E, IL7R and ITM2A were chosen

for annotation. For the NK cell cluster, FCGR3A, CD160, GNLY

and NKG7 were chosen for annotation. For the B cell cluster, CD19,

CD27, CD79A and MS4A1 were chosen. For the myeloid cell

cluster, LYZ, AIF1, C1QB and RNASE1 were chosen for

annotation. For the endothelial cell cluster, signatures of

PECAM1, IGFBP7, SPARC and SPARC1 were chosen for

annotation. For the epithelial cell cluster, signatures of KRT19,

FXYD2, EPCAM and DEFB1 were chosen for annotation. For the

malignant cell cluster, APOC3, ALB, APOA1 and APOA2 were

chosen for annotation. The expression levels of genes of interest

were visualized with dot plots and feature plots. Cell annotation of

subtypes was performed on the basis of the top expressed markers
T cell and NK cell clustering in the
GSE140228 dataset

For the clustering of the T and NK cell clusters, we selected the

top 20 principal components with a resolution parameter equal to 1.

Notably, in contrast to the most commonly used cell annotation

strategy based on the top expressed genes of each subcluster, we

divided T and NK cells into subclusters according to the relative

expression levels of CXCR6, PDCD1, GZMK and GNLY after

scaling, in which the mean expression in each cluster was > 0.4,

and a > 25% fraction of cells in each cluster was considered to

indicate positive expression.
Deconvolution of bulk sequencing samples

The relative abundance of infiltrating immune cell types was

estimated with CIBERSORT with a signature matrix containing 22

functionally defined immune subsets (LM22) in each tumor sample

from the TCGA HCC cohort (31). To evaluate the relative

abundance of the T and NK cell subsets identified herein, we first

constructed a custom signature matrix with CIBERSORTx (31)

from the scRNA-seq data of T and NK cell clusters derived from the

GSE140228 cohort (summarized as log2 transformed transcripts per

million) with Single Cell Input Options = 0. On the basis of the

signature matrix, the T and NK cell composition of each tumor

sample was deconvolved with S-mode batch correction.
Independent immunotherapy
cohort validation

To validated the role of CXCR6 in immunotherapy response,

transcriptomic data of melanoma cohort (GSE91061) and

metastatic urothelial cancer cohort (IMvigor210) were

preprocessing and normalization respectively. Then, the
frontiersin.org
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expression level of CXCR6 in pre-treated and post-treated patients,

as well as non-responders and responders, were compared by

statistical tests.

To further explore the role of CXCR6+ T cell in immunotherapy

response, especially CD8+CXCR6+ T cell, we analyzed three

independent single cell sequencing cohort. Raw counts or TPM

data were used for initial data format. We used Seurat (V4.2.0) to

perform normalization, variable genes selection, gene expression

scaling, dimensionality reduction, finding neighbors and clustering.

Percentage of mitochondrial genes, UMI counts, cell cycle scores

and heat shock gene scores were calculated and regressed. To

remove batch effects between samples, we used harmony to

integrate single cell data of each sample. For GSE120575 dataset,

we clustered all CD45+ immune cells and used classical markers for

annotation of main immune cell types, including T cell, B cell,

plasma cell, monocyte, macrophage and dendrite. Then, T cells

were subseted for downstream analysis. For GSE123813 and

GSE115978 dataset, we directly used the T cell data provided in

the literature for further analysis. The number of principle

components used for dimensionality reduction and finding

neighbors ranged from 15-30 in different dataset. Resolution used

for clustering ranged from 0.8-1.2 to get the optimal

clustering results.

T cell data in three datasets was analyzed by the similar pipeline

mentioned above. To explore the role of CXCR6+ T cell in

immunotherapy response, we firstly annotated different T cell

subclusters as CD8+ T or CD4+ T according to the expression of

CD8A, CD8B, CD4. Then, we annotated CD8+ T or CD4+ T as

CD4+CXCR6+, CD4+CXCR6-, CD8+CXCR6+ and CD4+CXCR6-

when the scaled mean expression of CXCR6 in each cluster was >

0 and the fraction of cells expressing CXCR6 in each cluster > 25%.
Immunohistochemistry

A tissue microarrays (TMA) consisting of 90 HCC tissues and

their paired non-tumor normal tissues, was constructed as

described previously (35). Briefly, all patients in the Zhongshan

HCC cohort study received a histopathological diagnosis of HCC by

two histopathologists after surgical resection. Representative areas

without necrotic and hemorrhagic material were pre-marked in the

paraffin blocks and two cores were taken from representative tumor

tissue and adjacent normal liver tissue to construct TMA slides.

Then, TMAs were stained to examine the expression of CD3

(abcam, ab16669, 1:200), CD20 (abcam, ab78237, 1:200), CD68

(abcam, ab213363, 1:1000), respectively. Briefly, after baking in a

thermostat dryer at 60°C for an hour, TMA sections were

deparaffinized with xylene and rehydrated. 3% (vol/vol) hydrogen

peroxide was used to quench endogenous peroxidase activity for 10

minutes, followed by four 3-minute washes with double-distilled

water. Subsequently, the slides were immersed in 0.1 mol/L Tris-

HCl solution (pH 9.2) and heated in a microwave oven for 30

minutes. After four 3-minute washes with PBS and being pretreated

with PBS containing goat serum albumin (CWBIO, 01380/34021)

for 20 minutes, the sections were incubated in a humidified box at

4°C overnight with corresponding primary antibodies. After three
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3-minute washes with PBS, the sections were incubated with a

biotinylated second antibody (ZSBIO, PV-6001) for 60 minutes at

37°C, followed by another four 3-minute washes with PBS. The

reaction products were visualized using diaminobenzidine (ZSBIO,

ZLI-9018) for 3 minutes (the detailed time are dependent on the

color of the actual microscope slide), and counterstained with

hematoxylin for 2 minutes. Images were acquired under a light

microscope with a 40× objective lens (Olympus, Japan).

CD3, CD20, CD68 are proteins expressing on cell membranes.

Therefore, we measured the expression of CD3, CD20, CD68 in

TMA sections using the number of positive cells, proportion of

positive cells and histochemistry score (H-Score) that integrated

percentages of positive cells and staining intensities into the

formula: (0 × % negative) + (1 × % weak) + (2 × % moderate) +

(3 × % strong), respectively (36–38). The counts of CD3+, CD20+

and CD68+ cells and corresponding proportion were measured by

overall field from each tissue spot. Images were analyzed and

quantified by HALO software (Indica Labs, Corrales, NM, USA)

The threshold for positive or negative staining was based on the

optical density of the staining: regions above the positivity threshold

were scored according to the optical density threshold set in the

module; weakly positive is shown in yellow and strongly positive in

red. The optimal threshold were determined according to actual

staining images.
Multiplexed fluorescence staining

Multiplexed fluorescence staining was performed as previously

described (39 {Song, 2022 #205)}. In brief, 4-mm FFPE TMAs

sections were deparaffinized in xylene and then rehydrated in

100, 90, and 70% alcohol successively. Antigen unmasking was

performed with a preheated epitope retrieval solution, endogenous

peroxidase was inactivated by incubation in 3% H2O2 for 20 min.

Next, the sections were pre-incubated with 10% normal goat serum

and then incubated overnight with primary antibodies panel: CD4

antibody (CST, 48274, 1:100), CD8 antibody (CST, 55336, 1:300)

and CXCR6 antibody (abcam, ab273116,1:1000). Next, TMA

sections were incubated with the corresponding HRP-conjugated

goat anti-rabbit second antibodies (ZSBIO, CA) for 10-30 mins at

room temperature. The antigenic binding sites were visualized

using the OPAL dye: Opal -650 (AKOYA),Opal −520 (AKOYA),

Opal- 570 (AKOYA) for each antibody, respectively. Then, TMA

sections were counterstained with DAPI (Sigma) for 3-5 mins.

Similar to the data analysis of immunohistochemistry, Multiplexed

fluorescence staining images were analyzed and quantified by

HALO software (Indica Labs, Corrales, NM, USA) as well. For

the convenience of downstream comparisons, the CD4+CXCR6+,

CD4+CXCR6- , CD8+CXCR6+ and CD4+CXCR6- were

analyzed, respectively.
Statistics

Survival analysis in this investigation was performed using R

packages “survival” and “survminer” which were used to identify
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the best cutoff values for survival comparison between groups.

Statistical significance in survival analysis was assessed with log-

rank tests. The Pheatmap package was used to construct heat maps.

A generalized linear model in R was used for prediction of the

immune infiltration status, by using overlapping genes between the

lists of immune genes and DEGs. A stepwise algorithm (backward)

was then used to choose the appropriate model according to the

AIC extracted from the previously fitted model (AIC= −2*log L + k*

edf; L: likelihood; edf: equivalent degrees of freedom). ROC curves

were examined with the package pROC. A P value < 0.05 was

considered significant.
Results

Different prognosis outcomes between
patients with HCC clustered into high
versus low immune infiltration groups

In total, 355 patients in the TCGA-HCC cohort were included

in downstream analysis. Using the immune gene list for 28 immune

infiltrating cell populations, we generated scores for each immune

cell type. After clustering patients with HCC according to the

calculated infiltration scores, we found that immune status clearly

differed between groups (Figure 2A, Additional file 1: Table S1). In

addition, we used gene lists for immune stimulators, inhibitors,

MHC molecules, chemokines and chemokine receptors to calculate

the corresponding infiltration scores. In patients with high rather

than low immune infiltration, the expression of these genes was

much higher (Figure 2B). Moreover, survival analysis indicated that

the prognosis of these patients was significantly better than that of

patients with low immune infiltration (5-year survival rate 62% vs.

33%) (P =0.0048, Figure 2C).
Immune functions and inflammatory
signals are enriched in patients with HCC
with high immune infiltration

DEGs between the high- and low-infiltration groups were

analyzed. The total number of DEGs was 514, including 339

unregulated genes and 175 downregulated genes (Additional file 1:

Table S2). Volcano and heatmap plots of DEGs in the high infiltration

group compared with the low immune infiltration group were

constructed (Figures 2D, E). GO gene set enrichment analysis

revealed that the genes were involved in adaptive immune responses

and T cell signaling (Figure 3A). KEGG enrichment analysis indicated

that the related metabolic pathways included the T cell receptor

signaling pathway, cytokine-cytokine receptor interaction and cell

adhesion molecules (Figure 3B). Reactome pathway enrichment

analysis indicated that the up-regulated gene set was involved in

inflammatory signaling, immune stimulation and the PD1 axis

(Figure 3C). Protein functional enrichment analysis indicated that

most of the DEGs were immunoglobulins (Figure 3D). Further

GSEA between high-infiltration group and low-infiltration group

indicated high enrichment in complement signaling, IL2/STAT5
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signaling, IL6/JAK/STAT3 signaling, inflammatory response

signaling, interferon alpha signaling, interferon gamma signaling,

KRAS signaling, glycolysis, the G2M checkpoint, E2F targets,

allograft rejection and the mitotic spindle (Figure 3E).
Clinical characteristics and tumor
microenvironment traits in patients with
HCC with high and low immune infiltration

We next explored the association between immune infiltration

status and clinical traits. including age, sex, tumor histological grade, T

stage, N stage, M stage, tumor stage and vascular invasion (Figure 4A).

However, we observed no significant differences between the high-

infiltration and low-infiltration group. Notably, stage I patients were

more likely to be in the high infiltration group (53.81% vs 43.97%),

whereas stage III patients were more likely to be in the low-infiltration

(31.03% vs 20.95%). Similarly, the proportion of N0 stage patients with

high immune infiltration was higher than that in patients with low

immune infiltration (70.40% vs 64.8%). These results indicated a

correlation between tumor grade and infiltration score. In addition, a

higher ESTIMATE score, immune score and stromal score further

verified the deep infiltration of immune cells and stroma cells

(Figures 4B–D). Furthermore, 28 types of immune cells were

analyzed separately in the two groups of patients (Figure 4E). Most

immune cell types had high infiltration scores in the high infiltration

group, particularly activated B cells and activated CD8 T cells.

Interestingly, CD56 dim NK cells and type 17 helper cells exhibited

higher infiltration scores in the low-infiltration group, thus suggesting

that specific types of immune cells had higher enrichment levels in so-

called cold tumors, and might play important roles in tumor immunity

and be associated with low immune infiltration status. In support of the

above findings, we observed greater enrichment in most immune

molecules involved in antigen presentation, immune receptors,

immune ligands, co-stimulators, and co-inhibitors in the high

infiltration group than the low-infiltration group, with the exceptions

of VTCN1 and VEGFA (Figure 4F).
Gene mutations involved in HCC
immune infiltration

The mutation summary and plot of top mutations in the entire

TCGA-HCC cohort indicated that the most commonmutation type

was missense mutation, and the top three mutations were TTN,

TP53 and CTNNB1 (Additional file 1: Figures S1A, B). Significant

differences were found in the top 20 gene mutations between the

high-infiltration and low-infiltration group (Figures 5A–D).

CTNNB1, a gene encoding a protein constituent of adherens

junctions that is necessary for the creation and maintenance of

epithelial cell layers (40), had significantly higher mutation rates in

the high-infiltration group than the low-infiltration group (29% vs

19%). However, the most frequent mutation in the low-infiltration

group was TP53, a classical mutation in HCC (41). These mutation

differences indicated that several critical gene mutations determine

the biological properties of tumor and the TME. Subsequently, the
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top six gene mutations, TP53, TTN, CTNNB1, MUC16, PCLO and

ALB, were selected to explore the relationship between immune

scores and gene mutations. Mutations of CTNNB1 and TTN

significantly correlated with immune scores (Figure 5E), thus

indicating that CTNNB1 and TTN are closely associated with

immune cell infiltration. TMB is an important indication for

evaluating tumor mutation and predicting the potential response

to immunotherapy. We then calculated the TMB for each sample in

the entire TCGA-HCC cohort, and analyzed the correlation
Frontiers in Oncology 08
between the immune score and TMB. However, no significant

correlation between immune score and TMB was detected

(Figure 5F). These results indicated a latent gap between tumor

mutation burden and immune infiltration status, and further

studies are necessary to determine the related mechanisms and

specific immune cell types. In support of this finding, high TMB

caused stronger enrichment in activated CD8 T cells, whereas low

TMB was associated with higher infiltration scores for

macrophages, NK cells and type 1 helper cells (Figure 5G), thus
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FIGURE 2

Construction of immune infiltration related clusters in TCGA-HCC cohort based on infiltration scores (A) Clustering of HCC patients according to
immune infiltrated status calculated by ssGSEA algorithm. (B) Enrichment scores of chemokines, chemokine receptors, immune stimulators, immune
inhibitors and MHC molecules between groups. (C) Kaplan-Meier survival analysis of high-immune and low-immune infiltrated HCC patients.
(D) Volcano of differentially expressed genes between high- and low-immune infiltrated patients. (E) Heatmap plot of differentially expressed genes
between high- and low-immune infiltrated patients.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1099385
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2023.1099385
indicating that CD8 T cells are specifically activated in the context

of high TMB. We next analyzed the immune cell infiltration scores

of TTN and CTNNB1 mutant type or wild type groups, respectively.

For TTN mutation, which was enriched in the low-infiltration

group, we observed strong enrichment in central memory CD8 T
Frontiers in Oncology 09
cells and NK cells in the mutation group. (Additional file 1: Figure

S1C). For CTNNB1 mutation, which was enriched in the high

infiltration group, we observed significant enrichment in activated

CD8 T cells, CD56 bright NK cells and effector memory CD8 T cells

in the mutation group (Additional file 1: Figure S1D).
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FIGURE 3

Functional enrichment of differentially expressed genes between high- and low-immune infiltration groups (A) Gene ontology enrichment of
differentially expressed genes. (B) Pathway enrichment of differentially expressed genes between groups in KEGG database. (C) Pathway enrichment
of differentially expressed genes between groups in REACTOME database. (D) Protein function enrichment of differentially expressed genes between
groups. (E) Signatures of allograft rejection pathway, E2F targets, G2M checkpoints, complement pathway, glycolysis pathway, IL2-STAT5 pathway,
IL6-Jak-STAT3 pathway, inflammatory response pathway, interferon-alpha response pathway, interferon-gamma response pathway, and KRAS
signaling pathway and mitotic spindle were highly enriched in high immune infiltrated group.
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FIGURE 4

Clinical and immune microenvironment characterization of high immune infiltrated and low immune infiltrated clusters in TCGA-HCC cohort
(A) Distribution of clinical characteristics of high- and low-immune infiltration groups. (B) Comparison of Estimate Score, Immune Score, Stromal
Score, calculated by ESTIMTE algorithm between two groups. (C) Infiltration score of different immune cell types in high- and low-infiltration
groups. (D) Expression level of immune associated molecules involved in antigen present, cell adhesion, co-stimulator, co-inhibitor, immune ligands,
immune receptors and other immune molecules in high and low immune infiltration groups. (E) Boxplot shows the relative abundance of 28
immune cell types in high-infiltration and low-infiltration groups. Red and blue colors represent high-infiltration and low-infiltration groups,
respectively. ns: no significance; *P<0.05; **P<0.01; ***P<0.001; and ****P<0.0001. (F) Heatmap show the average expression level and statistical
significance of specific immune molecules in high-infiltration and low-infiltration group. Different colors represent different types of immune
molecules. The color in each column represents the expression level of each immune molecules in this two groups. *P<0.05; **P<0.01; ***P<0.001;
and ****P<0.0001.
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Immunotherapy response
prediction reveals distinct immune
landscapes between the high-and
low-infiltration groups

To further decipher the distinct immune landscapes between

the high and low infiltration groups, we used the TIDE algorithm to

predict the immunotherapy response of the two cohorts.

Unexpectedly, the number of responders between groups did not
Frontiers in Oncology 11
significantly differ, thus suggesting that the overall immune

infiltration status was unrelated to the immunotherapeutic

response, and further indicating the complexity of the TIME

(Figure 6A). In support of this finding, no significant differences

in the microsatellite instability score and TIDE score were observed

between groups (Figures 6B, C). Interestingly, the high-infiltration

group had higher T cell dysfunction scores, whereas the low-

infiltration group had higher T cell exclusion scores (Figures 6D,

E). The T cell dysfunction score was defined as the infiltration level
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FIGURE 5

Genomic features of the high and low immune infiltrated clusters in TCGA-HCC cohort (A) Summary of somatic mutations in high-infiltration groups.
(B) Summary of somatic mutations in low-infiltration groups. (C) Waterfall plot shows the top somatic mutations (top30) in high-infiltration group.
(D) Waterfall plot shows the top somatic mutation (top30) in low-infiltration group. (E) The relationship between top somatic mutations and the
ESTIMATE immune scores in high immune infiltrated group. Student’s t test was applied. (F) Boxplot of the relationship TMB and immune scores by
ESTIMATE. (G) Infiltration score of different immune cell types calculated by ssGSEA algorithm in high and low TMB group. ns: no significance; *P<0.05;
**P<0.01.
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FIGURE 6

Immunotherapy response prediction of high and low immune infiltrated clusters (A) Proportion of responders and non-responders respectively in
high and low infiltration group predicted by TIDE algorithm. (B) Comparison of microsatellite instability (MSI) score in high and low immune
infiltration group predicted by TIDE algorithm. Wilcoxon test was applied. (C) Comparison of TIDE score in high and low immune infiltration
group predicted by TIDE algorithm. Wilcoxon test was applied. (D) Comparison of T cell dysfunction score in high and low immune infiltration
group predicted by TIDE algorithm. Wilcoxon test was applied. (E) Comparison of T cell exclusion score in high and low immune infiltration group
predicted by TIDE algorithm. Wilcoxon test was applied. (F) Correlation analysis between the ESTIMATE immune score and the TIDE score.
(G) Correlation analysis between the ESTIMATE immune score and T cell dysfunction scores. (H) Correlation analysis between the ESTIMATE
immune score and T cell exclusion scores. (I) Enrichment score of CD8-associated molecules and IFNG pathway calculated by TIDE algorithm in
high and low infiltration group. (J) Enrichment score of cancer-associated fibroblast (CAF), myeloid-derived suppressor cell (MDSC) and M2 type
macrophages by TIDE algorithm in high and low infiltration group. (K) Expression levels of immune checkpoints in high and low immune infiltration
group including CD274, CTLA-4, HAVCR2, LAG3, PDCD1, PDCD1LG2 and TIGIT. ns: no significance; *P<0.05; **P<0.01; and ****P<0.0001.
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of inhibitory regulatory and exhausted T cells, whereas the T cell

exclusion score represented the infiltration levels of factors

hindering immune activation and effector T cell recruitment,

including tumor associated macrophages (TAMs), cancer

associated fibroblasts (CAFs) and MDSCs (28). In addition,

correlation analysis among the TIDE score, T cell dysfunction

score, T cell exclusion score and ESTIMATE immune score

validated this result (Figures 6F–H). In support of this finding,

higher enrichment levels of CD8 and the IFNG pathway were

observed in the high-infiltration group, whereas greater

enrichment of inhibitory cell populations including CAFs and

MDSCs was observed (Figures 6I, J). The enrichment level of

immune checkpoint molecules in tumor tissues indirectly

represents the potential response to immunotherapy. Our analysis

indicated that CTLA-4, HAVCR2, LAG3, PDCD1, PDCD1LG2 and

TIGIT were significantly enriched in the high-infiltration group, but

CD274, an inhibitory marker expressed mainly on surfaces of

tumor cells and macrophages, was not significantly enriched

(42) (Figure 6K).
Construction of the prognostic immune,
clinical and pathological model

To better understand the prognostic value of immune

infiltration status, we chose 68 overlapping genes between DEGs

and immune associated genes for the construction of prognostic

model (Figure 7A, Additional file 1: Table S3). Ten gene signatures

were retained after univariate Cox regression analysis, in which a P

value < 0.05 indicated statistical significance (Figure 7B). Six genes,

CD8A, CCR3, CD79A, CHGA, GLP1R and INS-IGF2, were

selected as the best models through LASSO regression analysis

and defined as risk genes (Figure 7C; survival curves of these six

genes in Additional file 1: Figures S2A-F). Similarly, five immune

cell types—activated CD8T cells, effector memory CD8 T cells,

activated B cells, immune B cells and eosinophils (survival curves

for these five cell types in Additional file 1: Figures S2G-K)—were

defined as risk cell types after screening with univariate Cox

regression analysis and LASSO regression analysis (Figures 7D,

E). On the basis of the risk-gene score and risk-cell type score,

patients with HCC in TCGA HCC cohort were divided into a high-

risk group and low-risk group according to optimal cutoff points.

Survival analysis showed that the high risk-gene or cell type groups

had a significantly worse prognosis than low risk-gene or cell type

groups (Additional file 1: Figures S3A, B). In addition, we

investigated the survival prediction efficiency of the risk-gene

score and risk-cell type score, both of which showed high

sensitivity and specificity (Additional file 1: Figures S3C, D). To

validate the independence of risk factors and construct a gene-cell

type clinical predictive model, we used clinicopathologic factors

including age, sex, tumor grade, T stage, N stage, and M stage

combined with risk-gene group and risk-cell type group for

multivariate Cox regression, and a p value of <0.05 was

considered to indicate statistical significance (Figure 7F,

Additional file 1: Figure S3E). T stage, risk-cell type group and

risk-gene group were chosen for the construction of the nomogram.
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This nomogram incorporated clinical, pathological risk-gene and

risk-cell type features and performed well in predicting patient

survival probabilities, including 1-year survival, 2-year survival and

3-year survival (Figure 7G).
The key role of CXCR6 and LTA in
regulating immune infiltration

To investigate molecular predictors of immune infiltration

status, we further calculated immune infiltration scores for the

datasets ICGC JP and GSE25097, and divided patients with HCC

into a high-infiltration group and low-infiltration group (clustering

of high-infiltration and low-infiltration group in Additional file 1:

Tables S4, S5, Figures S4A, B). We then used a backward stepwise

regression model to compress the 68 gene set for prediction of

immune infiltration status in two datasets (ICGC JP: infiltration

score = 14.411 – 1.086 × CXCR6 – 0.809 × TNFRSF9 + 1.310 × LTA

+ 0.613 × TNFRSF17; GSE25097: infiltration score = 12.382 –

0.461×CD8A – 18.195 × LTA – 1.603×PCSK1 – 2.194×CD79A –

6.905 × NCR3 + 3.730 × STAB2 + 1.457 × CXCR6 + 16.779 ×

CXCR5 + 3.120 × NPPB) (Table 1).

Two overlapping genes, including LTA and CXCR6, were

believed to be highly associated with immune infiltration status.

Expression level analysis indicated that CXCR6 and LTA had higher

expression in tumor tissues than normal tissues (Figures 8A, B). In

addition, higher expression of CXCR6 indicated better survival,

whereas LTA did not show statistical significance (Figures 8C, D).

To verify the roles of CXCR6 and LTA in immune infiltration

status, we determined that the high-infiltration group, compared

with the low-infiltration group, had significantly enriched

expression of CXCR6 and LTA (Figure 8E). The ROC curve also

demonstrated that LTA and CXCR6 were closely correlated with

high immune infiltration status (Figures 8F, G). We next examined

the correlation of CXCR6 with immune infiltration by

immunochemical staining of our TMA sections (Figures 8H–J).

High immune infiltration means more tumor infiltrating immune

cells, so we stained CD3, CD4, CD8, CD20, CD68 to measure the

immune infiltration status (Figures 8K–M). Interestingly, we found

that CXCR6 have a strong correlation with CD3, CD4, CD8, CD20

and CD68 (P value < 0.05) (Figures 8N–R). Of all these markers,

CXCR6 have the strongest correlation with CD8 and CD4

(Figures 8N, O). Taken together, we confirmed CXCR6 as an

effective predictor of high immune infiltration from both

transcriptomic level and protein level.
Validation of the expression of LTA and
CXCR6 at the single cell level

After quality control, single cell HCC data were clustered into

28 subclusters (Figure 9A). A global UMAP plot and the marker

genes of seven major annotated cell types are shown (Figures 9B, C).

Expression analysis of LTA and CXCR6 in each major cell type was

demonstrated with dot plots and feature plots. We found that LTA

was expressed primarily in T cells and partially in B cells, whereas
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CXCR6 was expressed predominantly in T cells and NK cell subsets

(Figures 9D–F).

Subsequently, we further explored the CXCR6 and LTA

expression patterns by T cell and NK cell sub-clustering

(Figure 9G). Among T cell and NK cell populations, CXCR6 was

found to be expressed by Treg LAYN, Treg FOXP3, CD8 SLC4A10,

CD8 CCR6, CD8 CXCL13 and NK CD160 (Figures 9H, I). In

addition, LAYN+ regulatory T cells and CCR6+ CD8 T cells

demonstrated the highest expression. Interestingly, CXCR6 was
Frontiers in Oncology 14
expressed mainly in CD160+ NK cells rather than CD16+ NK cells,

which were predominantly distributed in adjacent normal tissue

and represented tissue-resident memory NK cells (43). Previous

reports have demonstrated that CXCR6 plays an important role in

CXCR6+ NK cell recruitment to tumor tissue and participate in

anti-tumor immunity (44). We next explored the expression pattern

of LTA. After sub-clustering, Treg FOXP3, Treg LAYN and CD8

ZNF683 showed higher expression of LTA (Figure 9J). In B cell

subpopulations, both memory B cells and naive B cells
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FIGURE 7

Construction of the prognostic immune, clinical and pathological model in the TCGA-HCC cohort (A) Venn plot show the overlap of immune
associated genes and differential expressed genes between two groups. (B) Forest plots of the univariate Cox hazard model based on immune
associated genes among DEGs. (C) Further screening of risk genes by partial likelihood deviance for LASSO coefficient profiles. The red dots
represent the partial likelihood values, the gray lines represent the standard error (SE). (D) Forest plots of the univariate Cox hazard model of different
immune cell type for overall survival. The 28 immune cell type infiltrated score are calculated by ssGSEA algorithm. (E) Further screening of risk
immune cell types by partial likelihood deviance for LASSO coefficient profiles. The red dots represent the partial likelihood values, the gray lines
represent the standard error (SE). (F) Forest plots of the multivariate COX hazard model of immune associated genes, immune cell types, clinical
factors and pathological factors for overall survival. (G) Nomogram of individual survival risk prediction constructed by immune associated genes,
immune cell type infiltration score, clinical factors and pathological factors.
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demonstrated high expression of LTA (Figures 9K, L). However,

plasma cells scarcely expressed LTA (Figure 9M), thus potentially

indicating that plasma cells are terminally differentiated and have

no significant effect in promoting high immune infiltration.

We next investigated the correlation between LTA and CXCR6

expression and immune cell infiltration scores. We found that LTA

was highly correlated with B cell infiltration and FOXP3+ regulatory

T cell scores (Additional file 1: Figures S5A–F). Furthermore,

correlation analysis showed that LTA was highly correlated with

B cell markers (CD19, CD79A, BANK1 andMS4A1) and regulatory

T cell markers (CD4, FOXP3, CD25 and CD39) in bulk sequencing

data of TCGA HCC (P < 0.05; Additional file 1: Figures S6A–L).

The expression of CXCR6 was also highly correlated with Treg,

CD8+ T cell and NK cell infiltration scores (Additional file 1:

Figures S7A–J). We then correlated CXCR6 with Treg cell markers

(CD4, FOXP3, CD25 and CD39), CD8 T cell markers (CD8A,

GZMB, TIM3 and PD1) and NK cell markers (CD160, NKG7 and

GNLY) in the HCC dataset, all of which demonstrated high

coefficients and statistical significance (Additional file 1: Figures

S8A–L).
CXCR6+ T cells characterized as tissue
resident T cells and potential predictor of
high infiltration status

To further investigate the functional characteristics of

highly CXCR6-expressing T cells/NK cells and explore the

possible correlation between CXCR6 and cytotoxic markers
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or immune checkpoints, we first clustered another independent

single cell HCC cohort of GSE140228 into six main cell types: T

cells, NK cells, B cells, plasma cells, myeloid cells and mast cells

(Figures 10A, B). We then validated the expression level of

CXCR6 and LTA in different cell clusters. In support of our

results in CNP0000650 dataset, CXCR6 and LTA exhibited

similar expression patterns, in which CXCR6 was mainly

expressed in T cell and NK cell while LTA have a preferential

expression in T cell and B cell (Additional file 1: Figures

S9A-E).

Next, we explored the characteristics of CXCR6+ T cells and

CXCR6+ NK cells in the TIME. The T and NK cell populations were

clustered into 11 cell subtypes according to the relative expression

of CXCR6, GZMK, PDCD1 and GNLY and good clustering was

observed (Figures 10A, B). Interestingly, analysis of the tissue

distribution of CXCR6 associated cell populations indicated that

CXCR6+ subsets were strongly enriched in tumor or normal tissue,

particularly CD8+CXCR6+ T cells and CXCR6+ NK cells, whereas

most CXCR6- subsets exhibited preferential enrichment in the

peripheral blood (Figure 10C). CXCR6 have previously identified

as a tissue resident marker and play an important role in regulating

the settling down of T cells (45, 46). Therefore, we considered both

CXCR6+ T cells and CXCR6+ NK cells as tissue resident and tissue

specific immune cells. In support of our findings, we observed

higher proportions of CXCR6+ T cell and CXCR6+ NK cell subsets

than CXCR6− cell subsets in high immune infiltration group by

devolution analysis of bulk sequencing data, particularly CD8

+CXCR6+ T cells (Figures 10D, E). Interestingly, more CD8

+CXCR6+GZMK+PD1+ T cells were found in low-infiltration
TABLE 1 Stepwise regression model for compression of immune infiltration related genes, on the basis of the ICGC-JP and GSE25097 datasets.

Datasets Estimate Std. Error t value Pr(>|t|) SS#

ICGC-JP (Intercept) 14.41131 0.45892 31.403 < 2e-16 ***

LTA 1.31014 0.45212 2.898 0.00413 **

CXCR6 -1.08554 0.35986 -3.017 0.00285 **

TNFRSF17 0.61265 0.29522 2.075 0.03911 *

TNFRSF9 -0.80870 0.38012 -2.128 0.03447 *

GSE25097 (Intercept) 12.3827 0.5651 21.913 < 2e-16 ***

CD8A -0.4616 0.1679 -2.749 0.00640 **

LTA -18.1946 7.0282 -2.589 0.01018 *

STAB2 3.7295 1.1505 3.242 0.00135 **

PCSK1 -1.6033 0.5259 -3.049 0.00254 **

CXCR6 1.4566 0.6075 2.398 0.01721 *

CD79A -2.1937 0.9657 -2.272 0.02394 *

CXCR5 16.7794 5.6975 2.945 0.00353 **

NPPB 3.1204 0.9082 3.436 0.00069 ***

NCR3 -6.9054 2.7445 -2.516 0.01248 *

CTLA4 0.9458 0.3917 2.415 0.01646 *
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group, while CD8+CXCR6+GZMK+PD1- are dominantly enriched

in high-infiltration group.

Previous bulk level correlation analysis has identified the

association of CXCR6 and immune score calculated using

ESTIMATE. We additionally found that CXCR6+ subsets positively
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corre la ted wi th the immune score , par t i cu lar ly for

CD4+CXCR6+GZMK-PD1- T cells and CD8+CXCR6+GZMK+PD1-

T cells, whereas CD4+CXCR6-GZMK-PD1- exhibited a negative

correlation with the immune score (Figures 10F, G; Additional file

1: Figures S10A–F). In addition, we investigated the predictive
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FIGURE 8

Key role of CXCR6 in regulating immune infiltration (A, B) Expression level analysis of CXCR6 and LTA in tumor tissue and normal liver by GEPIA tool,
respectively. “***”: P < 0.001. (C, D) Kaplan-Meier survival analysis of CXCR6 and LTA in HCC patients, respectively. Log-rank test was used for
statistical analysis. (E) Boxplot show the expression level of CXCR6 and LTA in high-infiltration and low-infiltration group. Wilcoxon test was applied.
(F, G) ROC showed the sensitivity and specificity of CXCR6 and LTA in predicting high infiltration status, respectively. (H–J) Immunofluorescence (IF)
staining of CXCR6, CD4, CD8 in our validation TMA cohort of 90 HCC cases, respectively. Representative images of positive staining are shown.
Scale bar: 500 mm. (K–M) IHC staining of CD3, CD20, CD68 in our validation TMA cohort of 90 HCC cases. Representative images of positive
staining are shown. Scale bar: 500 mm. (N–R) Correlation analysis between the expression level of CXCR6 with CD4, CD8, CD3, CD20, CD68 in our
validation TMA cohort of 90 HCC cases. positive staining cells were counted and used for the correlation analysis.
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efficiency of CXCR6+ T cells for high immune infiltration status

through ROC curve analysis, which indicated good performance in

predicting high infiltration status (Figure 10H; Additional file 1:

Figures S11A–E). We further validated the association of CXCR6+ T

cell with immune infiltration by co-staining of CD4, CD8 and

CXCR6 (Figure 10I). The results showed that both CD4+CXCR6+
Frontiers in Oncology 17
and CD8+CXCR6+ T cells showed a strong correlation with CD4,

CD8,CD3, CD20 and CD68 (Figures 10J–M, Additional file 1: Figures

S11F–Q) and CD8+CXCR6+ T cells have the strongest correlation

(Figures 10J–M), which suggested that CXCR6+ T cells are strong

predictors for immune infiltration and might be therapeutically

targeted in the future.
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FIGURE 9

Validation of the expression of LTA and CXCR6 at the single cell level (A) Cell clusters for CNP0000650 dataset of 18 HCC patients. TSNE plot was
colored by cluster. (B) Main cell type annotation visualized by TSNE. TSNE plot was colored by cell type. (C) Cell markers for cell type annotation.
Violin plot was colored by the expression level of cell markers. (D) Dot plot of expression levels of LTA and CXCR6 in different cell clusters. Dot plot
was colored by the expression level of cell markers and fraction of cells in each cell type. (E) Feature plot of expression levels LTA in different cell
clusters, colored by expression level of LTA. (F) Feature plot of expression levels CXCR6 in different cell clusters, colored by the expression level of
CXCR6. (G) Sub-clustering of T and NK cells according to top marker genes, visualized by TSNE. TSNE was colored by T and NK cell subtypes.
(H) Cell markers for cell subtype annotation of T and NK cells, including CXCR6 and LTA. Dot plot was colored by the expression level of cell
markers and fraction of cells in each cell subtype. (I) Feature plot of CXCR6 in T and NK cell populations, colored by the expression level of CXCR6.
(J) Feature plot of LTA in T and NK cell populations, colored by the expression level of LTA. (K) Sub-clustering of B cells according to top marker
genes, visualized by TSNE. TSNE was colored by B cell subtypes. (L) Feature plot of LTA in B cell populations, colored by the expression level of LTA.
(M) Cell markers for cell subtype annotation of B cells, including LTA. Dot plot was colored by the expression level of cell markers and fraction of
cells in each cell subtype.
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FIGURE 10

CXCR6+ T cells characterized as tissue resident T cells and potential predictor of high infiltration status (A) TSNE plot show further sub-clustering of T
and NK cell populations according to relative expression level of CD4, CD8, CXCR6, GZMK, PDCD1 and GNLY, colored by cell subtype. (B) Violin plot
showed the relative expression level of CD8A, CD4, CXCR6, GZMK, PDCD1 and GNLY in T and NK cell subsets. Expression level of marker genes are
normalized to between 0 and 1. (C) Tissue distribution of 11 T and NK cell subsets in peripheral blood, ascites, adjacent liver tissue, tumor tissue and
lymph node, colored by different tissue type. (D) Bar plot showed immune infiltration fraction of 11 T and NK subsets after cell deconvolution by
CibersortX. Cell type signature are constructed by single cell matrix of T and NK cell populations. (E) Boxplot showed the infiltration score of T and NK
subsets calculated by CibersortX in high-infiltration and low-infiltration group, colored by group. ns: no significance; *P<0.05; **P<0.01; ***P<0.001; and
****P<0.0001. (F) Representative correlation analysis between CXCR6+ subsets and immune score calculated by ESTIMATE. The scatter plot showed the
correlation of CD4+CXCR6+GZMK−PD1− and immune score. (G) Representative correlation analysis between CXCR6+ subsets and immune score
calculated by ESTIMATE. The scatter plot showed the correlation of CD8+CXCR6+GZMK+PD1− and immune score. (H) Representative ROC showed the
sensitivity and specificity of CXCR6+ T cell in predicting high infiltration status. CD8+CXCR6+GZMK+PD1+ T cells are showed here. (I) Representative mIF
images showing the distribution of CD4+ CXCR6+ and CD8+CXCR6+ T cells in HCC (n = 90) from our TMA cohort: CD4 (green), CD8 (red), CXCR6
(yellow) and DAPI (blue). Green arrows (CD4+CXCR6+), red arrows (CD8+CXCR6+). Scale bar, 500 mm. (J–M) Representative correlation analysis between
CXCR6+ subsets and CD4, CD8, CD3, CD20, CD68 in our validation TMA cohort of 90 HCC cases. Positive staining cells were counted and used for the
correlation analysis. Correlation analysis between CD8+CXCR6+ T cells and CD4, CD3, CD20 and CD68 were showed here. (N) Representative
correlation analysis between CXCR6+ T subsets and infiltration score of M2 type macrophage. CD8+CXCR6+GZMK+PD1+ was showed here.
Frontiers in Oncology frontiersin.org18

https://doi.org/10.3389/fonc.2023.1099385
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2023.1099385
In addition to these analyses, to delineate potential factors

impeding the infiltration of CXCR6+ T cells and potential

differences of CXCR6+ and CXCR6- subsets, we analyzed the

correlations of tumor infiltrating M2 type macrophages and cell

subsets and found that CD8+CXCR6+GZMK+PD1+ T cells were

negatively correlated with M2 type macrophages, whereas

CD4+CXCR6-GZMK-PD1- cells were positively correlated with

M2 type macrophages (Figure 10N, Additional file 1: Figures

S10G–I).
CXCR6+ CD8 T cells could be as a
potential immunotherapy target

Because CXCR6 are closely related to high immune infiltration

and better survival, we further investigate the correlation of CXCR6

expression with immunotherapy response. We studied this by two

bulk sequencing patient cohorts who receive ICB therapy, including

(1) bulk melanoma cohort, 73 melanoma patients; (2) IMvigor210

cohort, 348 patients with metastatic urothelial cancer. In bulk

melanoma cohort, we found that the expression level of CXCR6

are elevated in post-treatment stage compared with baseline stage

(Figure 11A). Consistently, responders exhibited higher expression

level of CXCR6 compared with non-responders (Figure 11A). In

addition, we examined the expression level of CXCR6 in responders

and non-responders from baseline samples and post-treatment

samples, respectively. We found that CXCR6 exhibited significant

higher level in responders than non-responders, whether in baseline

stage or post-treatment stage (Figure 11A). These results

demonstrated that CXCR6 are positively correlated with

immunotherapy response and might be play an important role in

enhancing the immunotherapy effect. Similar to this results,

IMvigor210 cohort also validated above results, in which CXCR6

show elevated expression in responders compared with non-

responders (Figure 11B). Survival analysis showed a better

survival of patients with higher CXCR6 expression (Figure 11C).

As mentioned above, CXCR6 expression are associated with

better ICB response and longer survival. We wondered whether

CXCR6+ T cells are correlated with clinical response to ICB and

cancer patient outcome. We studied four single-cell sequencing

patient cohorts that received ICB therapy, including (1) cohort 1, 19

primary liver cancer patients; (2) cohort 2, 32 metastatic melanoma

patients; (3) cohort 4, 11 advanced basal cell carcinoma (BCC)

patients; (4) cohort 3, 31 metastatic melanoma patients. In liver

cancer cohort, after clustering T cell population into CD4+CXCR6+,

CD4+CXCR6-, CD8+CXCR6+ and CD8+CXCR6- T cell

(Figure 11D; Additional file 1: Figure S12A), we found that

CD8+CXCR6+ showed preferential enrichment in post-treatment

samples compared with baseline samples (Figures 11D, E), which

might suggest that CD8+CXCR6+ represented tumor-reactive T

cells and CXCR6 were a potential marker for tumor-reactive T

cells. Similar results were obtained from the other three cohort

(Figures 11G–M; Additional file 1: Figures S12B–G, I–K, M–O) In

addition, the proportion of CD8+CXCR6+ T cell were consistently

higher in responders than non-responders (Figures 11F, H, K, M).

In support of our findings, immunotherapy association analysis
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using an online database (53) revealed that the expression of

CXCR6 is elevated in terminal differentiated T cell and

GZMK+HAVCR- T cell subsets after immune checkpoint

blockade therapy, thus suggesting that CXCR6 positively

correlates with the immunotherapy response (Figure 11N). In

addition, previous study have demonstrated that CXCL13 could

be a key marker in predicting the immunotherapy response, we also

found that CXCR6+ T cells expressed higher level of CXCL13 and

other immune checkpoint molecules, compared with CXCR6- T

cells, especially CD4+CXCR6-, CD8+CXCR6+ T cells (Figure 11O,

Additional file 1: Figures S12H, L,P).

We next examined the relationship between the CXCR6+ T cell

proportion and patient survival in melanoma cohort 1. We used the

optimal cut off point calculated based on CXCR6+ T cell proportion

of every patient to stratify patients into high and low groups. We

found that compared with low CD8+CXCR6+ groups, high

CD8+CXCR6+ group show longer overall survival (Figure 11H).

High CD8+CXCR6- T cell group also indicated longer survival

(Figure 11H). However, high CD4+CXCR6+ T cell group suggested

worse survival (Additional file 1: Figures S12Q, R). Taken together,

these results strongly suggested that the expression levels of CXCR6

and proportion of CD8+CXCR6+ correlate to ICB response and are

associated with patient outcomes.
Discussion

By combining bulk sequencing and clinical information, we

identified distinct immune cellular landscapes and clinical survival

differences between the high-infiltration and low-infiltration group.

We integrated transcriptomic sequencing data, gene mutation data,

clinical information and single cell transcriptomic data for patients

with HCC to reveal a detailed immune cellular landscape to support

understanding of tumor infiltrating immune cells and key

mediators that regulating immune infiltration. Notably, our

findings highlighted CD8+CXCR6+ T cells as a potential predictor

f o r immuno the r apy r e spons e and t a r g e t f o r c e l l -

specific immunotherapy.

Previous attempts to identify immune infiltration groups have

focused on molecular clustering to provide insights into

personalized immunotherapy. High infiltration indicated better

survival and a favorable response to immunotherapy, whereas low

infiltration was associated with sparse tumor infiltrating immune

cells. However, a low response rate to immunotherapy among

patients with HCC remains a major obstacle to effective

eradication or tumor cells. Therefore, measurements of baseline

immune infi l trat ion levels are insufficient to predict

immunotherapy response and provide a reference for

personalized immunotherapy design. In contrast, our analysis

indicated that patients with high infiltration were characterized by

enrichment in exhausted and regulatory T cells, whereas patients

with low infiltration exhibited high enrichment in inhibitory cell

populations, including TAMs, CAFs and MDSCs, which preclude

effective recruitment and infiltration of cytotoxic T cells. In

addition, CXCR6 and LTA expressed mainly in T cell subsets

provided the highest power in discriminating immune infiltration
frontiersin.org

https://doi.org/10.3389/fonc.2023.1099385
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2023.1099385
in multiple HCC datasets, thus suggesting that CXCR6 and LTA

may be effective biomarkers to represent immune infiltration status

and guide clinical practice. Notably, tissue resident CXCR6+ T cells

are highly tumor-reactive and correlate with immune infiltration

and immunotherapy response, thus suggesting that CXCR6+ T cells

may facilitate the rational design of T cell specific therapies (for
Frontiers in Oncology 20
example, immune checkpoint blockade therapy or engineered TCR-

T cell therapy) for the treatment of human cancer.

Key gene mutations can alter immune infiltration and the

immunotherapy response, thereby facilitating design of

immunotherapy and combined therapeutics. Our analysis

highlighted that CTNNB1 mutation was enriched in the high-
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FIGURE 11 (Continued)
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CXCR6+ CD8 T cells could be as a potential immunotherapy target (A) The expression level of CXCR6 from ICB baseline/post-treatment samples and
responders/non-responders of bulk sequencing melanoma cohorts (47). The thick white line represents the median value, the bottom and top of the boxes are
the 25th and 75th percentiles (interquartile range). Mann-Whitney test was used to calculate the significance between two groups. p < 0.05 were regarded as
significant difference. PD: progressive disease; SD: stable disease; PR: partial response; CR: complete response. PR/CR were regarded as responders to ICB
therapy. (B) The left panel represented expression level of CXCR6 from ICB responders/non-responders in IMvigor210 cohort (48). The thick white line
represents the median value, the bottom and top of the boxes are the 25th and 75th percentiles (interquartile range). Mann-Whitney test was used to calculate
the significance between two groups. The right panel represented the proportion of responders and non-responders in high-CXCR6 and low-CXCR6 group.
Patients were grouped by the optimal cutoff point of CXCR6 expression. P < 0.05 were regarded as significant difference. NR: non-responders; R: responders.
(C) Kaplan-Meier survival analysis of CXCR6 in bulk melanoma cohort and IMvigor210 cohort, respectively. Log-rank test was used for statistical analysis. Top
panel represented the bulk melanoma cohort and bottom panel represented IMvigor210 cohort. (D) T cell re-clustering according to the expression level of
CD4, CD8A, CD8B and CXCR6 in liver cancer cohort (49). Left panel represented the UMAP plot, colored by cell type. Right panel represented the dot plot of
cell markers. (E) UMAP plots showing the clusters of T cells from liver cancer cohort (49) Cells were colored by the treatment of patients and expression level
of CXCR6, respectively. (F) The proportion of CD4+CXCR6+, CD4+CXCR6-, CD8+CXCR6+ and CD4+CXCR6- T cell from ICB baseline and post-treatment
samples of liver cancer cohort (49). Left panel was colored by cell type; right panel was colored by the treatment. Mann-Whitney test was used to calculate the
significance between two groups (G) UMAP plots showing the clusters of T cells from melanoma cohort 1 (50). Cells were colored by the treatment of
patients, ICB response of patients and expression level of CXCR6, respectively. (H) The proportion of CD4+CXCR6+, CD4+CXCR6-, CD8+CXCR6+ and
CD8+CXCR6- T cell from ICB baseline/post-treatment samples and responders/non-responders of melanoma cohort 1 (50). Left panel was colored by cell
type; right panel was colored by the treatment and response, respectively. Mann-Whitney test was used to calculate the significance between two groups. P <
0.05 were regarded as significant difference. (I) Kaplan-Meier survival analysis of CD8+CXCR6- and CD8+CXCR6+ in melanoma cohort 1 (50). Log-rank test was
used for statistical analysis. Left panel represented CD8+CXCR6- and right panel represented CD8+CXCR6+. (J) UMAP plots showing the clusters of T cells from
BCC cohort (51). Cells were colored by the treatment of patients, ICB response of patients and expression level of CXCR6, respectively. (K) The proportion of
CD4+CXCR6+, CD4+CXCR6-, CD8+CXCR6+ and CD8+CXCR6- T cell from ICB baseline/post-treatment samples and responders/non-responders of BCC
cohort (51). Left panel was colored by cell type; right panel was colored by the treatment and response, respectively. Mann-Whitney test was used to calculate
the significance between two groups. P < 0.05 were regarded as significant difference. (L) UMAP plots showing the clusters of T cells from melanoma cohort 2
(52). Cells were colored by the treatment of patients, ICB response of patients and expression level of CXCR6, respectively. (M) The proportion of
CD4+CXCR6+, CD4+CXCR6-, CD8+CXCR6+ and CD8+CXCR6- T cell from untreated/post-ICI samples and untreated/non-responders/responders of
melanoma cohort 2 (52). Left panel was colored by cell type; right panel was colored by the treatment and response, respectively. Mann-Whitney test was
used to calculate the significance between two groups. P < 0.05 were regarded as significant difference. (N) CXCR6 expression level in four CD8+ T cell
subsets (terminal, GZMK+HAVCR2-, IL7R+ HAVCR2- and proliferative) grouped by pre-treatment and post-treatment samples, by An interactive web server for
analyzing and visualizing the scRNA-seq data (53). (O) Dot plot show the expression level of immune checkpoint molecules (CTLA4,LAG3,PDCD1,PDCD1LG2,
TIGIT,HAVCR2,CXCL13) in CD4+CXCR6+, CD4+CXCR6-, CD8+CXCR6+ and CD8+CXCR6- T cells from liver cancer cohort (49).

Li et al. 10.3389/fonc.2023.1099385
infiltration group, while TTN mutation was enriched in low-

infiltration group. Previous studies have demonstrated that

mutation of CTNNB1 or TTN of tumor cells can affect the

activation and recruitment of immune cells, thus regulating the

infiltration of immune cells (54–56). CTNNB1 is a gene that

encodes catenin beta-1 protein, beta-catenin is part of a complex

of proteins that form adherens junctions, which are important for

the establishment and maintenance of epithelial cell layers by

regulating cell growth and adhesion between adjacent cells[12].

Mutant beta-catenin has been implicated in the pathogenesis of

several cancers including melanoma, colorectal cancer,

hepatocellular carcinoma, and ovarian cancer (57). TTN is gene

that encodes a large abundant protein of striated muscle. Previous

studies have mostly focused on a TTN mutation associated with

muscle diseases (58). However, in recent years, increasing studies

have demonstrated that TTN is implicated in the tumor mutation

burden, chemotherapy response, immunotherapy response of solid

tumors (59–61). The role of CTNNB1 and TTN in the regulation of

immune cell infiltration are different. CTNNB1 mutation enriched

in high-infiltration group was associated with stronger recruitment

of activated/effector memory CD8 T subsets and less enrichment in

monocytes, macrophages, type 2 helper cells and type 17 helper

cells, thus suggesting that CTNNB1 mutation enhances anti-tumor

immunity and facilitates immunotherapy. For TTN mutation

enriched in low-infiltration group, there were strong enrichment

of central memory CD8 T cell and nature killer cell in

mutation group.

TMB has been regarded as a biomarker of the response to anti-

PD1/anti-PDL1 therapies (62). However, many tumors with high
Frontiers in Oncology 21
TMB do not respond to immune checkpoint blockade therapy. In

contrast, some responses occur in low-TMB tumors (63, 64),

potentially because the TMB does not fully reflect the abundance

of tumor reactive T cell populations, particularly cytotoxic T cells,

given complex and dynamic interplay in TIME. In support of this

assumption, in our analysis, we did not observe a significant

association between TMB and overall immune infiltration. By

investigating immune infiltration differences in specific immune

cell subsets, we unexpectedly found that only activated CD8 T cells

and NK cells were elevated in the high-TMB group, and were

accompanied by diminished macrophage infiltration. Notably,

CXCR6 and LTA, as calculated and validated in our model, were

both expressed mainly in T cells and were powerful predictors of

immune infiltration in patients with HCC in multiple datasets.

Hot tumors, defined by high immune infiltration, usually

indicate a potential response to immunotherapy. However, many

hot tumors do not respond to ICB therapy, probably because of

accumulation of abundant dysfunctional T cell populations. In

support of this hypothesis, enriched T cell dysfunction signatures

in the high-infiltration group explained the low response rate of hot

tumors to immunotherapy in clinical practice. Interestingly, high T

cell exclusion scores in the low-infiltration group implicated that

TAMs, CAFs and MDSCs were preferentially enriched in cold

tumors and precluded cytotoxic T cell recruitment and activation.

Therefore, we propose that patients with HCC may benefit from

combined cell-specific therapeutics targeting tumor reactive T cells,

macrophages and CAFs.

Risk gene groups were established based on the expression level

of risk genes and the coefficient calculated by cox regression.
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Similarly, we divided patients into high or low-risk cell type groups

according to the infiltration score of risk cell types. risk genes are

derived from the differentially expressed genes (DEGs) between

high-infiltration and low-infiltration group. Risk cell types were

obtained from the 28 immune cell types that were used to group

HCC patients into high-infiltration and low-infiltration group.

Therefore, there are some kind of connection between the two

types of groups. The expression of risk genes were related to the

infiltration score of risk cell types, so there were some coincidence

between risk-gene groups and risk-cell type groups. However, the

infiltration score of one cell type are determined by multiple genes,

and one single cell might affect the infiltration score of multiple cell

types. In our study, we conducted multivariate cox regression

analysis using clinicopathological factors, risk-gene score and

risk-cell type score. Interestingly, we found that there were three

independent prognostic factors: T stage, risk gene score and risk cell

type group. Therefore, we could conclude that there were some

connection between risk-gene groups and risk-cell type groups,

while they could also be regarded as two independent

prognostic factors.

In cancer studies, CXCR6 (C-X-C Motif Chemokine Receptor

6) plays an important role in regulating effector and regulatory T

cell recruitment into tumor tissues, thus enabling targeted therapy

that promotes local anti-tumor immunity (65–67). In addition,

CXCR6 is upregulated during the conversion of memory stem-like

into effector-like CTLs and represents an immune checkpoint

determining the magnitudes and outcomes of anti-tumor immune

responses (68). CXCR6 have been reported to play an key role in

sustained tumor control mediated by CD8+ cytotoxic T cells (CTLs)

(68, 69). In terms of HCC research, CXCR6 inhibits

hepatocarcinogenesis by promoting NKT cell and CD4+ T cell

dependent removal of senescent hepatocytes (70). In a preclinical

cancer model, CXCR6 expression on infiltrating CD8+ T cells are

significantly increased post anti-PD-1 treatment (69). Interestingly,

the percentages of intra-tumoral CD8+ T cells and the therapeutic

efficacy of PD-1 blockade were rapidly decreased in cxcr6−/− mice

(69). However, the role of CXCR6 and CXCR6+T cell in

immunotherapy response have not been completely delineated at

present. In bulk melanoma cohort and IMvigor210 cohort

(metastatic urothelial cancer), we also found that anti-PD-1

therapy could significantly enhance the expression of CXCR6,

especially in responders. Next, single-cell analysis of T cells from

four patient cohorts that received ICB therapy revealed that the

proportion of CD8+CXCR6- are markedly elevated after anti-PD-1

therapy compared with CD8+CXCR6-, CD4+CXCR6+,

CD4+CXCR6- T cells, which suggested CD8+CXCR6+ are major

tumor-reactive T cells to ICB therapy and the CXCR6 expression on

infiltrating CD8+ T cells are significantly increased after ICB

treatment. Taken together, CXCR6 and CD8+CXCR6- T cells are

effective predictor for immunotherapy response and potential target

to enhance the efficiency of ICB therapy.

Previous have demonstrated that tissue resident CXCR6+ CD8

T cells are important components of tumor-infiltrating

lymphocytes, which further evolve into GZMK+HAVCR2- subsets

and terminally differentiated T cells (71). Studies in human tumors

and mouse models have demonstrated that both precursor and
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terminally differentiated T cells mediate tumor killing, and

increased proportions of these subsets may contribute to

favorable immunotherapy response (72, 73). In lung cancer,

increased levels of precursor-like T cells in responsive tumors

have been observed after treatment, thus suggesting that PD-1

blockade therapy preferentially blocks the differentiation from

precursor to terminally differentiated cells after effective treatment

(74, 75). In contrast to this observation, terminally differentiated

cells account for most post-treatment responsive tumors in BCC,

SCC or RCC (53). By online database, we found higher expression

of CXCR6 in GZMK+HAVCR2- and terminally differentiated cells

after immunotherapy, thus also validating that CXCR6 is an

effective predictor of the immunotherapy response.

Our work has several limitations that highlight directions for future

research. First, the sample size was limited, and larger cohorts of data

are needed to generalize our findings and investigate how additional

factors, such as tumor sites, tumor grade and disease subtypes, may be

associated with CD8+CXCR6+ T cell subsets. Second, a detailed

understanding of the distinct roles of CD8+CXCR6+ T cell subsets,

including how TME factors regulate recruitment and how

CD8+CXCR6+ T cells differentiated into other T cell subsets remains

to be determined. Third, in addition to in vitro validation using our

TMA cohorts, our in-silico analysis might require further experimental

validation to facilitate clinical translation, including gain-and loss-of-

function studies, and in vivo animal studies. Fourth, we explored the

role of CXCR6 and CD8+CXCR6+ T cells in immunotherapy response

using public ICB cohort. Further establishment of our own ICB cohort

of HCC is important to fully understand the role of CXCR6 and

CD8+CXCR6+ T cells.
Conclusion

In summary, our studies revealed a comprehensive single cell

multi-omics landscape of immune infiltration in HCC, and

identified key genes and cell subsets influencing immune

infiltration, thus providing insights into how immune infiltration

might occur and be therapeutically controlled in the future.
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