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Convolutional neural network
based on automatic
segmentation of peritumoral
shear-wave elastography images
for predicting breast cancer
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Nian-an He1*† and Lei Hu1*†

1Department of Ultrasound, The First Affiliated Hospital of University of Science and Technology of
China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China,
Hefei, Anhui, China, 2Department of Computing, Hebin Intelligent Robots Co., LTD., Hefei, China,
3Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Hefei City, The
Third Affiliated Hospital of Anhui Medical University, Hefei, China
Objective: Our aim was to develop dual-modal CNN models based on combining

conventional ultrasound (US) images and shear-wave elastography (SWE) of

peritumoral region to improve prediction of breast cancer.

Method: We retrospectively collected US images and SWE data of 1271 ACR-

BIRADS 4 breast lesions from 1116 female patients (mean age ± standard deviation,

45.40 ± 9.65 years). The lesions were divided into three subgroups based on the

maximum diameter (MD): ≤15 mm; >15 mm and ≤25 mm; >25 mm. We recorded

lesion stiffness (SWV1) and 5-point average stiffness of the peritumoral tissue

(SWV5). The CNN models were built based on the segmentation of different

widths of peritumoral tissue (0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm) and internal

SWE image of the lesions. All single-parameter CNN models, dual-modal CNN

models, and quantitative SWE parameters in the training cohort (971 lesions) and

the validation cohort (300 lesions) were assessed by receiver operating

characteristic (ROC) curve.

Results: The US + 1.0 mm SWE model achieved the highest area under the ROC

curve (AUC) in the subgroup of lesions with MD ≤15 mm in both the training (0.94)

and the validation cohorts (0.91). In the subgroups with MD between15 and 25 mm

and above 25mm, the US + 2.0 mm SWEmodel achieved the highest AUCs in both

the training cohort (0.96 and 0.95, respectively) and the validation cohort (0.93 and

0.91, respectively).

Conclusion: The dual-modal CNN models based on the combination of US and

peritumoral region SWE images allow accurate prediction of breast cancer.

KEYWORDS

convolutional neural networks (CNN), shear-wave elastography (SWE), peritumoral

stiffness, segmentation, breast cancer
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Introduction

The morbidity of breast cancer in Asian women with dense

breasts is even 4–6 times higher than that in western women with

fatty breasts (1–3). Breast ultrasound (US) has been recognized as the

main imaging method for diagnosing breast cancer (4–6). American

College of Radiology Breast Imaging Reporting and Data System

(ACR-BIRADS) is used for the evaluation and follow-up

recommendations of breast lesions detected by US. However,

radiologists’ subjective classification differences may affect

diagnostic performance, thereby leading to overtreatment, especially

for lesions with BI-RADS 4 category (5, 6).

Although shear-wave elastography (SWE) may improve the

diagnostic specificity of the conventional US for breast cancer, even

in cases of small or interval breast cancer (IBC) (4–7). However, due

to the inhomogeneity within the lesion (hemorrhage, calcification,

and cystic appearance) introduces subjective bias, which influences

the final measured value, the specificity remains limited up to 86%

when the quantitative SWE parameters were used, thereby may lead

to unnecessary biopsies (5–8)

Previous studies have confirmed that the assessment of peritumoral

stiffness of breast lesions can improve the accuracy of SWE in

predicting breast cancer, considering desmoplastic reaction and

tumor cell infiltration into the peritumoral stroma (9–12). Moreover,

the peritumoral invasion is an independent prognostic factor

significantly associated with an increased risk of relapse and death in

node-negative breast cancer patients (13, 14). However, it is difficult to

distinguish the boundary between the normal and tumor tissue in SWE

(13). Therefore, peritumoral stiffness of breast lesions is highly

dependent on radiologists’ experience rather than on the integrated

high-throughput imaging information (12–14). Thus, it is desirable to

develop approaches using artificial intelligence (AI) to integrate high-

throughput imaging information that cannot be directly identified by

unaided eye, so as to offer assistance to radiologists and improve the

efficiency and accuracy of breast cancer diagnosis.

Recently, deep convolutional neural network (CNN)-based

approaches have been considered as an effective approach for the

feature extraction and classification of US images in breast cancer

diagnosis (15–18). However, most of the CNN models used in the

diagnosis of breast cancer have been based on the US or SWE images

of intratumoral tissue rather than peritumoral tissue (15–20). The

peritumoral stiffness of breast lesions is an accurate predictor of breast

cancer (9–12). However, based on the traditional SWE technology, it

is difficult to obtain accurate SWE image of the peritumoral tissue,

and it is hard to estimate which width of the peritumoral tissue should

be evaluated to provide the optimal diagnostic index of benign and

malignant lesions (13).

Few studies have used CNN-based AI diagnostic systems to

predict breast cancer based on peritumoral region’s SWE image.

Therefore, the purpose of this study was to develop a dual-modal

CNN model based on peritumoral SWE image of breast lesions and

examine its diagnostic performance in breast cancer. The dual-modal
Abbreviations: ACR-BIRADS, American College of Radiology Breast Imaging

Reporting and Data System; CNN, convolutional neural networks; FNA, fine-

needle aspiration; MD: maximum diameter; ROI, region of interest; SWE, shear-

wave elastography; US,Ultrasound.
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CNNmodel was able to automatically recognize the location of breast

lesions in B-mode US images. After mapping the lesions’ boundaries

detected on B-mode US images to SWE images, segmentation of

different widths (0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm) of the

peritumoral tissue was automatically completed. Then, we evaluated

the predictive performance of each CNN model based on different

peritumoral widths for breast cancer.
Materials and methods

Study population

This retrospective study was approved by the institutional ethics

committee of the First Affiliated Hospital of the University of Science

and Technology of China (USTC). Between December 2019 and April

2022, the initial population included 1876 breast lesions in 1532

consecutive patients who had undergone US and SWE examinations.

The inclusion criteria were as follows: (i) ACR-BIRADS 4 category of

breast lesions; (ii) solid or cystic solid breast lesions examined by B-

mode US and SWE; (iii) core needle biopsy or surgical resection

performed to obtain accurate pathological results. The exclusion

criteria were as follows: (i) radiotherapy, chemotherapy, or

biological treatment before US examination; (ii) a history of breast

surgery (including excision or plastic surgery); (iii) pregnancy or

lactation; (iiii) non-mass lesions or larger lesions (larger than 40 mm),

which were beyond the maximum range of the SWE sampling frame.

Finally, a total of 1271 ACR-BIRADS 4 lesions from 1116 female

patients were analyzed in this study. The lesions were assigned to the

training cohort (971 lesions) and the verification cohort (300 lesions)

by random sampling at an approximate ratio of 3:1 (Figure 1).
Dual-modal image acquisition and
preprocessing

All of the US and SWE examinations were performed by breast

radiologists using the Siemens ACUSON Sequoia (Siemens

Healthcare GmbH, USA) US system equipped with 10 MHz linear

array transducers. We acquired and stored transverse and

longitudinal static images with the maximum diameter of breast

lesions on US, and images containing the lesion’s characteristics

(such as calcification, angulation, and spiculation sign) were also

stored. All breast lesions included in this study were of ACR-BIRADS

4 category. The category of all lesion was reassessed by two

radiologists both with more than eight years of working experience,

and another radiologist with 12 years of breast examination

experience was consulted to reach a final decision when

disagreements occurred.

SWE examination of each lesion was performed in machine

default modes, and we adjusted the size of a rectangular region of

interest (ROI) to cover the whole lesion. We stored a static SWE

image of the lesion and the surrounding tissue without measurement

(for image segmentation); the lesion was put in the middle of the SWE

region ensuring that the ROI included the lesion and at least 5 mm of

the surrounding breast tissue. Then, quantitative SWE parameters

were measured as follows: (i) a round ROI containing the lesion was
frontiersin.org

https://doi.org/10.3389/fonc.2023.1099650
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xie et al. 10.3389/fonc.2023.1099650
measured and its shear-wave velocity (SWV) was recorded as SWV1,

which represents the average stiffness of the lesion; (ii) five 3-mm-

wide round ROIs were selected for measurement; four of them were

placed at locations adjacent to the lesion (including peritumoral and

intratumoral tissues), and one ROI was placed inside of the lesion,

and the average SWV was recorded as SWV5, which represents the
Frontiers in Oncology 03
average stiffness of the lesion including the peritumoral tissue

(Figure 2). All SWE images were taken from the longitudinal and

transverse section of the breast lesions, and two senior breast

radiologists with more than eight years of clinical experience

performed all of the SWE examinations. The radiologists in this

study were blinded to the patients’ clinical data and pathological
FIGURE 1

Flowchart of breast lesions recruitment.
FIGURE 2

The US image and quantitative SWE parameters of metaplastic carcinoma (sarcomatoid carcinoma) in a 77-year-old woman. (A) US image of the lesion.
(B) SWE image of the lesion. (C) The SWV1 value of the lesion was 3.70 m/s, while that of the normal mammary gland was 2.34 m/s and that of adipose
tissue was 1.27 m/s. (D) The SWV5 value of the lesion and peritumoral region was 4.66 m/s.
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results. All of the US and SWE images extracted from the Siemens

database sites were in.jpg format. In order to determine whether the

size of lesions has an impact on the selection of optimal peritumoral

region SWE images of the lesions, in this study we divided the lesions

to three subgroups depending on their maximum diameter (MD)

(≤15 mm; >15 mm and ≤25 mm; >25 mm).

All of the breast lesions were pathologically confirmed through

US-guided core needle biopsy or surgical pathology after US and SWE

examination. Benign lesions were followed-up with US for at least 18

months and showed no increase in the maximum diameter and

volume on conventional US.
Labeling and segmentation of the
peritumoral region

We constructed a CNN segmentation model for segmentation of

lesions on SWE images. Traditionally, color SWE images are often not

suitable for deep learning or induce instability because boundaries of

lesions are difficult to label. Therefore, for the segmentation of the

interior of the lesion, we labeled the SWE images according to the lesion

boundary on the US image. First, we pretrained two backbone models

of PP-LiteSeg and EfficientNet-B0 using Simsiam network architecture

to identify the lesions on US images. Simsiam is a siamese network that

has shown to be an effective self-supervised method. We used 83590

non-annotated US images of breast lesions for pretraining. Then, the

lesion’s region in each US image in the training cohort was manually

labeled using an open-source annotation tool (Labelme, https://github.

com/wkentaro/labelme) by one radiologist (with eight years of

experience in breast US) who was blinded to the clinical data and

histopathological results of the patients.
Frontiers in Oncology 04
After training, we obtained a segmentation model for describing

the shape of the lesion on US images. The segmentation model

allowed us to draw an ROI encompassing breast lesion’s boundary

on the two-dimensional image, and then map the lesion’s boundary

onto the SWE image and automatically expand the boundary of the

peritumoral tissue with different widths (0.5 mm, 1.0 mm, 1.5 mm,

2.0 mm). For each SWE image of breast lesions, the following six

images were finally segmented: the interior of the lesion; the lesion

including 0.5 mm of peritumoral tissue; the lesion including 1.0 mm

of peritumoral tissue; the lesion including 1.5 mm of peritumoral

tissue; the lesion including 2.0 mm of peritumoral tissue; and the

whole rectangular SWE ROI image.

The segmentation model comprised encoder, aggregation, and

decoder. It was implemented on PaddlePaddle (https://github.com/

PaddlePaddle/PaddleSeg). Compared with the default config, we

removed some data augmentations including ResizeStepScaling and

RandomPaddingCrop, added rotation augmentations, modified the

num_classes to 2, and limited input_size to 320×320. OHEM loss was

selected according to the better performance in a small target binary

segmentation than cross-entropy loss. The process of model

pretraining and segmentation network construction is shown

in Figure 3.

To achieve high consistency of the automatic segmentation

model, the Dice similarity coefficient, Cohen’s kappa, Hausdorff 95

(95% HD), and the segmentation metrics (area, major axis length, and

minor axis length) were used to evaluate each lesion’s pixel and

boundary consistency of the three radiologists and the CNN

segmentation model in the validation cohort. Each of the three

radiologists had eight years of experience in breast US and was

blinded to the clinical data and histopathological results of

the patients.
FIGURE 3

The process of model pretraining and segmentation network construction. The trained segmentation model automatically segments the original US and
SWE images into six standard data inputs to classification models: (A) the segmented US image of the lesion; (B) the segmented SWE image of the lesion;
(C) the segmented SWE image of the lesion including 0.5 mm of peritumoral tissue; (D) the segmented SWE image of the lesion including 1.0 mm of
peritumoral tissue; (E) the segmented SWE image of the lesion including 1.5 mm of peritumoral tissue; (F) the segmented SWE image of the lesion
including 2.0 mm of peritumoral tissue.
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CNN-based predictive model building based
on the single-segmentation peritumoral
region SWE image

For predicting breast cancer, we built benign and malignant

binary classification CNN models by EfficientNet-B0. Seven single-

parameter CNN models were trained based on seven individual input

images (Figure 4). Five of them were segmented on SWE (Internal

SWE CNN, 0.5 mm SWE CNN, 1.0 mm SWE CNN, 1.5 mm SWE

CNN, 2.0 mm SWE CNN); one was segmented on US image; and the

last one was the whole heat map region on SWE image. EfficientNet-

B0 architecture is shown in Figure 4. The optimizer was SGD with 0.9

momentum and Le-4 weight-decay; the loss function was cross

entropy loss; batch was 128; and the learning rate was 0.01. Data

augmentation included random horizontal flip, random brightness,

random contrast, and random saturation. We implemented them in

an open-source machine learning framework (PyTorch, version is

1.10, https://pytorch.org).
CNN-based predictive model building based
on the fusion of peritumoral region
segmentation SWE images and US images

Furthermore, six corresponding US + SWE image CNN models

(US + Internal SWE CNN; US + 0.5 mm SWE CNN; US + 1.0 mm

SWE CNN; US + 1.5 mm SWE CNN; US + 2.0 mm SWE CNN; US +

ROI SWE CNN) were also trained based on the fusion-input binary

classification CNN by using both US and SWE images as the network

input. We fused the two images on the first convolution layer of the
Frontiers in Oncology 05
network. For the fusion input, we modified the EfficientNet-B0, which

increased input channel of the first convolution layer from 3 to 6.

Correspondingly, two three-channel images were concatenated into

six channels on the channel axis and then resized into 224×224. Other

parameters of the model were the same as before, and the model

architecture is shown in Figure 5.
Statistical analysis

Statistical analysis was performed using commercially available

SPSS software (version 19.0; Chicago, USA). All numerical data were

presented as the mean ± standard deviation. The Shapiro–Wilk test was

used to verify whether the quantitative data were normally distributed.

The Mann–Whitney U tests were used to compare the continuous

variables between the benign and malignant groups or between the

three subgroups in the training and validation cohorts. To evaluate the

consistency between the radiologists and the CNN segmentation model

segmentation, we utilized the sensitivity, specificity, Dice coefficient,

Cohen’s kappa, and 95% Symmetric Hausdorff Distance. The Pearson

correlation coefficients and Wilcoxon signed-rank tests were used to

determine whether the CNN segmentation model’s performance

aligned with that of the radiologists. We used three metrics (area,

length of major axis, and length of minor axis) to evaluate the

consistency of segmentation. The performances of all predictive CNN

models and two quantitative SWE parameters were assessed using

receiver operating characteristic (ROC) curve analysis. ROC was also

used to calculate the corresponding sensitivity (SEN), specificity (SPE),

positive predictive value (PPV), negative predictive value (NPV), and

area under the ROC curve (AUC). The McNemar test was used for
FIGURE 4

Network architecture of single prediction model for breast cancer. The input layer is a single US image or a segmented SWE image.
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paired comparisons of proportions. All statistical tests were two-sided,

and p values lower than 0.05 were considered to indicate

statistical significance.
Results

Clinicopathologic characteristics of all
breast lesions

The clinicopathologic characteristics and subgroups of all 1271

breast lesions are summarized in Table 1. Among the 1271 BI-RADS

4 lesions (ACR-BIRADS 4A:397; ACR-BIRADS 4B: 575; ACR-

BIRADS 4C: 299), 749 (58.9%) were malignant and 522 (41.1%)

were benign, as shown in Table 2. The mean age of the entire cohort

was 45.40 ± 9.65 years (range, 19–79 years); the mean age in the

malignant group was greater than that in the benign group (51.29 ±

7.29 vs. 39.56 ± 6.73, P < 0.001), and there was no significant

difference in the mean age between the training and the validation

cohorts (P > 0.05 for all). The MD of the malignant group was larger

than that of the benign group (19.98 ± 5.22 mm vs. 14.55 ± 7.74 mm,

P < 0.001), but there was no difference between the training cohorts

and the validation cohorts (P > 0.05 for all). The lesions were divided

into subgroups depending on the MD. The subgroup with the MD of
Frontiers in Oncology 06
lesions ≤15 mm included 218 lesions (167 in the training cohort and

51 in the validation cohort; 89 benign and 129 malignant); the

subgroup with MD between 15 mm and 25 mm included 779

lesions (598 in the training cohort and 181 in the validation cohort;

327 benign and 452 malignant); and the subgroup with MD >25 mm

included 274 lesions (206 in the training cohort and 68 in the

validation cohort; 112 benign and 162 malignant).
Quantitative SWE parameters of all breast
lesions

Considering 1271 lesions, SWV values of the malignant group

were significantly higher than those of the benign group, including the

intratumoral stiffness (SWV1: 3.76 ± 0.78 m/s vs. 1.85 ± 0.65 m/s; P <

0.01) and the peritumoral stiffness (SWV5: 4.02 ± 0.82 m/s vs. 1.67 ±

0.74 m/s; P < 0.01).

SWV5 values were significantly higher than SWV1 values in the

malignant group, ACR-BIRADS 4B and 4C group; SWV5 values were

lower than SWV1 values in the benign group and ACR-BIRADS 4A

group (all P < 0.01). SWV5 and SWV1 values in the subgroup with

15 mm <MD ≤25 mm were higher than those in the subgroups with

MD ≤15 mm and MD >25 mm, because there were more malignant

lesions in this subgroup (all P < 0.01).
FIGURE 5

Network architecture of dual-modal prediction model for breast cancer. The input layer inp.
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Consistency analysis of lesion segmentation
manually vs. CNN model

We calculated the average values of the segmentation metrics’

intra- and interrater consistency of the three radiologists, as shown in

Table 3. Wilcoxon signed-rank tests were conducted, and Pearson’s

correlation coefficients were calculated using geometric features

extracted from pairwise comparison metrics in the radiologists’

segmentations. Wilcoxon tests indicated that the CNN

segmentation model satisfactorily matched the performance of the

radiologists regarding sensitivity, specificity, the Dice coefficient,

Cohen’s kappa, and 95% Symmetric Hausdorff Distance (P > 0.05).
Frontiers in Oncology 07
The Dice coefficient and Cohen’s kappa had the best values in

Radiologist 2-CNN (0.83; 0.82); the specificity had the best values

in Radiologist 3-CNN (0.99); and the 95% Symmetric Hausdorff

Distance had the best values in Radiologist 1-CNN (1.19 mm)

(Table 3). The box-plot diagrams show the intra- and interrater

consistency of the radiologists and the CNN model compared to the

radiologists (Figure 6). The Pearson’s correlation coefficients showed

a strong relationship between the area, major and minor axis length

between all of the observers (radiologists vs. CNN model r = 0.98,

0.97, 0.99). As shown in Bland–Altman plots, the differences between

the CNN model and the three radiologists in segmentation area,

major axis length, and minor axis length were almost 0 (Figure 7).
TABLE 1 Distribution of subgroups studied and quantitative SWE parameters of all lesions.

Total Benign Malignant
Training
cohort

Validation
cohort

Subgroup
A

MD≤15mm

Subgroup B
15mm≤MD≤25mm

Subgroup
C

MD>25mm

ACR-
BIRADS
4A

ACR-
BIRADS
4B

ACR-
BIRADS
4C

Age
(year)

45.40 ±
9.65

39.56 ±
6.73

51.29 ±
7.29

47.10 ±
6.65

46.87 ±
7.54

47.33 ±
7.45

46.98 ± 6.11
47.28 ±
9.29

44.73 ±
7.55

44.98 ±
6.11

46.28 ±
6.99

Lesions
(n)

1271 522 749 971 300 218 779 274 397 575 299

Maximum
diameter
(mm)

17.45 ±
8.51

14.55 ±
7.74

19.98 ±
5.22

18.55 ±
7.74

17.67 ±
6.42

_ _ _ 15.99 ±
7.74

15.98 ±
5.22

19.59 ±
3.34

B vs. M
522
vs.749

_ _ 401 vs.
570

121 vs.
179

89 vs.129 327 vs.452 112 vs. 162 350 vs. 47
171 vs.
404

1 vs. 298

T vs. V
971
vs.300

401
vs.121

570 vs.
179

_ _ 167 vs.51 598 vs.181 206 vs.68 157 vs.51 618 vs.189 196 vs.60

SWV1
(m/s)

2.67
±1.87

1.85
±0.65

3.76±0.78
2.65
±1.34

2.71±1.52 2.48±1.35 2.98±0.98 2.65±1.08 2.04±1.15 2.89±1.98 3.52±2.08

SWV5
(m/s)

2.98
±1.65

1.67
±0.74

4.02±0.82
2.91
±1.42

3.05±1.17 2.66±1.12 3.21±1.02 2.73±0.97 1.91±0.79 3.22±1.98 4.03±2.08

P value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fro
MD, maximum diameter of lesions; T, training cohort; V, validation cohort; B, benign; M= malignant; _ indicates not applicable; ACR-BIRADS: American College of Radiology Breast Imaging
Reporting and Data System; P value: Compared with SWV1 and SWV5.
TABLE 2 Summary of pathologic findings.

Histopathologic results n (%)

Benign (n = 522) Fibroadenoma 206 (39.5)

Adenosis 136 (26.1)

Intraductal papilloma 59 (11.4)

Adenosis with Fibroadenoma or Intraductal papilloma 54 (10.3)

Others# 67 (12.7)

Malignant (n =749) Invasive ductal carcinoma 556 (74.3)

Ductal carcinoma in situ 84 (11.2)

Invasive lobular carcinoma 54 (7.3)

Intraductal papillary carcinoma 20 (2.6)

Mucinous carcinoma 13 (1.7)

Others* 22 (2.9)
Others#=Interstitial lesions (n=19); Inflammatory lesions (n=17); Fibroepithelial tumor(n=13); Interstitial hyperplasia with hyaline degeneration(n=11); Phyllodes tumor(n=5) Diffuse large B-cell
lymphoma (n=2).
Others*=Adenoid ductal carcinoma in situ (n=6); Poorly differentiated adenocarcinoma (n=5); Lobular carcinoma in situ (n=5); Mixed ductal and lobular carcinoma (n=3); Mucinous carcinoma with
ductal carcinoma in situ (n=2); Metaplastic carcinoma (sarcomatoid carcinoma) (n=1).
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Diagnostic performance of the quantitative
SWE parameters, US CNN model, and SWE
CNN models for predicting breast cancer in
the training and the validation cohorts

The diagnostic performances of quantitative SWE parameters, US

CNN models, and SWE CNN models in both the training and the

validation cohorts are summarized in Table 4.

Among these three single models, the 1.0 mm SWE image CNN

model had the highest area under curve (AUC), accuracy (ACC),

sensitivity, and specificity for predicting breast cancer in the subgroup

with MD ≤15 mm both in the training and in the validation cohort

(0.81, 79.26%, 68.86%, 82.52% vs. 0.75, 74.49%, 62.97%, 78.53%).

In the subgroups with 15 mm <MD ≤25 mm andMD >25 mm, the

2.0 mm SWE image CNN model had the highest AUC, ACC,

sensitivity, and specificity both in the training cohort (15 mm <MD

≤25 mm: 0.85, 82.64%, 66.24%, 80.33%; MD >25 mm: 0.84, 80.34%,

69.34%, 82.63%) and the validation cohort (15 mm <MD ≤25 mm: 0.81,

78.87%, 63.44%, 76.85%; MD >25 mm: 0.78, 77.73%, 65.73%, 77.64%).
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Regardless of the grouping method, the AUCs and ACC of the

SWE image CNNmodels were all better than SWV5 and the US CNN

model in predicting breast cancer (all P < 0.05), except for the 0.5 mm

and the internal SWE image CNN models. There was no significant

difference between the SWV5 and the US CNN model in sensitivity,

specificity, and AUCs (all P > 0.05, Figure 8).
Diagnostic performance of the US + SWE
dual-modal CNN model for predicting
breast cancer in the training and the
validation cohorts

In both the training and the validation cohorts, the overall

performances of the US + SWE image CNN models were slightly

higher than those of the corresponding single-image CNN models.

The US CNN + 1.0 mm SWEmodel achieved the highest AUC for

MD ≤15 mm both in the training cohort (0.94) and in the validation

cohort (0.91) (Figure 8). In the subgroup with MD ≤15 mm, the US +

1.0 mm SWE CNN model achieved the highest ACC, sensitivity, and

specificity both in the training cohort (88.67%, 78.53%, 85.63%,

respectively) and in the validation cohort (85.54%, 77.72%,

82.52%, respectively).

In the subgroups with 15 mm <MD ≤25 mm and MD >25 mm,

the US CNN + 2.0 mm SWE model achieved the highest AUCs both

in the training cohort (0.96, 0.95, respectively) and in the validation

cohort (0.93, 0.91, respectively) (Figure 8). Comparing the results

obtained by the US + SWE dual-modal CNNmodel to those of the US

images CNN model, there were 6.2%, 5.7%, and 8.7% average

percentage increases for ACC, sensitivity, and specificity,

respectively, where the improvement in specificity was significant,

indicating that the dual-modal CNN model can improve specificity

without loss of sensitivity for classifying breast cancer.

Similarly, the US + 2.0 mm SWE CNN model achieved the

highest ACC, sensitivity, and specificity in both the training and the

validation cohorts for 15 mm <MD ≤25 mm (91.34%, 75.63%, 86.98%

and 90.76%, 72.53%, 84.22%) and MD >25 mm (86.65%, 80.32%,

87.44% and 84.23%, 77.38%, 84.75%).
TABLE 3 Mean values of pairwise comparison metrics between all
observers.

Dice Cohen’s
kappa

95% HD Specificity Sensitivity

Radiologists 1-
2

0.79 0.74 1.45
mm

0.98 0.91

Radiologists 2-
3

0.81 0.79 1.34
mm

0.98 0.84

Radiologists 1-
3

0.78 0.80 1.26
mm

0.95 0.76

Radiologists 1-
CNN

0.80 0.81 1.19mm 0.96 0.84

Radiologists 2-
CNN

0.83 0.82 1.29
mm

0.97 0.85

Radiologists 3-
CNN

0.82 0.81 1.44
mm

0.99 0.77
The best values are shown in bold. The radiologists are numbered 1, 2, 3, and the model is labeled
CNN.
A B C

FIGURE 6

Box-plot diagrams of Dice (A), Cohen’s kappa (B), and 95% Hausdorff metrics (C) compared between the radiologists’ segmentation (RS-RS) and between
the experts and deep learning model segmentation (RS-CNN). RS, radiologists; CNN, convolutional neural network.
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A B C

FIGURE 7

Bland–Altmann plots showing the model performance vs. that of each radiologist in terms of lesion major axis length (A), lesion minor axis length (B) and
lesion area (C).uts a US image and a segmented SWE image at the same time.
TABLE 4 Performance summary of SWE CNN model, US+SWE CNN models and quantitative SWE parameters for predicted breast cancer in the training
and validation cohort.

SWE CNN models US + SWE CNN models
US CNN

models
SWV1 SWV5

Internal 0.5 mm 1.0 mm 1.5 mm 2.0 mm ROI Internal 0.5 mm 1.0 mm 1.5 mm 2.0 mm ROI

Subgroup of lesions ≤ 15 mm (n= 216 )

AUC

T 0.65 0.70 0.81 0.76 0.75 0.74 0.81 0.89 0.94 0.92 0.90 0.87 0.75 0.70 0.79

V 0.59 0.66 0.75 0.65 0.64 0.65 0.79 0.85 0.91 0.89 0.88 0.82 0.77 0.65 0.73

ACC%

T 64.23 72.46 79.26 74.70 73.56 70.71 75.65 82.97 88.67 87.32 85.45 84.57 75.54 78.64 81.89

V 62.45 68.38 74.49 72.46 72.23 69.55 74.11 80.43 85.54 85.54 82.24 80.98 72.55 74.61 73.57

SEN%

T 47.65 63.69 68.86 66.85 65.64 64.53 57.53 65.64 78.53 76.58 70.32 69.63 77.33 65.52 65.63

V 45.42 61.42 62.97 64.53 63.52 62.37 55.36 60.48 77.22 75.22 67.73 65.53 75.26 63.63 62.73

SPE%

T 68.23 73.63 82.52 75.64 74.63 72.52 74.66 79.64 85.63 84.93 85.50 83.57 76.58 67.53 79.33

V 66.53 69.93 78.53 72.25 71.55 68.42 73.52 74.74 82.52 81.86 81.93 79.87 71.48 62.53 75.78

PPV%

T 67.75 73.97 77.64 75.90 74.94 72.73 76.33 82.53 85.85 84.63 77.63 75.44 76.34 71.64 76.53

V 62.77 70.53 73.28 71.63 70.64 68.28 74.77 80.27 82.12 81.73 79.24 74.24 73.64 70.53 72.63

NPV%

T 65.75 67.85 75.66 74.63 72.64 70.64 72.74 75.72 77.14 76.84 74.35 73.63 74.86 71.63 74.25

V 62.65 65.66 73.67 73.32 70.35 66.67 70.53 73.02 73.54 72.53 71.89 70.52 73.67 68.52 72.55

Subgroup of 15 mm > lesions ≤ 25 mm (n= 778 )

AUC

T 0.69 0.73 0.76 0.78 0.85 0.78 0.82 0.86 0.91 0.93 0.96 0.91 0.76 0.75 0.81

V 0.64 0.68 0.70 0.73 0.81 0.70 0.75 0.81 0.85 0.87 0.93 0.86 0.73 0.71 0.76

ACC%

T 67.33 68.43 72.32 75.46 82.64 75.34 78.64 80.63 85.64 88.69 91.34 90.45 81.43 76.64 80.32

V 64.43 64.76 69.76 72.42 78.87 73.53 75.75 76.75 83.63 85.85 90.76 88.65 77.64 75.74 78.34

SEN%

T 46.53 57.35 60.63 64.35 66.24 61.53 70.53 71.74 72.64 74.53 75.63 74.53 64.53 63.63 64.33

V 44.43 55.53 57.63 60.42 63.44 56.63 65.53 67.53 66.53 70.53 72.53 70.53 58.42 59.34 63.53

SPE%

T 71.74 73.64 76.53 75.68 80.33 74.78 75.85 78.96 84.36 84.74 86.98 85.64 76.74 66.84 74.26

V 66.47 70.63 72.35 72.87 76.85 72.25 73.64 72.63 80.75 81.85 84.22 83.63 73.45 62.67 70.75

PPV%

T 70.53 71.53 75.63 76.76 80.56 73.64 83.65 83.76 85.64 85.98 87.96 84.53 78.64 75.76 79.54

V 65.75 68.82 72.73 73.81 76.73 70.97 78.14 80.14 83.34 81.34 85.34 82.53 74.22 73.25 74.82

NPV%

T 64.54 66.76 67.54 65.53 76.87 65.78 74.65 76.64 77.75 79.94 81.26 80.09 76.75 71.64 75.84

V 61.85 63.64 62.75 64.74 74.93 62.97 70.93 72.64 73.36 75.13 77.57 76.32 73.21 68.96 73.26

Subgroup of lesions > 25mm (n=274 )

AUC

T 0.66 0.74 0.78 0.80 0.84 0.81 0.84 0.88 0.91 0.94 0.95 0.92 0.77 0.72 0.82

V 0.63 0.67 0.70 0.74 0.78 0.70 0.75 0.78 0.87 0.89 0.91 0.87 0.75 0.68 0.74

(Continued)
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Discussion

The most important contribution of this work is the introduction

of the dual-modal CNN architecture to predict breast cancer. We

adopted the deep learning algorithm-assisted strategy for clinical

diagnosis of breast cancer based on the automatic segmentation of

peritumoral region on ultrasound SWE images. Our dual-modal

CNN architecture improved the SWE diagnostic accuracy of breast

cancer, reaching 90.76%.
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The ACR-BIRADS category is based on the morphological

features visible on US images. This approach has high sensitivity

but relatively low specificity, thereby leading to unnecessary biopsy

and excessive diagnosis (19, 20). The SWE examination has been

reported to be able to increase specificity and sensitivity for predicting

breast cancer (8–10). Our results showed that SWV5 values were

higher than SWV1 values in the malignant group (all P < 0.001), while

there was no significant difference between SWV1 and SWV5 in the

benign group. SWV5 had higher AUCs than SWV1 both in the
TABLE 4 Continued

SWE CNN models US + SWE CNN models
US CNN

models
SWV1 SWV5

Internal 0.5 mm 1.0 mm 1.5 mm 2.0 mm ROI Internal 0.5 mm 1.0 mm 1.5 mm 2.0 mm ROI

ACC%

T 65.45 67.63 71.77 73.53 80.34 71.76 79.75 80.74 83.64 85.64 86.65 86.32 78.79 77.90 78.06

V 62.25 64.75 69.85 70.74 77.73 69.64 75.63 78.74 80.25 83.22 84.23 83.63 75.52 76.73 74.86

SEN%

T 50.64 53.65 65.83 68.85 69.34 67.53 56.33 67.73 76.53 78.58 80.32 75.63 76.53 74.59 79.61

V 48.52 50.66 63.27 66.83 65.73 64.33 54.78 65.37 73.72 75.72 77.38 72.63 74.27 71.23 76.36

SPE%

T 72.64 75.64 73.78 76.86 82.63 75.53 74.53 78.57 82.64 84.35 87.44 84.53 76.63 74.53 80.53

V 68.87 72.54 70.98 72.29 77.64 70.28 73.74 73.88 80.75 83.98 84.75 80.37 73.96 73.64 74.23

PPV%

T 67.85 70.65 73.66 75.63 82.43 72.64 82.64 83.64 84.23 86.04 86.57 84.35 80.42 76.53 79.64

V 64.65 67.37 70.75 72.64 77.74 70.83 78.44 80.85 82.75 83.44 84.37 83.25 76.74 73.67 75.36

NPV%

T 65.64 67.54 70.63 73.53 83.65 72.64 79.64 80.53 81.04 82.03 87.64 80.74 76.37 73.53 79.84

V 62.53 62.79 66.95 70.95 76.96 69.85 73.26 74.86 75.74 75.98 86.43 73.44 74.75 70.64 75.89
frontiers
The best values are shown in bold. T, training cohort; V, validation cohort; ROI, whole SWE ROI box image; SWV, shear wave velocities.
FIGURE 8

The ROC curves of the prediction CNN models and the quantitative SWE parameters (SWV1 and SWV5) in both the training and the validation cohorts for
the three subgroups. (A) Based on the ROC curves of the subgroup with MD ≤15 mm, the US + 1.0 mm SWE CNN showed the highest AUCs in the
training (0.94) and in the validation (0.91) cohorts. (B) From the ROC curves of the subgroup with 15 mm< MD≤ 25 mm, the US + 2.0 mm SWE CNN
showed the highest AUCs in the training (0.96) and in the validation (0.93) cohorts. (C) From the ROC curves of the subgroup with MD >25 mm, the US
+ 2.0 mm SWE CNN showed the highest AUC in both the training (0.95) and the validation (0.91) cohorts. ROC, receiver operating characteristic; AUC,
area under the ROC curve; MD, maximum diameter of the lesion. The best values are shown in red box mark.
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training and in the validation cohorts for predicting breast cancer,

regardless of the subgroup. This demonstrated that stiffness that

includes peritumoral tissue is a better indicator of breast cancer,

which is consistent with previous studies (21–24), because the

peritumoral region of breast cancer has abnormally stiff collagen

fibers, which is related to cancer fibroblasts, as well as infiltration of

cancer cells into the surrounding tissue (25, 26). However, based on

the traditional SWE technology, it is difficult to accurately select the

surrounding tissues and obtain accurate peritumoral stiffness value.

This may be the reason why SWE technology has not yet been widely

applied for clinical diagnosis of breast cancer (27, 28). Few studies

have evaluated the value of intra- and peritumoral regions in the

prediction of breast cancer, and no studies have shown the diagnostic

efficacy of CNNs segmenting different widths of peritumoral region of

breast cancer.

In the subgroup with MD ≤15 mm, comparing the results

obtained by dual-modal CNN models integrating US and SWE

images with those of just using US or SWE images single CNN

models, the accuracy, sensitivity, and AUC were all improved, with

specificity increasing most significantly (average 7.8%). Such an

improvement in specificity may be because SWE images provide

information on the stiffness of lesions, complementing the US image

diagnosis of breast cancer from another dimension. The US + 1.0 mm

SWE model achieved the highest AUC in diagnosing breast cancer

both in the training (0.94) and in the validation cohorts (0.90).

In the subgroups with 15 mm <MD ≤25 mm and MD >25 mm,

the dual-modal US + SWE model still had higher AUC, accuracy,

sensitivity, and specificity than any of the single-parameter CNN

models. The US + 2.0 mm SWE model achieved the highest AUC in

predicting breast cancer both in the training (0.96; 0.95) and in the

validation cohort (0.93; 0.91). These results show that the most

effective SWE image region for predicting breast cancer is the area

containing 2.0 mm of peritumoral tissue. Similarly, for the lesions

with the maximum diameter ≤15 mm, the most effective image region

for SWE to predict breast cancer is the area containing 1.0 mm of

peritumoral tissue. Regardless of the group, the 0.5 mm SWE CNN

model and the US + 0.5 SWE dual-modal CNN model showed no

significant difference from the corresponding lesion’s internal SWE

CNN model, possibly because stiffness of the 0.5 mm peritumoral

tissue was very close to intratumoral tissue stiffness.

The reliability and repeatability of automatic segmentation are

crucial. In our research, the segmentation CNNmodel achieved stable

consistency with all three radiologists in terms of Dice coefficient and

Cohen’s kappa. The difference of each observer in the segmentation

area and the maximum diameter of the transverse and longitudinal

sections of the lesions was very close to 0, indicating that the CNN

segmentation model has excellent consistency with radiologists.

The CNN architecture does not require manual input of

radiomics signatures, but automatically selects useful features from

US images for classification; this improves diagnostic performance

and efficiency while minimizing artificial false-positive or false-

negative errors (29–32). However, it is unknown which region of

the CNN model based on US and SWE images can improve the
Frontiers in Oncology 11
diagnostic efficiency of breast cancer, so it is called a black-box

learning method, which may lead to ambiguous interpretation of

CNN features (33, 34). In our study, we constructed an image

segmentation model to automatically segment the effective area (the

optimal peritumoral width) on SWE images that is conducive to the

diagnosis of breast cancer, and then integrated the automatic

segmentation model into our CNN prediction model, thereby

breaking the previous CNN black-box learning mode and greatly

improving the efficiency of the CNN model in the diagnosis of

breast cancer.

Our results showed that the CNN models combining US images

with SWE images containing 1 mm or 2 mm of the peritumoral tissue

were superior to whole SWE ROI image models in predicting breast

cancer, indicating that the effective SWE region of breast cancer was

the area covering a certain width of peritumoral tissue. Moreover, the

lesions with different diameters have differential infiltration into the

peritumoral tissue. Our CNN model based on automatic

segmentation of SWE images of peritumoral tissue can

automatically identify effective regions of breast lesions’ SWE

image, thereby improving the work efficiency of radiologists and

reducing their SWE measurement workload.

There are some limitations to this study. First, this study only

considered ACR-BIRADS 4 lesions, there are some deviations in the

study samples. Second, all images and data came from a single center.

Therefore, a larger data cohort acquired from multiple centers with

different models of US equipment is necessary to create a more

comprehensive training cohort.
Conclusion

In conclusion, the dual-modal CNN models based on the

combination of US images and peritumoral region’s SWE allow for

accurate prediction of breast cancer. Moreover, when lesion’s

diameter is ≤15 mm, the best diagnostic SWE image area for

predicting breast cancer contains 1.0 mm of the peritumoral region.

When lesion diameter is >25 mm, or between 15 mm and 25 mm, the

SWE image containing 2.0 mm of the peritumoral region is the

optimal diagnostic area for predicting breast cancer.
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