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Microwave ablation has been one form of thermal ablation in treatments for many

tumors, which can locally control unresectable tumors. Ferroptosis is iron-

dependent cell death caused by the cumulative reactive oxygen species and

lipid peroxidation products. Recently, increasing evidence has shown that

ferroptosis might play a vital role in MWA-induced tumor suppression. In this

article, we briefly illustrate the concept of ferroptosis, the related signal pathways

and inducers, the basic principle of microwave ablation in killing tumors, and the

key molecules released after microwave ablation. Then, we describe the cross-

talking molecules between microwave ablation and ferroptosis, and discussed the

potential mechanism of microwave ablation-induced ferroptosis. This review

explores the therapeutic target of ferroptosis in enhancing the systemic

antitumor effect after microwave ablation, providing theoretical support in

combinational microwave ablation with pro-ferroptosis therapy.

KEYWORDS

microwave ablation, ferroptosis, heat shock protein, hypoxia-inducible factor, nuclear
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Introduction

Cell death is necessary to maintain normal tissue function and morphology (1). It is of

great significance in inhibiting the excessive proliferation of tumor cells. Caspase-dependent

apoptosis, that is, programmed cell death, has been considered the only form of regulated cell

death (RCD) for a long time (2). However, because most tumors have congenital resistance to

apoptosis, the new form of cell death instead of inducing apoptosis has gradually become the

new cancer treatment strategy (3). With the deepening of cell research, we have a new

understanding of the cell death process and found several new regulatory pathways and

unique cell death patterns, such as pyroptosis and necroptosis. Pyroptosis is influenced by the

engagement of pore-forming proteins, gasdermin D (GSDMD) (4), while necroptosis is

influenced by mixed lineage kinase domain-like protein (MLKL) (5). However, ferroptosis,

which was coined in 2012 (6), is a form of cell death relying on iron regulation driven by
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excessive lipid peroxidation (7). Among these RCDs, ferroptosis

gradually received a great deal of attention because it involves in

growth, development, aging, immunity, and other physiological and

pathological conditions (8). Ferroptosis is mainly caused by iron-

dependent lipid peroxidation. Different pathways directly or

indirectly regulate glutathione peroxidase, leading to the

accumulation of lipid peroxidation, and ultimately leading to cell

death (7). Ferroptosis is involved in a variety of carcinogenic

pathways (9). Resistance to traditional antitumor therapy in some

highly aggressive tumors, such as clear cell carcinoma, is associated

with ferroptosis (10). Therefore, a comprehensive understanding of

the regulatory mechanism of ferroptosis is of great significance and

has broad prospects in tumor treatment.

Image-guided thermal tumor ablation is a precise and minimally

invasive treatment technology guided by computed tomography (CT)

or ultrasound. It uses the thermal effect to directly induce irreversible

damage or necrosis of tumor cells (11). As an alternative method of

surgical treatment, microwave ablation (MWA) has attracted more

attention in the local treatment of unresectable tumors (12). It has a

broad application prospect in the treatment of liver malignancies, lung

malignancies, as well as bone metastases and renal tumors (13, 14).

The changes in tumor cell death and systemic immune

microenvironment induced by MWA are not fully clarified,

especially whether MWA affects the ferroptosis of tumor cells needs

further exploration. In this article, we briefly illustrate the concept of

ferroptosis, the related signal pathways and inducers, the basic

principle of microwave ablation in killing tumors, and the key

molecules released after microwave ablation. Then, we describe the

cross-talking molecules between microwave ablation and ferroptosis,

and discussed the potential mechanism of microwave ablation-

induced ferroptosis. Although there is no clear direct evidence that

MWA can induce ferroptosis, it is true that some key signal molecules

closely related to ferroptosis are up-regulated after MWA. Therefore,

whether MWA can induce ferroptosis and whether MWA combined

with ferroptosis inducers is a feasible new cancer treatment strategy

deserve further discussion. This review explores the therapeutic target

of ferroptosis in enhancing the systemic antitumor effect after

microwave ablation, providing theoretical support in combinational

microwave ablation with pro-ferroptosis therapy.
Ferroptosis

The ferroptosis mechanisms

The basic mechanism of ferroptosis is to regulate the balance of

oxidative damage and antioxidant defense (15) (Figure 1). The two

basic signals that cause oxidant damage are iron accumulation and

lipid peroxidation (16). In this section, we have summarized the

mechanism of ferroptosis and ferroptosis-inducers.

Iron accumulation
In general, iron balance is achieved through iron transport systems

(17). Epidemiological studies have shown that excess iron can increase the

incidence and risk of cancer, and experimental studies also have shown

that iron is closely associated with tumorigenesis, tumor growth, invasion,
Frontiers in Oncology 02
andmetastasis (18). The relationship between iron and tumor growth and

progression is based on the role of iron in metabolism, enrichment, and

metastasis (19). Iron is transported from the outside to the inside by the

transferrin (TF) and transferrin receptor (TFR) (20). Imported iron is

transported and stored in the shape of iron-protein complexes. The

transfer of intracellular iron from cell to cell is mediated by ferroportin

(FPN), which is the only iron export protein to control iron outflow (19).

To accumulate iron in cells, it can increase the intake of iron or decreases

iron output, promoting oxidative damage and ferroptosis in cancer cells.

Iron response element-binding protein 2 (IREB2) encodes a master

regulator of the metabolism of iron (6). IREB2 silencing markedly

mitigated erastin-induced ferroptosis. In addition, the RAS-RAF-MEK

pathway plays a final role in the sensitivity of ferroptosis in some cancer

cell lines (21). One explanation is that oncogenic RAS can increase the

amount of intracellular iron by decreasing ferritin and increasing TFR.

Increased iron accumulation by decreasing the storage, increasing the

absorption of iron, and decreasing iron outflow can promote ferroptosis

through a comprehensive signaling pathway (22). There are at least two

mechanisms for excess iron to promote subsequent lipid peroxidation,

one is to produce reactive oxygen through an iron-dependent Fenton

reaction, and the other is to activate iron containing enzymes (7).

Lipid peroxidation
Reactive oxygen species (ROS) including peroxide (H2O2,

ROOH), superoxide (O2−·), singlet oxygen, and free radicals (HO·,

HO2·, R·, RO·, NO·, NO2·), are molecules containing partially reduced

oxygen. They can induce cell death in several ways by damaging

DNA/RNA, lipids, and proteins (23). There are many sources of

reactive oxygen species involved in ferroptosis, and the accumulation

of oxidation products is considered the marker of ferroptosis (24).

Unsaturated fatty acids and monounsaturated fatty acids are less

affected by lipid peroxidation than polyunsaturated fatty acids

(PUFA), so providing PUFA to cells is able to increase the

sensibility of cells to ferroptosis. Free polyunsaturated fatty acids

can be esterified by stimulation of acyl-CoA synthetase long-chain

family member 4 (ACSL4) and pass into membrane phospholipids

with lysophosphatidylcholine acyltransferase 3 (LPCAT3) (25). The

up-regulation of ACSL4 is also the sign of ferroptosis (26).

Antioxidant defense
Macromolecular nutrients such as fat, sugar and proteins must pass

the membrane of cells need the help of carriers to diffuse into the cell.

System Xc− is such a transporter, which is a disulfide-linked heterodimer,

composed of the regulatory subunit solute carrier family 3 member 2

(SLC3A2) and the catalytic subunit solute carrier family 7 member 11

(SLC7A11) (27). Glutamate and cystine exchanges on the plasma

membrane is achieved through the system Xc−. When cystine enters

the cell, it is immediately reduced to cysteine (28). Selenoenzyme

glutathione peroxidase 4 (GPX4), as a central downstream regulator of

ferroptosis, reduces toxic phospholipid hydroperoxide to non-toxic

phospholipid (PE−AA−OH, PE−AdA−OH) by using two glutathione

(GSH) molecules as electron donors, making oxidized GSH (GSSG) to

combat lipid peroxidation (29). In addition to the introduction of

cysteine through the system Xc−, cells acquire cysteine by reversing the

transsulfuration pathway. This pathway converts methionine to S-

adenosyl homocysteine and homocysteine to produce cysteine (30).
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The other GSH/GPX4-related pathway is the mevalonate (MVA)

pathway. 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) can be

converted to MVA in MVA pathway. Next, MVA can be further

converted to isopentenyl pyrophosphate (IPP) and CoQ10, which

directly or indirectly promote GSH/GPX4 (31).
Ferroptosis inducers

Several ferroptosis inducers (FINs) have been demonstrated to

inhibit the activity of SLC7A11 and consume GSH, or inhibit the

activity of GPX4 (32), or indirectly consume Coenzyme Q (CoQ) and

GPX4 by activating squalene synthase (SQS) (33). In addition,

developed nanomaterials have been used in local tumor for

inducing ferroptosis (2). These FINs are regarded as a new

potential approach to cancer treatment. The action mechanism and

application of these FINs are shown in Table 1.
Microwave ablation

The mechanism of microwave ablation

MWA has been used as a classical thermal ablation for decades

(48). Guided by visual imaging, a microwave antenna can be inserted
Frontiers in Oncology 03
into the tumor center with precision (49). The microwave generator

emits electromagnetic waves through an uninsulated tip. MWA uses

the maximized agitation to flip the water molecules at 2 to 5 billion

times per second in tumor tissue, depending on the energy frequency

of the microwave (50). Electromagnetic microwaves create friction

and heat that induces cell death through coagulation necrosis (51).

Compared with other existing thermal ablation techniques, the main

advantages of microwave ablation lie in continuously higher

intratumor temperature, larger tumor volume, faster ablation time,

and better convective distribution (52). When the probe is inserted

into the tumor tissue, ablation can be divided into three areas

depending on the temperature. Coagulative necrosis occurred in the

central region at temperatures of ≥ 50°C (53). Due to the high

temperature in this area, cell membrane damage, protein

denaturation, enzyme inactivation, DNA polymerase function

damage, and mitochondrial dysfunction are caused. In the

periphery of the central region, also known as the transition zone,

sublethal and reversible heat-induced damage occurs at temperatures

between 41° C and 45° C. Cells in the subregion may be vulnerable to

further damage due to metabolic dysfunction or cessation (54).

Peripheral areas lead to increased oxygenation through increased

blood flow, which may increase ROS and free radicals. The damaged

local tissues exposed hyaluronic acid and endothelial damage

markers, stimulated the expression of chemokines and vascular

adhesion molecules, and attracted immune cells (55). This area
FIGURE 1

The mechanism of ferroptosis pathway. The main metabolic processes of ferroptosis can be roughly divided into three categories: iron metabolism,
GSH/GPX4 pathway and lipid peroxidation. Transferrin transports the iron into cells by TFR1‐mediated endocytosis. Fe2+ promotes lipid peroxides
accumulation through Fenton reaction and lipid oxidation. The system XC-retro delivers cystine to glutamate in a 1:1 ratio. Once inside the cell, cystine is
oxidized to cysteine, which is used to synthesize glutathione (GSH) under the catalysis of glutamate-cysteine ligase (GCL) and glutathione synthase (GSS).
GPX4 can reduce toxic lipid peroxides (PL-OOH) to nontoxic lipid alcohols (PL-OH) using glutathione as a reduction cofactor. Cells can also acquire
cysteine by reversing the transsulfuration pathway. Another GSH/GPX4-related pathway is the mevalonate (MVA) pathway. 3-hydroxy-3-methylglutaryl-
coenzyme A (HMG-CoA) can be converted to MVA in MVA pathway. Long-chain fatty acid-CoA ligase 4 (ACSL4) and lysophospholipid acyltransferase 5
(LPCAT3) promote the binding of polyunsaturated fatty acids (PUFAs) to phospholipids to form polyunsaturated fatty acid-containing phospholipids
(PUFA-PLS) and then be oxidized to lipid peroxides by ROS.
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contains the infiltration of a large number of inflammatory cells,

including CD4+ and CD8+ T cells, natural killer cells (NKs), dendritic

cells (DCs), macrophages, and neutrophils (52, 56). MWA could

induce the release of tumor antigens and a pool of damage-associated

molecular patterns (DAMPs), such as Hsp70 in the tumor

microenvironment, thus prime adaptive antitumor immunity (52).

Thermogenesis
Experimental studies have shown that thermal damage occurs in

two different stages. The first stage can lead to direct thermal damage

of the tumor, which depends on the total energy of ablation, tumor

components and microenvironment. Tumor cells are more vulnerable

to heat damage as their specific biological characteristics and lower

heat dissipation capacity and pH value (57). Another stage of damage

is indirect damage, where residual heat leads to further tissue damage

after the initial thermal stimulation has ceased (58).

Necrosis
Ablation is applied locally at extremely high or low temperatures,

resulting in irreversible cell damage, ultimately leading to coagulative

necrosis and apoptosis (59). Studies have shown that tumor cells
Frontiers in Oncology 04
cannot tolerate high temperatures well, and many tumor cells will

undergo coagulative necrosis at 54-60°C (60). As described above, the

electromagnetic microwave heats the material by stirring the water

molecules, causing high-speed friction to generate heat. At

temperatures above 60°C, proteins undergo rapid denaturation,

which induces cell death through coagulation necrosis. Zhai et al.

found that the ablation area of all MWA specimens showed features

of nuclear shrinkage and cytoplasmic flow, which are typical

characteristics of coagulative necrosis (61).
Apoptosis
It has been shown that apoptosis can be increased depending on

temperature (62). When the temperature rises from 40°C to 45°C,

important enzymes are inactivated and apoptosis may be triggered. In

several studies of MWA, researchers found that apoptosis was

significantly induced. In a liver microwave ablation experiment, it

was found that caspase-3, a key enzyme of apoptosis, was significantly

increased after MWA (63). And in microwave ablation therapy for

patients with early tumor progression, researchers found that

apoptosis-related miR-34a was significantly increased (64). All

evidence indicated that MWA can induce apoptosis of cancer cells.
TABLE 1 Summary of ferroptosis inducers.

Agent Target Tumor type or cell line Ref

Sulfasalazine (SAS) Inhibiting system Xc- Breast cancer, Glioblastoma, small-cell lung cancer
(SCLC)

(7,
34)

Sorafenib Inhibiting system Xc- Renal carcinoma, Hepatocellular carcinoma, Thyroid
cancer

(35)

Piperazine erastin (PE) Inhibiting system Xc- – (2)

Erastin Inhibiting system Xc- – (36)

Imidazole ketone erastin (IKE) Inhibiting system Xc- Diffuse large B cell lymphoma (DLBCL) (37)

(1S, 3R)-RSL3 Inhibiting GPX4 Renal carcinoma (36)

FIN56 Inhibiting GPX4 – (38)

Glutamate Inhibiting GPX4 DLBCL, Renal carcinoma (33)

Altretamine Inhibitor of GPX4 – (39)

FINO2 GPX4 inactivation and iron oxidation BJ-eLR cancer cells (40)

Artemisinins Regulating iron homeostasis Pancreatic ductal adenocarcinoma cells (PDAC) (41)

Dihydroartemisinin (DHA) Autophagic degradation of ferritin Head and neck squamous cell carcinoma, Acute myeloid
leukemia

(42)

aMSH-PEG-C′ Increase intracellular iron level Melanoma (43)

p53 plasmid-encap-sulated metal–organic network
(MON-p53)

SLC7A11 inhibition 4T1 breast cancer (44)

Statins Inhibiting the biosynthesis of selenoproteins
and CoQ10

– (45)

Siramesine Overexpression FPN Breast cancer (46)

Lapatinib Overexpression FPN Breast cancer (46)

Cisplatin Inhibiting GSH Pancreatic carcinoma, Oophoroma,
Urothelial cancer

(47)

Fluvastatin Inhibiting HMGCR Breast cancer (7)
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Pyroptosis
Pyroptosis is a pro-inflammatory programmed cell death caused

by some inflammasomes, leading to the cleavage of gasdermin-D

(GSDMD) and activation of interleukin-18 (IL-18) and interleukin-

1beta (IL-1 b) (4, 65). Previous studies have shown that the

expressions of caspase-1, GSDMD, IL-18, and IL-1b related to

pyroptosis are up-regulated after heat treatment (radiofrequency

ablation) of hepatic hemangioma, and induce pyroptosis of

endothelial cells (66, 67). At present, there is no reports on the

pyroptosis of cancer cells induced by MWA.
Microwave ablation induced the
release of ferroptosis-related molecular
from tumor cells

The process of ferroptosis in tumors and the biological response

induced by microwave ablation shared the same molecules, such as

ROS, protein 53 (p53), heat shock protein (HSP), hypoxia-inducible

factor (HIF), and nuclear factor erythroid 2-related factor 2 (NRF2),

therefore, we consider that microwave ablation may regulate
Frontiers in Oncology 05
ferroptosis of tumor cells. In this section, we explored the potential

mechanism by which MWA might induce ferroptosis of cancer

cells (Figure 2).
MWA might regulate the ferroptosis of
cancer cells by induced ROS

ROS are produced by normal physiological processes and plays a

critical role in the signal of cell and tissue homeostasis (23). Sufficient

studies found that the occurrence of ferroptosis is mainly due to the

accumulation of iron and the consumption of antioxidant glutathione

which leads to the increase of ROS, lipid peroxidation, and even cell

death (68). Excessive iron will lead to the accumulation of ROS in cells

(33). Iron chelating agents, such as Defeoxamine, can inhibit

ferroptosis by inhibiting the overexpression of iron (24). In the

procedure of iron metabolism, Fe2+ mainly mediates the production

of ROS through the Haber-Weiss reaction and Fenton reaction, thus

inducing the occurrence of ferroptosis (23). Ferroptosis could be

caused by ROS-induced lipid peroxidation in cancer cells (3),

therefore, MWA may induce ferroptosis of cancer cells by up-
FIGURE 2

MWA induced the release of ferroptosis-related molecules from tumor cells. Upregulation of ROS, HIF-1a, HSPs, p53, NRF2, CD8+ T cell, and IFN-g after
MWA might regulate the occurrence of ferroptosis. MWA can induce lipid peroxidation by producing excessive ROS, which may further induce
ferroptosis. p53 can induce ferroptosis by inhibiting SLC7A11 or promoting the activation of SAT1 and it can also inhibit ferroptosis by combining DPP4 or
inducing the expression of CDKN1A. Mut-p53 can induce the sensitivity of ferroptosis by inhibiting the expression of SLC7A11 and FTH1/NCOA4. MWA
upregulates HSPs expression. HSP90 can promote ferroptosis by regulating the stability of LAMP2A and CMA, while HSPA5 can inhibit ferroptosis by
protecting GPX4 degradation. HIF-1a increases the expression of FABP3/7 and inhibits ferroptosis via promoting fatty acid uptake. The expression of
HILPDA can promote ferroptosis. NRF2 can inhibit ferroptosis by promoting system Xc- and GPX4. IFN-g secreted by CD8+ T cells reduces SLC3A2 and
SLC7A11, thus promoting lipid peroxidation and ferroptosis.
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regulating ROS. Indeed, MWA can also induce lipid peroxidation by

producing excess ROS. Specifically, ROS can extract electrons from

PUFA to form PUFA radicals (PUFA•). These free radicals are in an

unstable state and can rapidly interact with oxygen molecules to

generate lipid peroxide radicals (PUFA-OO•), which are then

extracted from other molecules by the Fenton reaction, and finally

form lipid hydrogen peroxide (PUFA-OOH) (69). Therefore, MWA

may lead to lipid peroxidation through ROS accumulation and the

Fenton reaction, thereby regulating the ferroptosis of cancer cells.
MWA might regulate the ferroptosis of
cancer cells by induced p53

The p53 tumor suppressor gene is called the guardian of the genome

because it can participate in the survival and division of cells (70). In

addition to its effects on apoptosis, cell cycle, and autophagy, p53 can

regulate ferroptosis by transcriptional or post-translational mechanisms

(71, 72). Studies have found that heat stress can also induce the

accumulation of p53 protein, thus MWA may regulate ferroptosis of

cancer cells through p53. p53 regulates ferroptosis in some ways which

can sensitize cells to ferroptosis by inhibiting the transcription of

SLC7A11 (73). Furthermore, it has been shown that p53 can induce

ferroptosis by inducing lipid peroxidation through transcriptional

activation of spermidine/spermine N1-acetyltransferase 1 (SAT1) (74).

Moreover, p53 can also inhibit NADPH oxidases (NOX)-mediated lipid

peroxidation in colon cancer by directly binding to the dipeptidyl

peptidase Dipeptidyl peptidase-4 (DPP4) or limit ferroptosis by

inducing cyclin-dependent kinase inhibitor 1A (CDKN1A) expression

in fibrosarcoma cells (71). Mutant p53 (mut-p53) occurs in a large

proportion of cancers. Similar to wild-type p53 (wt-p53), mut-p53 can

also sensitize cancer cells to ferroptosis, and research shows that different

TP53 mutation types can induce increased sensitivity to ferroptosis (75).

In terms of mechanism, studies have shown that mut-p53 makes cancer

cells sensitive to ferroptosis by reducing the expression of SLC7A11 (72,

76). It has also been found that mut-p53 may make PDAC cells prone to

ferroptosis by reducing the expression of ferritin heavy chain 1 (FTH1)/

nuclear receptor coactivator 4 (NCOA4) (77). Eprenetapopt (APR-246) is

a compound to shift mutant p53 and induces ferroptosis in DLBCL cells

carrying wt-p53 and other forms of TP53 mutations (78). Meanwhile, it

has been found that heat stress can also induce the accumulation of p53

protein. Han et al. found that heat stress significantly increased p53

protein levels in liver cells and hepatocellular carcinoma cells. In terms of

mechanism, heat stress increased the half-life of p53 protein but not the

expression of p53 mRNA or the activity of the p53 promoter (79).

Although no direct evidence has been found, we consider that thermal

stimulation induced by microwave ablation may adjust the ferroptosis of

tumor cells by upregulation of p53 and MWA may also enhanced

ferroptosis in mut-p53 tumors as ferroptosis of tumor cells could be

influenced by p53 mutation types.
MWA might regulate the ferroptosis of
cancer cells by induced HSP

HSP include a large group of proteins such as HSP40, HSP70,

HSP90, and other small families, which exhibit multiple functions in
Frontiers in Oncology 06
the tumor. HSPs are expressed and secreted into extracellular space by

tumor cells (80). Research shows that HSP plays a crucial part in the

genesis and development of ferroptosis, thus MWAmight regulate the

ferroptosis of cancer cells via HSP. Wu et al. found that HSP90

inhibitors reduced erastin/glutamate-induced ferroptosis in HT-22

cells, providing evidence that HSP90 is involved in mediating

ferroptosis (81). Mechanistically, HSP90 promotes ferroptosis by

regulating the stability of lysosomal-associated membrane protein

2a (LAMP2A) and chaperone-mediated autophagy (CMA) receptors

(81). In addition, heat-shocked 70 kDa protein 5 (HSPA5) was found

to negatively regulate ferroptosis in PDAC cells (82). Mechanistically,

HSPA5 binds GPX4 and protects the degradation and lipid

peroxidation of GPX4 protein (82). These studies support the idea

that the induction of HSPs is related to the regulation of ferroptosis.

MWA induced upregulation of HSP in cancer cells. HSP70 is known

to protect the cell from heat exposure. In animal liver and tumor

models, HSP70 is the main HSP in the ablative periphery after local

thermal ablation. In addition, some studies have shown that MWA

up-regulates the expression of HSP90. Zhai et al. have found that

HSP90 overexpression can be found in peripheral tissues of liver

carcinoma 24 h after MWA (61). Chen et al. found that HSP90 in the

VX2 cells was significantly upregulated by MWA, and MWA

combined with transforming growth factor-beta 1 (TGF−b1) and

HSP90 inhibitors demonstrated the synergistic tumor treatment effect

(83). Thermal ablation can enhance the expression of heat shock

protein and change the antigenicity of the tumor. As mentioned

above, HSPs were highly expressed in the sub-ablation site after

microwave ablation. There is no direct evidence that MWA induced

the occurrence and development of ferroptosis of cancer cells,

however, MWA might regulate ferroptosis of cancer cells via

altered HSP expression in the sub-ablation site.
MWA might regulate the ferroptosis of
cancer cells by HIF

Due to the rapid growth of tumor cells without an adequate blood

supply, the tumor environment is characterized by hypoxia (84). The

main regulator of hypoxia, HIF, is a spiral transcription factor that

regulates genes involved in angiogenesis, glycolysis metabolism, and

other biological process that are involved in cancer development and

tumor growth (85). Microwave ablation may regulate the ferroptosis

of cancer cells through a HIF-mediated pathway. HIF appears to play

a crucial part in the regulation of ferroptosis. Hypoxia-induced

upregulation of HIF-1a increases fatty acid binding proteins 3

(FABP3) and 7 (FABP7) in HT-1080 fibrosarcoma cells, thereby

inhibiting ferroptosis via promoting fatty acid uptake to avoid

subsequent lipid peroxidation. Endothelial Per-Arnt-Sim (PAS)

domain protein 1 (EPAS1) activation promotes ferroptosis by

upregulating hypoxia inducible lipid droplet associated (HILPDA)

expression in renal cell cancer (RCC)-derived cells, thereby increasing

PUFA generation and lipid peroxidation (7). Therefore, the valid

control of HIF-mediated signaling is indispensable to keep lipid

homeostasis. Restrain of the HIF-1a/SLC7A11 pathway is necessary

for sorafenib-induced ferroptosis, whilst increased HIF-1a inhibits

ferroptosis in hepatic stellate cells (HSC) (86). A lot of studies found

that HIF is overexpressed in the tumor surrounding area after MWA.
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Duan et al. found that high levels of HIF-1a were also expressed at the

ablation margins of MWA-induced livers, which may depend on

secondary effects of hyperthermia (e.g., hypoxia due to endothelial

injury or vascular thrombosis) (87). Wan et al. further found that high

expression of HSP70 and HIF-1a could be found in the residual

tumor cells around the ablation site (88). Li et al. also found that

MWA can promote the expression of HIF-1a, thereby promoting

angiogenesis by promoting the overexpression of vascular endothelial

growth factor (VEGF), and accelerating the progression of tumor

tissue invasion (89). In terms of mechanism, Chen et al. demonstrated

that sublethal heat stress inhibited HIF-1a degradation by inducing

O-linked-N-acetylglucosaminylation (O-GlcNAcylation) to

upregulate HIF-1a expression in hepatocellular carcinoma (HCC)

cells (90). In terms of existing studies, HIF has various effects on the

ferroptosis of cancers, thus it is necessary to determine the role of HIF

after MWA in the occurrence of ferroptosis of cancer cells in

the future.
MWA might regulate the ferroptosis of
cancer cells by NRF2

NRF2 is a transcriptional factor and the function of NRF2 is to

activate downstream antioxidant factors (91). It has been found that

NRF2 plays a significant role in ferroptosis, thus MWA might regulate

ferroptosis via NRF2 in cancer cells. Previous studies have shown that

heat shock (40-42°C), similar to the temperature in the transition zone

of microwave ablation, can induce increases in peroxiredoxin 3 (Prx3),

GSH, and glucose-6-phosphate dehydrogenase (G6PD) levels, and

largely depending on the antioxidant transcription factor NRF2 (92).

A study reported that NRF2 silencing inhibited proteasome expression

and activity, which is helpful to improve thermotolerance (93). They

proposed that NRF2 inhibitors prevent heat resistance involving

antioxidant and proteasome systems, and in combination with

hyperthermia and NRF2 inhibitor induce tumor cells more sensitive

to chemotherapy. Studies have shown that the expression of NRF2 is

directly correlated to ferroptosis. Decreased expression of NRF2 can

promote sensitivity to ferroptosis inducers (94, 95). These studies

suggest that NRF2 inhibitors may be a viable target for inducing

ferroptosis. Therefore, we concluded that microwave ablation of

sublethal regions may affect the expression of ferroptosis through the

activation of NRF2. At the same time, according to research findings,

NRF2 inhibitors can be combined with hyperthermia, such as

microwave ablation, to play the sensitization role of chemotherapy

drugs, and enhance the anti-tumor effect by inducing the occurrence of

ferroptosis, which provides new ideas for subsequent cancer treatment.
MWA might regulate the ferroptosis of
cancer cells by immune activation

Notably, recent research has found that ferroptosis is a fresh

intersection between immunotherapy and MWA. Immune activation

is an important component of MWA-mediated tumor killing, and

CD8+ T cells can enhance ferroptosis in the tumor. The peripheral

region of MWA exhibits immune infiltrates, including DCs,
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macrophages, NKs, neutrophils, and CD4+ and CD8+ T

lymphocytes. Local thermal stimulation significantly increased the

expression of costimulatory molecules, such as CD8, CD86 (B7-2),

MHC Class II (MHC-II), and intercellular adhesion molecule-I

(ICAM-I), which are involved in T cell proliferation and activation

(96). Duan et al. demonstrated that MWA treatment alone increased

the number of CD8+ cytotoxic T lymphocytes (CTLs) infiltrated

within tumors compared to untreated tumors (97). Hou et al.

demonstrated that MWA alone significantly increased the immune

response to residual tumor proliferation and metastasis compared to

the untreated group, including increased infiltration of effector T cells

(CD45+ CD3+ CD8+) and increased secretion of anti-tumor cytokines

interferon-gamma (IFN-g) and tumor necrosis factor alpha (TNF-a)
(98). Xu et al. demonstrated that MWA can observably increase in

interleukin-2 (IL-2) and IFN-g levels in patients who suffer from non-

small cell lung cancer (NSCLC) 1 month after MWA (99). Here are

some studies on the relationship between immunotherapy and

ferroptosis. Some studies have found that CD8+ T cells activated by

immunotherapy can induce ferroptosis by enhancing lipid

peroxidation, and the induction of ferroptosis in cancer cells can

contribute to the anti-tumor effect of immunotherapy (100, 101).

IFN-g secreted by CD8+ T cells reduces SLC3A2 and SLC7A11, two

subunits of XC-, and affected cysteine intake by tumor cells, thus

promoting lipid peroxidation and ferroptosis (100). SLC7A11

expression was found to be a negative correlation with the

expression of CD8+ T cells and IFN-g in tumors, and down-

regulation of SLC7A11 can improve the prognosis of cancer

patients (102). Given that MWA may be able to induce the increase

of CD8+T cells and IFN-g, we reasonably speculate that MWA can

promote lipid peroxidation and iron prolapse of tumor cells. In

addition, for tumors displaying anti-ferroptosis characteristics, the

combination of ferroptosis inducers with immunotherapy and MWA

may enhance tumor ferroptosis and increase the sensitivity to

immunotherapy and MWA.
Conclusion and perspectives

Recently, we gradually understand the principle, regulatory

mechanism, and application of ferroptosis in cancer treatment,

nevertheless, whether MWA regulates the ferroptosis of tumor

cells is still unknown. By reviewing some recent studies, we found

that the process of ferroptosis in tumors and the biological response

induced by MWA shared the same molecules, therefore, we

consider that MWA may regulate ferroptosis of the cancer cell. In

this section, we explored the potential mechanism by which MWA

might induce ferroptosis of cancer cells, indicating that ferroptosis

exhibits one of the candidate mechanisms of MWA-medicated

tumor killing. Several studies have shown that induction of

ferroptosis is a new and useful therapy method in cancer

treatment, therefore MWA combined with FINs may be a new

therapeutic strategy in tumor treatments. In conclusion, further

clarifying the correlation between MWA and ferroptosis and better

understanding the mechanism of ferroptosis induced by MWA will

contribute to the enhancement of the anti-tumor immune response

of MWA.
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