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Cyclooxygenases-2 (COX-2) and Prostaglandin E2 (PGE2), which are important in

chronic inflammatory diseases, can increase tumor incidence and promote tumor

growth andmetastasis. PGE2 binds to various prostaglandin E receptors to activate

specific downstream signaling pathways such as PKA pathway, b-catenin pathway,

NF-kB pathway and PI3K/AKT pathway, all of which play important roles in

biological and pathological behavior. Nonsteroidal anti-inflammatory drugs

(NSAIDs), which play as COX-2 inhibitors, and EP antagonists are important in

anti-tumor immune evasion. The COX-2-PGE2 pathway promotes tumor immune

evasion by regulating myeloid-derived suppressor cells, lymphocytes (CD8+ T

cells, CD4+ T cells and natural killer cells), and antigen presenting cells

(macrophages and dendritic cells). Based on conventional treatment, the

addition of COX-2 inhibitors or EP antagonists may enhance immunotherapy

response in anti-tumor immune escape. However, there are still a lot of challenges

in cancer immunotherapy. In this review, we focus on how the COX-2-PGE2

pathway affects tumor-associated immune cells.
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Introduction

Cyclooxygenases-2 (COX-2) and Prostaglandin E2 (PGE2) are important inflammatory

factors, associated with survival, invasion, growth and immune escape of cancer cells. One of

the “hallmarks” of cancer is chronic inflammatory disease, which often promotes

tumorigenesis and tumor progression (1). For example, inflammatory bowel disease

patients had a higher lifetime risk of colon cancer linked to colitis at a younger age than

the general population, demonstrating that cancer is easily caused by chronic inflammation

(2). Tumor-associated inflammation involves complex interactions between epithelial and

mesenchymal cells and in some cases can lead to epigenetic alterations. More broadly,

however, chronic inflammation can lead to the production of growth factors that support the

development of emerging tumors and cause them to behave as “unhealable wounds” (3).

Chronic inflammation can also promote tumor development by facilitating tumor immune

escape and establishing an immunosuppressive microenvironment, both of which are cancer-
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related characteristics. Tumor immune escape occurs through a

variety of immunosuppressive mechanisms, such as dysfunctional

antigen-presenting cells (APCs), tumor cell resistance to immune

attack, decreased cytotoxicity of CD8+ T cells and natural killer (NK)

cells, induction of immunosuppressive cells such as myeloid-derived

suppressor cells (MDSCs), transition of T helper (Th) cells from Th1

to Th2 and Th17, transition of macrophages from M1 to M2 (4).

Numerous studies have shown the importance of nonsteroidal

anti-inflammatory drugs (NSAIDs) and EP receptor antagonists in

reducing tumor incidence, metastasis and mortality. NSAIDs cause

tumor regression and suppress tumor growth by inhibiting the COX-

2-PGE2 signaling pathway in several ways: 1. activation of tumor

epithelial cells; 2. inhibition of tumor epithelial cell survival and

tumor immune surveillance; 3. establishment of tumor-supporting

microenvironment; 4. alteration of DNA methylation mechanisms

(2). However, the molecular mechanisms underlying the anti-tumor

effects of NSAIDs and EP receptor antagonists have not yet been fully

understood. More clinical trials and studies are required to explore

this further.

In this review, we emphasize our current understanding of COX-2

and PGE2 regulation of tumor immunity. In addition, we are looking

into how the COX-2-PGE2 pathway affects tumor-associated

immune cells. Given the significance of this pathway in tumor

immune escape, we will discuss how to target each component of

this pathway as potential strategy for overcoming tumor immune

escape while avoiding some serious adverse effects associated with the

use of NSAIDs or COX-2 inhibitors.
Cyclooxygenase

Cyclooxygenases (COX) include COX-1 and COX-2, also known

as prostaglandin G/H synthase-1 and -2, are membrane-bound

enzymes that are mainly found on the nuclear membrane and

luminal side of the endoplasmic reticulum (5). COX-1 is

structurally expressed in many healthy tissues and provides steady-

state levels of prostaglandins to perform “housekeeping functions”. In

contrast, COX-2 is an inducible isoform produced by prostaglandin-

like substances that is typically absent or expressed at low levels in

normal organs and tissues, but is overexpressed in many tumor and

inflammatory tissues (6). In addition to inducing inflammation,

COX-2 can also promote cell survival and proliferation. Therefore,

COX-2 may be associated with tumorigenesis and development.

Indeed, COX-2 has been found to be highly expressed in different

tumors, including breast cancer (7), the melanoma (8), and colorectal

cancer (2). Its levels are associated with the development,

aggressiveness and prognosis of many tumor entities. Regular use of

NSAIDs dramatically decreased the incidence of sporadic colorectal

cancer as well as breast, lung, and prostate cancers, according to a new

analysis that searched all epidemiological studies (case-control and

cohort studies) conducted since 1980 (9). According to one study,

genetically removing COX enzymes from mouse melanoma

(BRAFV600E or NrasG12D), colorectal cancer (CT26) or breast

cancer (4T1) cell lines resulted in dramatic tumor eradication (10).

When metastases were assessed 2 weeks after surgical resection of the

primary breast cancer tumor, fibroblast-targeted Ptgs2-deficient mice

(Ptgs2DFb) were found to develop fewer metastases than WT mice
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(11). Patients with gastric cancer who have low staging and higher

levels of COX-2 expression are at greater risk of dying from the

disease. In addition, COX-2 has been identified as an independent

prognostic factor for gastric cancer (12). According to the findings

mentioned above, COX-2 is thought to be crucial for tumor growth.
COX-2-PGE2 signaling in tumor cells

COX enzymes convert arachidonic acid to the endogenous

peroxidation intermediate PGH2, which is modified by

prostaglandin synthase to produce five structurally related

prostaglandins, including prostaglandin D2, prostaglandin E2,

prostaglandin I2, prostaglandin F2a, and thromboxane A2. The

two essential enzymes that catalyze the initial and concluding

phases of this synthetic pathway are COX-2 and prostaglandin E2

synthase (PGES), including microsomal PGES (mPGES) and

cytosolic PGES. In addition, PGE2 is converted to its inactive form,

15-keto-PGE2 (PGEM), which is then further metabolized to a stable

terminal metabolite by the enzyme 15-hydroxyprostaglandin

dehydrogenase (15-PGDH). High levels of PGEM increase the risk

of gastric and colorectal cancers (13, 14), implying that PGEMmay be

a biomolecular marker for cancer risk prediction. Prostaglandins

control cellular processes by attaching to G protein-coupled

receptors on the cell surface. These cell surface receptors are named

EP (EP1, EP2, EP3, EP4), DP (DP1, DP2), FP, IP, and TP. PGE2

transmits signals by binding to four receptors, EP1 through EP4 (15)

(Figure 1). The expression of each EP receptor and the strength of

each EP signal determine the PGE2 signal’s final output. Each EP

interacts with its unique G protein to activate particular downstream

signaling pathways such as PKA pathway, b-catenin pathway, NF-kB
pathway and PI3K/AKT pathway, which have various functions in

biological and pathological behavior. Activated EP1 can upregulate

the level of intracellular calcium ion concentrations; EP2 and EP4

receptors are associated with cAMP stimulation and PKA signaling

through sequential activation of Gas and adenylyl cyclase; EP3 is

responsible for downregulating cAMP levels and lead to different

cellular responses through different G proteins (16, 17).

The most abundant prostaglandin, PGE2, is frequently linked to a

poor prognosis in a number of human cancers, including colon, head

and neck, lung, and breast cancers (6, 17, 18). In immunologically

active hosts, the formation of tumors by mutant BRAFV600E mouse

melanoma cells requires the synthesis of prostaglandin E2, which

inhibits immunity and fosters tumor inflammation (10). It has been

shown that mPGES1 expression increased in human melanoma, and

that elevated expression of this protein are linked to reduced patient

survival (19). The mPGES-1 gene deletion significantly reduced the

risk of developing colon cancer and resulted in reduced multiplicity of

distal colon tumors as well as tumor load in mice treated with

azoxymethane (AOM) (20). In addition, in ApcMin/+ and AOM

mice models, elevated endogenous PGE2, caused by 15-PGDH gene

deletion, encouraged the development of colon cancer (21). Taken

together, PGE2 is essential in the growth of cancers (Figure 2).

In addition, numerous evidence has shown that the COX-2-PGE2

pathway promotes tumor development. It has been shown that PGE2

promotes sporadic or colitis-associated colon carcinogenesis via EP1

and EP2 receptor in colon cancer cell lines (22). According to
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research, numerous tumors are linked to EP1 receptor. For example,

selective EP1 antagonist (ONO-8713) can significantly reduce the

number of tumor cells in mouse with UVB-induced acute skin

inflammation (23). PGE2 upregulates anti-apoptosis protein

expression in hepatocellular carcinoma cells via EP1 receptors (24).

While EP3 receptors were downregulated, EP1, EP2 and EP4

receptors were all highly increased in COX-2-driven mammary

cancers. Downregulation of EP3 receptors suggests a possible

protective role against mammary tumors. EP2 and EP4 receptor

levels were reduced in the mammary glands of anti-inflammatory

pain-treated mice, while EP1 and EP3 levels were not altered (25).

According to Fujino et al, EP3 receptors could boost vascular

endothelial growth factor receptor-1 signaling and encourage tumor

cell metastasis (26). Therefore, it may be debatable how EP3

contributes to carcinogenesis, and more research is required. The

role of the EP4 receptor in tumors appears to be more clearly defined

than that of other EP receptors. EP4 is a high-affinity EP receptor, and

it is considered to be a pro-cancer mediator in many different types of

malignancies due to its high expression. In colorectal cancer, deletion

of EP4 can attenuates the abnormal AOM-induced crypt (27, 28),
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and therefore EP4 receptor can be used for prostate cancer

immunotherapy. For example, YY001, an antagonist of the EP4

receptor, inhibits prostate cancer growth by modulating the tumor

microenvironment (TME), leading to significant tumor regression,

long-term survival and long-lasting immune memory (29). Besides, in

mouse model, EP4 knockdown suppressed metastasis of oral cancer

cells in the lung (30). Collectively, these findings imply a critical

function for the PGE2/EP4 signaling pathway in tumor development.
COX-2-PGE2 Pathway in
Tumor Immunology

The COX-2-PGE2 pathway induces tumor immune evasion by

regulating myeloid-derived suppressor cells (MDSCs), lymphocytes

(CD8+ T cells, CD4+ T cells and natural killer cells), and antigen

presenting cells (APCs). Understanding the mechanisms of the COX-

2-PGE2 pathway may provide a solid foundation for developing new

methods to overcome tumor immune escape (Figure 3).
FIGURE 1

Arachidonic acid is metabolized to PGH2 by COX-1 and COX-2. NSAIDs can inhibit COX-1 and COX-2. PGH2 is metabolized to thromboxane A2(TXA2)by
TBXAS1, PGI2 by PTGIS, PGE2 by PGES, PGF2a by PGES, PGD2 by PTGDS, respectively. PGE2 can be metabolized to PGEM by 15-PDGH. TXA2 binds to TP,
PGI2 binds to IP, PGE2 binds to EP, PGF2a binds to FP and PGD2 binds to DP.
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Myeloid-derived suppressor cells

Granulocyte/polymorphonuclear stem cells and monocyte

MDSCs, which come from the granulocyte or monocyte myeloid

lineage, respectively, are the two main kinds of MDSCs found in both

humans and animals. However, unlike mice, a tiny group of myeloid

precursor cells known as “early MDSCs” have been found in humans.

These cells have a potent immunosuppressive function and consist

mainly of myeloid progenitor cells and precursor cells, accounting for

less than 5% of the total number of MDSCs (31). MDSCs mediate

immunosuppression by producing arginase and inducible nitric oxide

synthase, and TGF-b, IL-10 and COX-2. These substances directly or

indirectly enhance Treg activity (32), inhibit cytotoxic activity of NK

cells (33), and promote the polarization of macrophages toward M2-

like phenotype. They synergistically impair the tumoricidal properties

of effector CD8+ T cells, leading to tumor cell evasion of host

antitumor immunity (34). MDSCs are significantly linked to a poor

clinical course of cancer (35). In mice and patients, the clinical cancer

stage and the amount of metastatic tumors are favorably linked with

the blood levels of MDSCs (36) (Figure 4).
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The EP4 antagonist YY001 promotes the proliferation and

anti-cancer activities of T lymphocytes while inhibiting myeloid-

derived suppressor cells’ development, maturation, and immune-

suppressive actions. Additionally, it alters the chemokine profile of

tumor cells in vitro and in vivo, which decreases the amounts of

MDSCs and T cells in the TME (29). In vitro experiments, PGE2

participated in MDSC-mediated immunosuppression by inducing

arginase I expression through EP4 and inhibiting effector T cell

activity (37). One study found that treatment of colorectal cancer

mice with aspirin or EP antagonists significantly protected mice

from tumor formation and reduced aggregation of MDSCs and

expression of COX-2/Arg-1 (38). Thus, PGE2 inhibits MDSCs by

blocking EP4 receptors, thereby promoting tumor immune

evasion. The number of Gr1(+) CD11b(+) immature myeloid

suppressor cells was considerably decreased by the celecoxib

during the chemoprevention of 1,2-dimethylhydrazine diHCL-

(1,2-DMH-) induced colon cancers in Swiss mice (39). The

COX-2 pathway promotes glioma formation by directly

supporting the phylogeny of MDSCs and their accumulation in

TME, where MDSCs limit CTL infiltration (40). Taken together,
FIGURE 2

PGE2 binds to different EPs to activate downstream signaling pathways. Activated EP1 can upregulate the level of intracellular calcium ion concentrations. EP2 and
EP4 can upregulate cAMP levels to activate different pathways which can promote tumor growth. EP3 is responsible for downregulating cAMP levels.
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the COX-2-PGE2 signaling pathway promotes tumor immune

evasion by inducing the accumulation of MDSCs cells, which in

turn promotes tumor growth and development. However, the

regulatory role of COX-2-PGE2 pathway on MDSCs in vivo has

not been fully investigated.
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Macrophages

Microglia, Kupffer cells, and Langerhans cells in the brain, liver,

and epidermis are examples of tissue-specific macrophages.

Macrophages possess the ability to remove apoptotic cells, cellular

debris and pathogens (41). Similar to the Th1 and Th2 dichotomy, the

distinction between M1 and M2 phenotypes supports the idea of

macrophage phenotypic heterogeneity. When exposed to

lipopolysaccharide and interferon-c, macrophages develop the M1

phenotype and exhibit anticancer properties. Macrophages become

polarized to the M2 phenotype in response to Th2 cytokines which

promote cell proliferation and tumor formation (42, 43). TAMs have

anM2-like phenotype in the majority of cancers (44), which facilitates

tumor-associated angiogenesis, promotes tumor cell invasion and

migration, and inhibits immune surveillance to promote tumor

metastasis (45). Clinical studies have shown that macrophages

promote tumorigenesis. In a meta-analysis, more than 80% of

studies indicated a link between high macrophage density and poor

patient prognosis (46). In primary tumors, TAMs have been shown to

inhibit CD8+ T cell recruitment and anti-tumor immunity (47).

Previous studies have pointed out that the COX-2-PGE2 signaling

pathway contributes significantly to the polarization of M1 to M2 and

tumor immune escape. The majority of the COX-2 seen in both

human and mouse intestinal cancers is known to come from TAMs.

Celecoxib, a selective COX-2 inhibitor, shifted the TAM phenotype

from M2 to M1 in a colorectal cancer animal model in accordance to

the decrease in the number of polyps in ApcMin/1 mice (48). While

inhibiting the growth of immune-stimulated M1 macrophages,

PGE2-binding EP4 promoted development of immune-suppressed
FIGURE 3

The main effects of COX-2-PGE2 pathway on tumors. COX-2-PGE2
pathway can promote proliferation, inflammation, metastasis, cell
survival and immune evasion of tumors.
FIGURE 4

PGE2 promotes the transition of T helper cells from TH1 to TH2 and the shift of macrophages from M1 to M2. PGE2 induces the development of Treg
cells, TH17 cells and MDSCs while inhibiting Dendritic cells, NK cells. MDSCs secrete TGF-b, IL-10, arginase, INOS, COX-2 to promote the shift of
macrophages from M1 to M2 while inhibiting the functions of cytotoxic lymphocytes (CTL) and NK cells. NK cells can secrete CCL5 and XCL1
chemokines to recruit DCs.
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M2 macrophages and MDSCs (49). Eruslanov et al. found that in the

mouse colon cancer cell line CT26, overexpression of 15-PGDH

shifted TAMs from M2-directed TAM to M1-directed macrophages

(50). In the GC transgenic model, overexpression of COX-2 and

mPGES-1 led to TAM recruitment in gastric tumors (51). These

findings collectively imply that COX-2 and PGE2 stimulate tumor

development via M2 TAMs. EP1 and EP3 receptors also play an

important role in tumor growth. Targeting EP1 receptor can decrease

F4/80 (+) macrophage infiltration and inhibit colon cancer growth

(52). EP3 signaling in DCs induces a switch of macrophages from

pro-inflammatory to pro-reparative phenotype (53).
NK Cells

As a part of innate immunity, NK cells play an important role in

tumor immune surveillance and viral infection resistances. In

addition to immediately identifying and eliminating tumor cells,

NK cells secrete cytokines that promote CTL activation and growth.

However, the functional response of NK cells is compromised in

tumors (54). In all cancer types, patient survival was substantially

correlated with high expression of NK marker genes (55). In

cancerous environment, NK cells dysfunction is integral and

inevitable, leading to not only the proliferation of tumor cells but

also the formation of distant metastases (56). The abundance of

peritumoral NK cells is also associated with high pathological

complete response rates in neoadjuvant chemotherapy for large and

locally advanced breast cancers (57). In the course of infection with

chronic lymphocytic choriomeningitis virus, intrinsic NK cell

signaling can inhibit the expansion of CD8+ T cells, thereby

promoting tumor immune evasion (58).

The COX-2-PGE2 pathway can enhance tumor immune evasion.

PGE2 has been reported to inhibit cytotoxic effects and cytokine

generation of NK cells in breast cancer as well as thyroid cancer

through the EP4 signaling pathway (59, 60). In mouse tumors, NK

cell-derived chemokines CCL5 and XCL1 promote the accumulation

of dendritic cells (DCs). PGE2-producing tumors inhibit NK cell

function, chemokine production, and DCs chemokine receptor

expression to promote tumor immune escape (55). Breast tumor

cells have been shown to express fewer MHC class I molecules when

EP4 signaling is inhibited, which enhances the NK cells’ capacity to

fight the tumor (61).
Dendritic cells

DCs have a unique function in the induction and regulation of

innate and acquired immune responses. To direct T cell responses,

DCs in the TME collect, prepare, and present tumor-associated

antigens on MHC molecules as well as supply co-stimulatory and

soluble components (62). In humans, reduced DC numbers and

activity affect the prognosis of colorectal cancer patients (63). When

patients were stratified based on cDC1-related gene expression,

higher cDC1 signaling in tumors was found to be positively

correlated with survival (55). However, eight studies have come to

the conflicting conclusion that tumor-associated DCs can be a

predictor of progressive prognosis in colorectal cancer (64).
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PGE2 plays an important role in the control of DCs behaviors

include differentiating, producing cytokines, polarizing TH cells,

migrating, and maturing (65). In addition, it has been found that

inhibiting EP2 and EP4 receptors increases both MHC molecule

expression and antigen uptake by lung dendritic cells (11). Tumor-

derived prostaglandin analogs inhibited both the aggregation and

activation of CD103+ DCs within the tumor, including their capacity

to produce IL-12, as well as the expression of type I immune-related

markers (10). Secretion of PGE2 may inhibit the capacity of DCs to

activate CD8+ T lymphocytes, thus promoting T cell exclusion from

TME (41). Human DC surface HLA class II antigen expression levels

are downregulated by IL-6 through the functions of COX-2,

lysosomal protease, and arginase (66). Furthermore, an in vitro

study demonstrated that NSAIDs prevent DCs from presenting

MHC-restricted antigens (67). Taken together, the COX-2-PGE2

signaling pathway promotes tumor immune evasion by inhibiting

DC cells.
CD4+ T helper Cells

APCs activate naive CD4+ T cells, which then initiate

differentiation into various effector T cells during inflammatory

and immunological responses to infections and cancer (68). Th1

cells, in general, control more aggressive responses by encouraging

cytotoxic immune responses, whereas Th2 cells control less tissue-

damaging immune responses (69, 70). As a result of resident tissue

cells being stimulated to release chemokines by Th17-associated

cytokines, neutrophils and macrophages are drawn to the sites of

inflammation. In turn, the recruited cells generate more cytokines

and protein hydrolases, exacerbating the immunological reaction

(71, 72). TGF-b suppresses TH2-mediated cancer immunity. In a

mouse model of breast cancer, induction of TGF-b receptor II gene

deletion in CD4+ T cells inhibited tumor growth (73). Higher levels

of circulating CD4+ T lymphocytes were linked to smaller tumor

sizes in GC patients (74). Th17 cells were found in greater numbers

in the peripheral blood and tumor tissue of patients with oral

squamous cell carcinoma (66). In conclusion, the formation and

progression of tumors are highly correlated with CD4+ T

cell activity.

COX-2 deficiency delays mammary carcinogenesis by

enhancing type 1 immune responses in breast cancers (75). At

high doses, PGE2 induces a shift from a Th1-dominant to a Th2-

dominant immune response by downregulating Th1-induced

activation of the IL-12 pathway (68). Additionally, PGE2

stimulates IL-23 production and prevents DCs from releasing IL-

12 and IL-27, which increases the pathogenic inflammatory Th17

phenotype (76). Although the majority of published studies indicate

that PGE2 boosts Th2-type responses, evidence shows that COX-2

has an inhibitory effect on Th2 immune responses. In contrast to

Th1-mediated lung inflammation, Jaffar et al. demonstrated that

specific inhibition of COX-2 in vivo decreases PGE2 production and

causes a considerable rise in Th2-mediated lung inflammation (77).

Some studies have shown that PGE2 can promote Th1

differentiation through the EP1 receptor (78). Thus, the results are

contradictory and more research is required.
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CD8+ cytotoxic T cells

CD8+ cytotoxic T cells, the primary killer cells of pathogens and

tumor cells, are essential for the destruction of intracellular infections

and malignant cells, and may provide long-term immune protection

(79, 80). Exercise alters the metabolism of CD8+ T cells, thereby

enhancing their antitumor efficacy (81). In colorectal cancer, low

tumor stage, negative nodal stage, longer overall survival, and an

inflammatory immune phenotype were all substantially correlated

with the density and proportion of proliferating CD8+ cytotoxic T

cells (82). These results suggest that CD8+ T cells are capable of

suppressing tumor growth.

In ErbB2 transgenic mice, COX-2 (MEC) KO breast cancer

tumors contained more CD8+ cytotoxic immune cells (CTL) (7).

Some studies found that the amount of CD8+ T cells and the

percentage of functional CD8+ T cells were considerably decreased

in PTGS2 overexpression tumors (83). These findings suggest that

activation of the COX2 enzymes can reduce tumor-infiltrating CD8+

T cells. In addition, effector CD8+ T cells in tumors are inhibited

from killing tumors by tumor-producing, PGE2-activated

immunosuppressive cells in TME via EP4 receptors (84). During

chronic lymphocytic choroidal meningitis virus infection, EP2 and

EP4 are upregulated on virus-specific CTL inhibiting CTL survival

and function (85). Increased secretion of PGE2 by breast cancer cells

also recruits Treg cells into the primary tumor, thereby increasing

apoptosis of CD8+ T cells and bone metastasis of cancer cells (86).

PGE2 directly inhibits cytotoxic T cell activity and induces regulatory

T cell function in vitro through upregulation of CD94 and NKG2A

complexes (87). However, more evidence is needed to demonstrate

whether the COX-2-PGE2 pathway promotes tumor immune evasion

by suppressing CD8+ T cells.
Potential strategies for cancer therapy

Immunotherapy has grown in popularity as a cancer treatment

option in recent years. Given the importance of the COX-2-PGE2

pathway in carcinogenesis and progression, there is a clear

opportunity for therapeutic intervention. NSAIDs are a class of

drugs that primarily suppress COX enzyme activity, which also

lowers prostaglandins production. The use of NSAIDs to inhibit

tumor growth has been considered. Combination therapy with

NSAIDs and anti-PD-1 monoclonal antibody induces tumor

eradication faster than anti-PD-1 alone (10). In addition, an in

vivo investigation revealed that NSAIDs improved anti-tumor

responses and reversed the imbalance between Th1 and Th2 in the

metastatic spread of colorectal cancer (88). Some studies have

demonstrated that NSAIDs can reduce cancer-associated

mortalities and lower cancer incidence (89). For this reason, the

FDA has approved celecoxib, a selective COX-2 inhibitor, for the

treatment of population with familial adenomatous polyposis who

wish to avoid developing colorectal polyps. In experimental animals,

specific COX-2 inhibitors can prevent the development of mammary

tumors (90). However, due to the risk of adverse cardiovascular
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events, celecoxib, along with other NSAIDs (except from aspirin),

should not be used for an extended period of time, particularly in

patients with a history of atherosclerotic heart disease (91). Excessive

bleeding is the most serious side effect of aspirin, and both the risk

and mortality rate increase with age (92). One way to prevent these

negative consequences is to target only downstream PGE2 signaling.

Cell surface inhibitory receptors (such as PD-1) are centrally

involved in T cell exhaustion (93). And PGE2 could be one of the

inducers of PD-L1 expression (94). We suppose that COX2-PGE2

pathway may result in T cell exhaustion by inducing PD-L1

expression. Emerging data from multiple solid tumor mouse

models indicates that EP4 antagonists and PD1/PD-L1 blockade

are effective in inhibiting primary tumor growth (49, 95, 96).

Therefore, it may be a new potential strategy to combine EP

antagonists with PD1/PD-L1 blockade in treating T cell

exhaustion. In addition, combination immunotherapy with

chimeric antigen receptor T (CAR-T) cells and checkpoint

blockade is thought to be the next immunotherapy frontier (97).

For instance, combination PD-L1 blockade and CD19 CAR-T cell

therapy resulted in better outcomes in patients with heavily B-ALL

(98). PGE2 signaling can activate protein kinase A, and then inhibits

T-cell receptor activation, which inhibits the antitumor effect of

CAR-T cell therapy (99). Thus, we conclude that targeting EP

receptors (such as EP2 and EP4) could represent a novel strategy

for improving the efficacy of adoptive immunotherapy. Some clinical

trials are ongoing to evaluate the efficacy of these inhibitors. A phase

I trial showed that EP4 antagonist (E7046) was safe in patients with

advanced malignancies (ClinicalTrials.gov, Number NCT02540291).

1 clinical trial is recruiting patients to evaluate whether a dual EP2/

EP4 antagonist (TPST-1495) suppresses tumor growth

(ClinicalTrials.gov, Number NCT04344795). Although there is

abundant EP receptor expression in fibroblasts and inflammatory

cells, the role of the COX-2-PGE2 signaling pathway in TME is not

fully understood, and more studies are needed to demonstrate this.
Summary

In this review, we discuss the role of the COX-2-PGE2 pathway in

tumor immune evasion regulation. The idea that efficient therapeutic

approaches should involve eliminating tumor cells and suppressing

tumor immune evasion is being supported by a growing body of

evidence, such as the use of checkpoint inhibitors to target

immunosuppressive cells and reactivate immunosuppressive effector

T cells. The COX-2-PGE2 signaling pathway may assist tumors in

evading immune systems by inducing tumor-associated immune cells

aggregation, impaired APC activity, a switch from Th1 to Th2 and

Th17 immune responses or by suppressing CD8+ cytotoxic T cell and

NK cell functions to promote tumor immune escape. In conclusion,

the COX-2-PGE2 pathway not only is an effective target for tumor

eradication, but it also suppresses tumor immune escape. Therefore,

the addition of cyclooxygenase-2 inhibitors or EP antagonists to

standard treatment may enhance the response of immunotherapy

in anti-tumor immune escape.
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