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Maastricht University Medical center+, Maastricht, Netherlands, 2Department of Radiation Oncology,
University of Vermont Medical Center, Burlington, VT, United States, 3Department of Radiation
Oncology, University of Washington Medical Center, Seattle, WA, United States, 4Brightlands Institute
for Smart digital Society (BISS), Faculty of Science and Engineering, Maastricht University,
Heerlen, Netherlands
Purpose: Artificial intelligence applications in radiation oncology have been the

focus of study in the last decade. The introduction of automated and intelligent

solutions for routine clinical tasks, such as treatment planning and quality

assurance, has the potential to increase safety and efficiency of radiotherapy.

In this work, we present a multi-institutional study across three different

institutions internationally on a Bayesian network (BN)-based initial plan review

assistive tool that alerts radiotherapy professionals for potential erroneous or

suboptimal treatment plans.

Methods: Clinical data were collected from the oncology information systems in

three institutes in Europe (Maastro clinic - 8753 patients treated between 2012

and 2020) and the United States of America (University of Vermont Medical

Center [UVMMC] - 2733 patients, University of Washington [UW] - 6180 patients,

treated between 2018 and 2021). We trained the BN model to detect potential

errors in radiotherapy treatment plans using different combinations of

institutional data and performed single-site and cross-site validation with

simulated plans with embedded errors. The simulated errors consisted of three

different categories: i) patient setup, ii) treatment planning and iii) prescription.

We also compared the strategy of using only diagnostic parameters or all

variables as evidence for the BN. We evaluated the model performance

utilizing the area under the receiver-operating characteristic curve (AUC).

Results: The best network performance was observed when the BN model is

trained and validated using the dataset in the same center. In particular, the

testing and validation using UVMMC data has achieved an AUC of 0.92 with all

parameters used as evidence. In cross-validation studies, we observed that the

BN model performed better when it was trained and validated in institutes with

similar technology and treatment protocols (for instance, when testing on
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UVMMC data, the model trained on UW data achieved an AUC of 0.84, compared

with an AUC of 0.64 for the model trained on Maastro data). Also, combining

training data from larger clinics (UW and Maastro clinic) and using it on smaller

clinics (UVMMC) leads to satisfactory performance with an AUC of 0.85. Lastly,

we found that in general the BN model performed better when all variables are

considered as evidence.

Conclusion: We have developed and validated a Bayesian network model to

assist initial treatment plan review using multi-institutional data with different

technology and clinical practices. Themodel has shown good performance even

when trained on data from clinics with divergent profiles, suggesting that the

model is able to adapt to different data distributions.
KEYWORDS

radiotherapy, AI, Bayesian network, plan review, quality assurance
1 Introduction

Radiotherapy (RT) is a complex multidisciplinary procedure

where different professionals are involved in the development and

execution of a treatment plan (1). Each part of the RT workflow (2)

is sensitive to errors that can have a negative impact and severe

implications in the treatment outcome. For instance, radiation

overdose to patients during the treatment delivery can lead to

radiation toxicity, like inflammatory or autoimmune diseases (3).

Current clinical RT care relies on a range of manual quality

assurance (QA) tests to detect abnormalities and potential errors

in radiotherapy processes (4, 5). With the rapidly advancing

technology and complexity in RT, QA is a highly important task

to provide high quality health care in radiation oncology.

In recent years, artificial intelligence (AI) techniques have been

implemented in different parts of the RT workflow (6, 7). More

specifically, AI has contributed to the automation and acceleration

of the RT treatment planning procedure (8), organs at risk (OARs)

delineation (9), and the development of decision support systems

for patients’ treatment (10). For quality assurance, AI developments

have been more limited (11). Efforts have been made on evaluating

patient specific QA and machine QA using datasets based on (inter)

national treatment protocols and safety guidelines (12, 13). AI can

potentially improve the efficiency and efficacy of QA without

increasing human resource needs (14).

This study focuses on improving the initial external beam

radiation therapy plan review. In this QA procedure, different RT

professionals are involved including medical physicists, radiation

oncologists, and radiation technologists/dosimetrists. They check

different technical, imaging, and dosimetric parameters of a

treatment plan which are known from experience or literature to

ensure the quality and safety of the treatment plan. International

organizations such as the American Association of Physicists in

Medicines (AAPM) created working task forces that are in charge of

publishing QA guidelines (15). To automate the initial review

process, most published studies implement such a guidelines-
02
based approach (16, 17) Moreover, recent studies focused on the

QA procedure are proposing promising AI-based applications (17–

19). One of the reasons that the clinical introduction of AI-based

treatment plan QA is lagging is the lack of reproducibility and

external validation using data from multiple institutes (16).

To assist the initial plan review process, Luk et al. (17) proposed

a Bayesian network (BN) model for the early detection of potential

errors in the RT treatment plan. Based on different diagnostic,

treatment planning, radiation dose prescription, and patient setup

variables, Luk et al. (17) created an intelligent alert system that can

warn medical physicists for potentially erroneous or suboptimal

parameters in the RT treatment plan. The BN structure was created

from a dependency-layered ontology (18, 20) and RT experts

experience at the University of Washington [UW] (Seattle, WA,

USA). BNs are probabilistic graphical models that model the

interactions among a network of variables and can be used to

estimate the probability of an event based on partial information.

Their ability to deal with missing values (which is a common

phenomenon in RT datasets) in combination with the

intuitiveness of their probabilistic reasoning, make BNs an ideal

method for decision support in radiation oncology (18). Compared

to rules-based algorithms and checklists that have been developed

to assist treatment plan review both in-house and commercially

(21–31), the BN has the advantage of mimicking human reasoning

and adapting to changes in clinical practice by updating the network

model with new data (11).

The network created by Luk et al. has been externally validated by

an independent European radiotherapy center (Maastro Clinic,

Maastricht, The Netherlands) to assess its generalisability in a

significantly different clinical setting, using a different patient cohort

treated with different technology (treatment planning system and

treatment delivery machine) (32).The results of the study (32)

showed that whereas the network is reproducible and reusable by an

independent institute, the performance of the model dropped when

compared to that achieved on the development cohort, with variations

in the different error categories that were simulated.
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The goal of this study is to describe the development of an

updated version of the error detection BN, by evaluating the

performance of the BN including additional variables and

connections. The updated version is based on the clinical

expertise of RT professionals and clinical, treatment planning and

dosimetric data from three different RT institutions in the United

States and Europe: Maastro Clinic, UW, and The University of

Vermont Medical Center [UVMMC].Following a standardized

methodology for the data variables preprocessing and errors

simulation, we aim to provide the RT community with a

reproducible alert system for the early detection of errors that are

ob s e rved in the rou t ine c l i n i c a l p rocedure o f RT

treatment planning.
2 Materials and methods

2.1 Model structure

With the BN structure created by Luk et al. (17) as the starting

point, a new BN structure was created in collaboration with

different experts such as medical physicists and radiation

technologists/dosimetrists who are involved in the treatment

planning procedure. We added two treatment plan variables to

the network; 1) the involvement of the number of monitor units

(MU) delivered for a certain gantry angle in a non-VMAT plan and

2) the delivered radiation dose per fraction in centi-gray (cGy).

These two variables incorporate the plan complexity as part of the

initial RT plan review in the network. We added links to the

network structure if there was consensus amongst the experts

interviewed with the goal of improving the model’s performance

as well as making it more informative, reusable and interoperable

with other radiotherapy centers. At the same time, we deleted setup

equipment nodes from the original network due to the

inconsistency between centers and difficulty in extracting

information from mostly free text data. The new BN structure is

shown in Figure 1, which includes 24 nodes and 41 edges with

diagnostic parameters, prescription parameters, patient setup

parameters and treatment planning parameters from a patient RT

treatment plan.
2.2 Data acquisition

We used three different treatment plan datasets acquired from

the relational database of the oncology information system (OIS)

from three different institutions located in Europe (Maastro clinic-

8753 patients treated between 2012 and 2020) and the United States

of America (University of Vermont Medical Center - 2733 patients,

University of Washington - 6180 patients, treated between 2018 and

2021). All data are anonymized and only the treatment plan

variables that are included in the BN are extracted, as shown in

the Table S1 of the supplementary material. The different technical

characteristics of the three institutions in terms of LINAC models

and TPS are presented in Table 1.
Frontiers in Oncology 03
2.3 Datasets preparation

The terminology in the datasets was standardized between the

three radiotherapy institutions. We also transformed the values into

different “bins” to reduce the amount of potential states of each

variable in BN. The variables and states that are used in the BN can

be found in Table S2 of the supplementary material. For training

and testing purposes, we splitted the dataset of each institution to

80/20, where the 80% of data is used to train the BN, and the 20% of

data is used for testing.
2.4 Error simulation

Due to the low number of registered errors in the incident

reports of the clinics, we instead used simulated plans with

embedded errors for testing and validation of the BN. Errors were

simulated according to the high-risk failure modes discussed in the

report of task group 275 of AAPM (15). The goal of the report was

to provide recommendations on a physics plan and chart review

using a risk-based approach. The failure modes that can be

encountered by the BN were selected according to the needs of

error alert probabilities of each institute.

We simulated errors in 5% in the testing dataset of the available

treatment plans of each center based on the consultation of
FIGURE 1

The structure and the connections between the different variables
used for the new BN. The variables included in the different error
categories as well as the diagnostic variables are represented with
different colors.
TABLE 1 Technical characteristics of the three institutes.

Institutes/
Technical
characteristics LINACs

Treatment
planning
system

Oncology
Information
system

MAASTRO Varian Eclipse Aria

UW Elekta Raystation/Monaco Mosaiq

UVMMC Elekta Pinnacle Mosaiq
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technical and clinical experts of each center and the real number of

registered incidents/errors. The simulated errors can be classified

into three different categories:
Fron
i) Patient setup,

ii) Treatment planning,

iii) Prescription.
As an indication of the simulated errors per category, we describe a

few examples below. The first category consisted of simulated table

angle errors altered by 10 degrees and errors such as the erroneous

involvement of bolus during the delivery of RT. The second category of

the simulated errors included planning errors such as LINAC gantry

and collimator angles changed by 20-30 degrees and abnormally high/

low plan complexity leading to unusual MU per cGy and MU per

degree. Regarding the dose prescription category (third category),

errors related to the fractionation scheme that was prescribed to the

patients were simulated. Specifically, we selected to follow three

approaches for the simulation of this error category, Initially, the

combination between the dose per fraction and number of fractions

was altered in order to have the same planning tumor volume (PTV)

values for each treatment plan. The second approach of error

simulation for this category consisted of simulations of different

combinations between the PTV dose and the number of fractions

with the dose per fraction stable. The third approach of the dose

prescription errors included the simulation of different combinations

between the PTV dose and the dose per fraction, while keeping the

number of fractions stable. A classification of the errors simulated can

be found in Table 2 as well as with their detailed description in Table S3

of the supplementary material. All the simulated error values were

compliant with the data standardization framework we presented (ie.

data binning), adjusted to the different treatment planning systems of

each center.

2.5 Parametric learning

The Bayesian networks’ parameters were learnt with 80% of the

data using the EM algorithm (33) implementation in Hugin 7.4,

with a Laplace correction of the multiplicative inverse of the parent

combinations of each node and a convergence threshold of 10-4.

2.6 Intended use

As in Luk et al (17) the intended use of the Bayesian network as

a potential error detector and quality assurance on RT treatment
tiers in Oncology 04
plans is as follows: we instantiate some of the variables in the

network as evidence and calculate the marginal probability of the

value for each other variable in a given treatment plan. Potential

errors or suboptimal treatment plan parameters are flagged if the

marginal probability is under a certain threshold (referred to as

anomaly threshold hereafter). For example, if the number of

fractions in a particular plan is 25 for a patient with lung cancer,

we calculate the probability of observing ‘Number of fractions’ = 25

after instantiating the ‘Anatomic tumor location’ node to ‘Lung’. If

such a probability is lower than an anomaly threshold, e.g. < 0.05,

we flag it as a potential error. The threshold is selected based on the

practical experience at UW. For clinical use, the threshold should be

determined by the local quality assurance team, with the tradeoff

between increased false positive alert rates and missed potential

errors in mind when threshold is increased and decreased

respectively. In the original study, TNM staging, anatomic tumor

location and the treatment intent variables were instantiated as they

are diagnostic parameters which have been confirmed in other

clinical procedures. In this study, we compare this strategy to the

strategy where all other variables (that are not missing) are

instantiated except the variable of interest, intending to compare

the original study results.
2.7 Experimental setup

For the calculation of the marginal probabilities, the Java

application programming interface (API) of Hugin Researcher 7.4

was used (34). The discriminative performance of the BN was

assessed by calculating the area under the receiver-operating

characteristic curve (ROC) curve (AUC) on the testing set. The

ROC was calculated on all variables except TNM staging, anatomic

tumor location and the treatment intent, which are assumed to be

correct as mentioned, by calculating sensitivity and specificity for

each possible value of the anomaly threshold.

Four different experiments were performed, which are

described in Table 3, to evaluate the performance of the network

in combinations of the three different centers by instantiating i) T,

N, and M stages, anatomic tumor location and the treatment intent

variables and ii) instantiating all the other variables.

The code used for the data pre-processing steps, error

simulation and the training/validation of the network can be

found in the GitHub repository (MaastrichtU-CDS/projects_bn-

rt-plan-qa: Bayesian network for error detection for radiotherapy

planning (github.com)).
TABLE 2 Error categories.

Patient set-up:Bolus, Patient orientation, Table angle, Tolerance table*

Treatment planning: Beam energy, Radiation type, Number of beams, SSD, Collimator angle, Gantry angle, Treatment intent, Wedge*, MU/cGy,MU/degree

Dose prescription: PTV dose, Number of fractions, Dose per fraction
*Not applicable at Maastro.
frontiersin.org
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3 Results

3.1 Experiments

3.1.1 BN single site approach: Training and
testing on different dataset splits of
the same center

Figures 2, 3 show the ROC and AUC values of the BN trained

and tested with single institutional data. The highest performance

was observed for the UVMMC center when instantiating all the

variables of the network as well as when instantiating the variables

of anatomic tumor location, TNM stage and treatment intent.

However, the performance of the BN is in general better with the

strategy of instantiating all variables.

To investigate the impact of each individual variable of the BN

to the discrimination assessment, we calculated the AUC values on

selected variables that included simulated errors. These AUC values

describe the effectiveness of the BN on flagging errors in this

particular variable of the BN among the three different centres.

This overview can be found in Table 4.

3.1.2 Cross site validation: BN trained on one
center and tested on the other two

Table 5 represents the AUC values of the BN using the cross site

validation mode (trained with data from one institution and tested

with other two institutional data). The highest performance on
Frontiers in Oncology 05
cross-site validation is using UW-trained network to test on the

UVMMC testing dataset, while the worst performance is shown

with testing UW data with Maastro-trained network.

Table 6 shows the individual AUC values of each of the BN

variables when instantiating all of them. The highest AUCs are

using UW/UVMMC network to test Maastro table angle, using UW

network to check UVMMC MU per degree, and UVMMC network

on Maastro collimator angle, with AUC > 0.95 On the other hand,

the Maastro network is not effectively checking MU per cGy, MU

per degree and number of beams in UVMMC and UW dataset,

showing AUCs below 0.5.

3.1.3 Training in two institutions and validation in
the remaining one

Figures 4, 5 represent the performance of the BN when it is trained

with data from two institutions and validated in the remaining one.

The highest performance was observed for the training of the network

at Maastro and UW centers and validated at UVMMC, in both of the

cases of instantiating the three variables of anatomic tumor location,

TNM stage and treatment intent (AUC=0.761) as well as when

instantiating all of them (AUC=0.829).

3.1.4 Training and validation in all three centers
Figure 6 represents the performance of the BN when trained

and validated in the three different participating centers, in both of

the cases of instantiating the three variables of anatomic tumor
FIGURE 2

ROC curve of the BN using the single site validation approach
(training and validation in one center) when instantiating anatomic
tumor location, treatment intent and TNM stage.
TABLE 3 Experimental set-ups for the training and validation of the BN.

Experiment 1 Single site: Trained and tested on data in the same site

Experiment 2 Cross site: Trained on one site and tested on the other two

Experiment 3 Trained on two sites, tested on the third

Experiment 4 Trained and tested on data from the three sites
FIGURE 3

ROC curve of the BN using the single site validation approach
(training and validation in one center) when instantiating all the
variables of the BN.
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location, TNM stage and treatment intent (AUC=0.738) as well as

when instantiating all of them (AUC=0.847).

The individual AUC values of the BN when trained and

validated in the three participating institutions are presented in

Table 7. The highest performance was observed for the variable MU

per degree in the case of instantiating all the variables (0.991).
Frontiers in Oncology 06
4 Discussion

In In this study, we established a multicentric approach to train

and validate an AI-based system that can alert RT professionals of

potential erroneous or suboptimal parameters in radiotherapy

treatment plans as part of the initial plan review process. Our
TABLE 4 Individual AUC values of each BN variable in the case of training and testing in one center (Bolus data could not be extracted from UVMMC data).

Variable Maastro UW UVMMC

Instantiating TNM
stage, Anatomic

tumor location and
treatment intent (%)

Instantiating
all (%)

Instantiating TNM
stage, Anatomic

tumor location and
treatment intent (%)

Instantiating
all (%)

Instantiating TNM
stage, Anatomic

tumor location and
treatment intent (%)

Instantiating
all (%)

Beam
Energy

84.8 87.9 67 74.8 69.2 84.7

Bolus 78.5 79.1 57.9 59.9 – –

Collimator
Angle

80.5 80.5 96.7 96.9 94.6 95.2

Dose Per
Fraction

60.4 73 85.9 85.9 84.7 90.6

Gantry
Angle

79.8 79 85.3 86 86.1 84.2

MU Per
cGy

60.2 86.9 75 83.4 80 96.4

MU Per
Deg

99.5 100 93.7 99 88.9 99.4

Number of
Beams

75.4 71.5 97.2 96.2 81.6 84.5

Number of
Fractions

82.8 85.6 75.1 75.2 74 74

PTV Dose 78.5 83.2 90.3 90.2 94.2 94.2

Radiation
Type

93.6 98.7 83.2 96.3 89.8 99.2

SSD 79.8 79 93.8 95.9 84.1 87.6

Table
Angle

98.7 99.3 97.9 98 96.6 98.8

Overall 76.4 88 80.5 86.4 84.4 92.5
-, Not applicable.
TABLE 5 AUC values of the cross site testing of the BN.

Training/
testing

Maastro UVMMC UW

Instantiating TNM
stage, Anatomic

tumor location and
treatment intent (%)

Instantiating
all (%)

Instantiating TNM
stage, Anatomic

tumor location and
treatment intent (%)

Instantiating
all (%)

Instantiating TNM
stage, Anatomic

tumor location and
treatment intent (%)

Instantiating
all (%)

Maastro. 76.4 88 62.7 63.8 57 58.5

UVMMC 68.3 64.2 84.4 92.5 72.3 75.3

UW 71.4 67.6 79.9 84.8 80.5 86.4
With gray color we have highlighted the results from the same site data.
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goal was to train and test the performance of the system in institutes

with different treatment machines, treatment planning systems,

oncology information systems and treatment protocols. The

results showed that, while the performance of the BN alert system

was good when trained and validated on the same sites, the

performance is highly dependent on the similarity in terms of

technology and clinical practice between training and

testing datasets.

Specifically, the best performance was observed for UVMMC in

the case of training and validating the network using training and

testing dataset from the same center. Similar high performance was
Frontiers in Oncology 07
observed in the case of the BN validation using data from UVMMC

in the cross site validation experimental setting. This is possibly due

to the slightly narrower clinical profile at a regional single-site

institution like UVMMC, which leads to a tighter distribution of the

BN, versus a multi-site institution like UW or a large European

institution like Maastro Clinic.

Another observation is that the BN performed better on

American institutions (UW and UVMMC) when compared with

Maastro clinic. It could be caused by the fact that most of the

variables that are included in the current version of the BN were

derived from the initial version of it in the study of Luk et al. (17)

where the network was trained and validated in UW in North
FIGURE 4

ROC curve of the BN performance when trained in two and
validated in one center, when instantiating the three variables of
anatomic tumor location, treatment intent and TNM stage.
FIGURE 5

ROC curve of the BN performance when trained in two centers and
validated in one, when instantiating all the BN variables.
TABLE 6 Individual AUC values of each BN variable in the case of cross testing approach when instantiating all the BN variables (Bolus data could not
be extracted from UVMMC data).

Trained -> Tested
Variable Maas -> UVMMC Maas -> UVMMC UW -> Maas UW -> UWM UVMMC ->Maas UVMMC ->UW

Beam Energy 52.1 54 71.6 62 79.5 54.5

Bolus – 52.7 72.1 – 72 54.2

Collimator Angle 82 64.3 88.4 84.8 95.2 88.8

Dose Per Fraction 58 73.9 61.3 62.3 74.6 74.3

Gantry Angle 56.9 61.6 67.9 81.3 84.5 72.5

MU Per cGy 57.5 41.7 72.6 89.7 69.6 76.4

MU Per Deg 48.9 42.9 85.8 95.7 58.6 91.1

Number of Beams 40.2 31.3 55.3 82.8 70.1 65.5

Number of Fractions 55.9 57.3 63.9 57 61.1 69.9

PTV Dose Rx 59.9 69 56.5 76.5 44.8 74

Radiation Type 79.5 66.9 74.1 97 68.3 78.7

SSD 69.3 67 78.1 70.8 59.6 90.2

Table Angle 67.1 77.4 98 91.2 99.6 96.1

Overall 63.8 58.5 67.6 84.8 64.2 75.3
-, Not applicable.
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America. Another note on the single-institutional training and

testing results is that instantiating all variables in the BN showed a

better performance on flagging errors than the original proposal to

instantiate only the diagnostic parameters (17). Individual variable

AUCs showed consistent performance of the BN on different error
Frontiers in Oncology 08
categories, with the BN performing marginally worse in dose scheme

in American institutions and number of beams in Maastro clinic.

The cross-site experimental set-up for the training and

validation of the BN aimed to identify the optimal training

strategy and the potential use of the BN trained from a data pool

on a local clinic. We observed that the performance of the alert

system was high in the case of training and validation when using

datasets from the same center (single site approach). This can be

explained by the fact that AI-based systems are highly dependent on

the characteristics of the development datasets they are trained on

(ie. training datasets) (35). Moreover, the heterogeneity of the

treatment protocols adapted to the anatomical tumor sites as well

as the different treatment techniques used in the three different

institutions (even for the same tumor location).

In the cross-site validation, we found that the BN works better

on mechanical treatment planning variables such as gantry angle

and collimator angle, but less effective on dosimetric treatment

planning variables such as number of beams, MU per degree and

MU per cGy. The BN has also shown to be less effective on cross-

checking plans in prescription parameters such as PTV dose on

institutions in another continent (i.e., UVMMC and UW vs.

Maastro). One possible explanation for the above-mentioned BN

performance can be the differences in treatment machines

(LINACs) and the treatment planning systems between the three

centers, as well as the difference in technical characteristics and RT

treatment protocols used between the two continents.

It is worth highlighting that for the third case of the

experimental set-up (training of the network in two centers and

validation in one), the performance of the BN was satisfactory in the

case of combining training data from Maastro clinic and UW (and

validated with UVMMC data). Also when the BN is trained with

data from all three institutions, the performance is comparable to a

single site approach (AUC 0.85 vs. 0.90), suggesting that a BN

trained from a large data pool including divergent clinical profiles

could be an effective tool for smaller clinics.

This study has several limitations; 1) the error simulation

selection was based on the report for effective treatment planning

review, clinical experience such as incident learning systems, and

the errors of interest from clinical experts. It does not include all

potential errors that could happen in an actual clinic, and the choice

of the errors could affect the performance of the BN; 2) incomplete

clinical profiles in the study. For example, there is a lack of data

from North American institutions with Varian setups, which could

be directly compared with our European counterpart, Maastro

clinic, to improve the BN and further narrow down the potential

causes of the results we observed.

This study also highlighted a few important steps to implement

AI applications in clinics. First, it is important to create an AI model

that could be applied to different clinical settings. Secondly, data

standardization could greatly improve the generalizability and

performance of the AI model. Ontologies (36) and community-

created standardization schemes (e.g. AAPM TG-263) (37) are both

potential tools to help achieve generalized AI models and

standardized data. Our results also showed that the model can

adapt to different data distributions, leading to generalizability to

clinics with different profiles.
FIGURE 6

ROC curve of the BN performance when trained and validated in
the three participating institutes.
TABLE 7 Individual AUC values of each BN variable in the case of
training and testing the BN in all the three participating centers.

Variable
Instantiating TNM stage,

Anatomic tumor location and
treatment intent (%)

Instantiating
all (%)

Beam Energy 71.7 82.2

Bolus 74.8 77.9

Collimator
Angle

83.8 84.9

Dose Per
Fraction

69.1 74.7

Gantry
Angle

77.5 79.2

MU Per cGy 62.2 74

MU Per Deg 85.7 99.1

Number of
Beams

78.2 76

Number of
Fractions

76.9 78.2

PTV Dose
Rx

77.9 79.3

Radiation
Type

79.4 97.1

SSD 81.1 80.9

Table Angle 96.5 98.6

Overall 73.8 84.7
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A pilot study on implementing the BN model was performed at

UW (38, 39) (references). An in-house plan review assistive tool that

combines a rules-based algorithm/checklist and the error detection BN

was developed. The checklist reports a pass or fail of the rules to the

physicists reviewing treatment plans and any failed rules would indicate

action is needed on the plan. For the BN, the tool reports a pass, alert or

warning parameter to the physicists when the particular parameter in

the network has a conditional probability higher than the alert

threshold, lower than the alert threshold but higher than the warning

threshold, and lower than the warning threshold respectively. Usually

an alert indicated that the parameter is uncommon from clinical data,

but mostly correct, while the warning indicated that the plan parameter

is rarely used in the clinic. The physicist used this information to

determine if this plan parameter is suitable given the patient situation.

The BN is updated annually according to the study result in Luk et al.

Note that the tool is an assistive tool on initial plan review and does not

replace any patient specific QA nor physicists reviewing the plan.

Future work will include the investigation of an alternative error

simulation method that will be applicable and reproducible by other

centers. Furthermore, the experimental set-up we used consists of four

different levels of training and validation among the three different

centers. As a next step, we aim to investigate another potential set-up

including more international radiotherapy centers in order to test the

reproducibility of the network from clinics with different technologies/

dosimetrists and patient population characteristics. At the same time,

we plan to expand the scope of BN to include additional treatment plan

quality parameters such as DVH metrics, beam aperture size and

irregularity. Finally, we will investigate the explicit modeling of

divergent clinic profiles in the model, so that training data from

similar clinics is prioritized when evaluating new treatment plans.

5 Conclusion

In conclusion, we presented an improved BN that has been

validated in multiple institutions to alert RT professionals of

potential erroneous or suboptimal parameters in radiotherapy

treatment plans in the initial plan review process. The model has

shown good performance even when trained on data from clinics

with divergent profiles, but also that the performance is strongly

dependent on the similarity between training and testing data in

terms of technology and clinical practices.
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