
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Alessio G. Morganti,
University of Bologna, Italy

REVIEWED BY

Xin Cao,
Northwest University, China
Milly Buwenge,
University of Bologna, Italy

*CORRESPONDENCE

Yu Zhang

yuzhang@smu.edu.cn

†These authors have contributed
equally to this work and share
first authorship

SPECIALTY SECTION

This article was submitted to
Gynecological Oncology,
a section of the journal
Frontiers in Oncology

RECEIVED 16 November 2022

ACCEPTED 01 February 2023

PUBLISHED 16 February 2023

CITATION

Wang J, Mao Y, Gao X and Zhang Y (2023)
Recurrence risk stratification for locally
advanced cervical cancer using multi-
modality transformer network.
Front. Oncol. 13:1100087.
doi: 10.3389/fonc.2023.1100087

COPYRIGHT

© 2023 Wang, Mao, Gao and Zhang. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 16 February 2023

DOI 10.3389/fonc.2023.1100087
Recurrence risk stratification
for locally advanced cervical
cancer using multi-modality
transformer network

Jian Wang1,2†, Yixiao Mao1,2†, Xinna Gao3 and Yu Zhang1,2*

1School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China,
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Objectives: Recurrence risk evaluation is clinically significant for patients with

locally advanced cervical cancer (LACC). We investigated the ability of transformer

network in recurrence risk stratification of LACC based on computed tomography

(CT) and magnetic resonance (MR) images.

Methods: A total of 104 patients with pathologically diagnosed LACC between July

2017 and December 2021 were enrolled in this study. All patients underwent CT

and MR scanning, and their recurrence status was identified by the biopsy. We

randomly divided patients into training cohort (48 cases, non-recurrence:

recurrence = 37: 11), validation cohort (21 cases, non-recurrence: recurrence =

16: 5), and testing cohort (35 cases, non-recurrence: recurrence = 27: 8), upon

which we extracted 1989, 882 and 315 patches for model's development,

validation and evaluation, respectively. The transformer network consisted of

three modality fusion modules to extract multi-modality and multi-scale

information, and a fully-connected module to perform recurrence risk

prediction. The model's prediction performance was assessed by six metrics,

including the area under the receiver operating characteristic curve (AUC),

accuracy, f1-score, sensitivity, specificity and precision. Univariate analysis with

F-test and T-test were conducted for statistical analysis.

Results: The proposed transformer network is superior to conventional radiomics

methods and other deep learning networks in both training, validation and testing

cohorts. Particularly, in testing cohort, the transformer network achieved the

highest AUC of 0.819 ± 0.038, while four conventional radiomics methods and

two deep learning networks got the AUCs of 0.680 ± 0.050, 0.720 ± 0.068, 0.777 ±

0.048, 0.691 ± 0.103, 0.743 ± 0.022 and 0.733 ± 0.027, respectively.

Conclusions: The multi-modality transformer network showed promising

performance in recurrence risk stratification of LACC and may be used as an

effective tool to help clinicians make clinical decisions.

KEYWORDS

cervical cancer, recurrence risk stratification, multi-modality data, deep learning,
transformer network
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1 Introduction

Cervical cancer is one of the most common malignancies in

females worldwide, which ranks as the 4th leading cause of death

among cancers in women (1). Locally advanced cervical cancer

(LACC), as the cervical cancer in IB2, IIA2 and IIB~IVA stages, is

generally considered as a local mass with the size larger than 4cm or

invades the surrounding tissues, in which distant metastasis does not

occur (1). In clinical practices, the treatment for patients with LACC

does not follow the same pattern (2). Most LACC patients are

routinely treated with concurrent chemoradiation therapy, and the

prognosis is heterogeneous (3). Despite neoadjuvant and adjuvant

therapies are being tentatively introduced into the treatment regimen,

the overall outcomes are not significantly improved (4, 5). The

potential reason may be associated with the small-scale cohorts

benefited from the neoadjuvant and adjuvant treatments, and all of

these patients are from the high-risk recurrence group (6). Therefore,

an interesting and crucial topic is to accurately predict recurrence risk

so as to formulate the individualized therapeutic schedule for

LACC patients.

With the rapid development of imaging techniques, imaging

examinations has been considered as a routine for patients with

cervical cancer. Currently, several studies have conducted recurrence

and prognosis analysis for cervical cancer by extracting and

evaluating high-throughput imaging features (7, 8). For example,

some work has carried out texture analysis based on positron

emission tomography (PET) or magnetic resonance (MR) images to

predict the recurrence risk of cervical cancer (9, 10). In addition, the

ultrasound (US) and computed tomography (CT) images were also

used in recurrence-related tasks, such as lymph node metastasis

prediction and survival assessment (11, 12). However, few studies

have tried to focus on the recurrence risk stratification of LACC.

Moreover, previous methods only utilized the information from

mono-modal i ty data and did not take mult i-modal i ty

complementary information into consideration. Consequently, it is

desirable to design an efficient model to make full use of multi-

modality data (i.e., CT and MR images) for accurately stratifying the

recurrence status of LACC.

In recent years, deep learning has demonstrated its superiority over

conventional radiomics methods based on hand-crafted features (13),

and it avoids the complex hand-crafted feature extraction (14).

Transformer, as one of the most popular deep learning architectures,

has been successfully applied to various medical image analysis tasks

and shows promising performance (15–17). In this study, we

investigated the ability of transformer network in recurrence risk

stratification of LACC by using non-contrast enhanced CT images

and T1-Weighted MR images. Specifically, the transformer network
Abbreviations: LACC, locally advanced cervical cancer; CT, computed

tomography; MR, magnetic resonance; AUC, the area under the receiver

operating characteristic curve; CI, confidence interval; PET, positron emission

tomography; US, ultrasound; FIGO, International Federation of Gynecology and

Obstetrics; VOI, volume of interest; BN, batch normalization; MLP, multi-layer

perceptron; ViT, vision transformer; KNN, k-nearest neighbor; SVM, support

vector machine; CPU, Central Processing Unit; GPU, Graphics Processing Unit;

ROC, receiver operating characteristic; ESUR, European Society of

Urogenital Radiology.
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consisted of three modality fusion modules to extract multi-modality

and multi-scale information, and a fully-connected module to perform

recurrence risk prediction. The performance of the model was assessed

by six metrics. The results showed that our proposed model

significantly outperformed the conventional radiomics methods.
2 Materials and methods

2.1 Patients

This study was approved by the Institutional Review Board, and

written informed consent requirement was waived. Totally, 104

patients with pathologically diagnosed LACC between July 2017

and December 2021 were retrospectively enrolled. For all

participants, the inclusion criteria were as follows: (1) patients who

pathologically confirmed LACC; (2) patients who underwent

radiotherapy as the main treatment; (3) patients who underwent

both CT and MR examinations within three weeks before

radiotherapy. The exclusion criteria were as follows: (1) external

irradiation treatment was interrupted for more than one month; (2)

the radiation dose to tumor was less than 80Gy; (3) surgery was

performed before radiotherapy. All enrolled participants with

matched multi-modality data were randomly divided into training

and testing cohorts at a ratio of 2: 1 to develop and assess the

network, respectively.

Recurrent tumors were classified into local, regional, or distant

progressive tumors after concurrent chemoradiotherapy was

completed. Clinical follow-up exams of the patients were performed

every 3 months until 36 months. Physical examination and tumor

markers were checked. Imaging examination of pelvic MRI (CT for

special patients) was performed when suspected of recurrence and the

biopsy was performed for confirmation.

The clinicopathologic data of all enrolled patients, including age,

tumor stage (FIGO 20091), pathologic diagnosis, lymph node status

and dose of radiotherapy, were obtained from medical records for

statistical analysis and the recurrence status of all patients was also

followed up.
2.2 CT and MR image acquisition

The CT images were collected from the CT scanner (Philips

Healthcare, Best, The Netherlands). The scanning current and voltage

were 300 mAs and 120 kV, respectively. Both slice thickness and slice

distance were set to 3 mm, and the resolution was 512×512 pixels. The

scanning range of CT was from the diaphragm to the proximal femur.

The MR images were acquired from four MR scanners: an Achieva 3T

MR scanner (Philips Medical Systems, Best, The Netherlands), with

the repetition time of 431.5-697.4 msec, echo time of 10 msec, slice

thickness of 5 mm, flip angle of 90°, percentage phase field of view of

100%, and matrix of 320×320 or 560×560; an Ingenia 3T MR scanner

(Philips, Best, The Netherlands), with the repetition time of 431.5-
1 Since the data were collected from 2017, we uniformly used the FIGO 2009

staging system instead of the newly revised FIGO 2018.
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697.4 msec, echo time of 10 msec, slice thickness of 5 mm, flip angle of

90°, percentage phase field of view of 100%, and matrix of 320×320 or

560×560; a Signa HDxt 1.5T MR scanner (GE Medical Systems,

Milwaukee, Wis, USA), with the repetition time of 200-620 msec,

echo time of 8.104 msec, slice thickness of 6 mm, flip angle of 90°,

percentage phase field of view of 100%, and matrix of 512×512; an

OPTIMA MR360 1.5T MR scanner (GE Healthcare, Milwaukee, Wis,

USA), with the repetition time of 393-1179 msec, echo time of 12.36

msec, slice thickness of 5-7.5 mm, flip angle of 90°, percentage phase

field of view of 100%, and matrix of 512×512. The scanning range of

MR scanners was the whole pelvic area.
2.3 Imaging registration and
VOI segmentation

In this study, we mainly focused on the imaging information of

the primary tumor regions for recurrence risk stratification. The

lymph node status was not included in the model. The specific

reason is that the patients included in this study were all patients

who had not undergone surgery, and there was no gold standard

(pathological result) to verify the presence of lymph node metastasis.

Previous studies (18, 19) have also shown that it is sufficient to use

only the imaging information of primary lesions for cancer prognosis

analysis, and the method selection of this study is generally in line

with the previous research norms.

We chose non-contrast enhanced CT and T1-weighted MR

images to carry out imaging analysis and used T1-weighted MR to

contour the tumor. The main reason is that MR imaging has

higher soft-tissue contrast resolution, so cervical cancer, which

originates in the pelvis and is mixed with surrounding soft tissues,

can be well identified. In order to ensure that the primary lesion area

can be accurately located in CT images, we registered them with the

MR images and then used the VOIs (i.e., primary tumor regions) of

MR images to extract lesion regions in both registered CT images and
Frontiers in Oncology 03
original MR images. Specifically, as shown in Figure 1, we first

cropped CT images to focus on the pelvic area, and then aligned

cropped CT images to the MR images via elastic registration (3D

Slicer software 4.11). The VOIs were manually delineated on T1-

weighted MR images by using ITK-SNAP 3.6 (ITK-SNAP 3.x Team,

www.itksnap.org) by a radiologist with 10 years of experience.
2.4 Patch extraction

The lesion regions of all patients were resampled into a volume

with the specified resolution of 86×86×12, and then zero-mean

normal izat ion was appl ied to each volume for image

standardization so as to eliminate the bias introduced by

inconsistent imaging parameters (20). Subsequently, each volume

was split into nine patches with the size of 32×32×12, in which

adjacent patches had 5-voxel overlap alone coronal and sagittal

directions. Finally, paired multi-modality patches were taken as the

input of transformer network for recurrence risk prediction.
2.5 Transformer network

The flow chart of transformer network is shown in Figure 1. The

transformer network was composed of three modality fusion modules

and a fully-connected module. The modality fusion module (as shown

in Figure 2) consisted of two spatial pyramid units and a transformer

unit. The former was used to extract the multi-scale image features

effectively. The spatial pyramid features were obtained by utilizing

three paralleled 3×3×3 convolutional layers with the dilation rates of

1, 3 and 5, respectively. Then, a pixel-wise summation operator and a

1×1×1 convolution layer were used to aggregate these features. In

order to avoid gradient vanishing and accelerate convergence, a batch

normalization (BN) layer and a Leaky ReLU nonlinearity operation

were plugged after each convolutional layer. Subsequently, a
FIGURE 1

The flow chart of the proposed model for the recurrence risk stratification of LACC.
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transformer unit was utilized to capture semantic features between

two modalities data (21). Specifically, we performed two multi-head

self-attention operations for each modality to learn modality-specific

information, and two multi-head cross-attention operations to extract

complementary features from the other modality. Afterwards, weight

average operator was adopted to aggregate all feature maps, and the

weights of different features were learned automatically. A multi-layer

perceptron (MLP) layer and a vision transformer (ViT) unit (17) were

then applied to further extract semantic representations.

Subsequently, CT and MR features were fed into the fully-

connected module that contained a global average pooling layer,

three stacked fully-connected layers (with the node number of 8, 4, 1,

respectively) and a Sigmoid activation function to generate the patch-

level predictions for CT and MR images, respectively. Another weight

average operation was then used to aggregate the predicted

probabilities of two modalities. Finally, we adopted the voting

strategy to integrate the predicted probabilities of nine paired

patches to obtain patient-level recurrence risk prediction.
2.6 Conventional radiomics methods and
deep neural networks

To verify the effectiveness of our method, we compared the

proposed method with some conventional radiomics methods and

deep neural networks. For conventional radiomics methods, followed

by (22), we extracted 4 non-texture features (including volume, size,

solidity and eccentricity) and 10320 texture features from each

modality for each patient. Subsequently, we utilized a filter-based

feature selection method, namely Relief algorithm (23), to select the

features with the best distinguishing power. The selected features were

then used to construct the decision tree classifier (24), naive bayes

classifier (25), k-nearest neighbor (KNN) classifier (26) and support

vector machine (SVM) classifier (27), respectively, for recurrence risk

prediction. For comparison with deep neural networks, we

reproduced ResNet18 (28) and MobileNetV1 (29) networks. We
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employ the same data preprocessing strategy as the proposed

method, and then utilized the input-level fusion strategy to fuse

multi-modality images into deep networks by multi-channel.
2.7 Implementation details and
statistical analysis

We conducted data augmentation strategy (i.e., random affine

transformation) to generate sufficient images to train the transformer

network so as to alleviate the overfitting and data imbalance issues (30).

Specifically, all VOIs were first scaled to the volume with the size of

560×560×20 and then underwent rotation (within p/18, p/18, p/4 in the

coronal, sagittal and transverse sections, respectively) and zoom (between

0.75 and 1.25) operations, followed by patch extraction. For eachmethod,

we randomly divided the training and validation sets five times to verify

the robustness of the method. In the training stage, we utilized binary

cross entropy as the loss function and recurrence status as the label. And

Kaiming initialization (31) and Adam optimizer (32) were adopted to

initialize and optimize model's parameters. The model was

complemented under the PyTorch (version 1.10.1) based on Python

(version 3.8.0). All intensive calculations were offloaded to a workstation

with Central Processing Unit (CPU) of Intel(R) Xeon(R) CPU E5-2623

v3@ 3.00GHz, Graphics Processing Unit (GPU) of NVIDIA Pascal Titan

X, and 125 GB RAM. The conventional radiomics model was carried out

by MATLAB software (version 2020a).

Continuous variables were expressed as means (standard

deviation), and categorical data were expressed as numbers

(percentage). The model's prediction performance was assessed by

six metrics, including the area under the receiver operating

characteristic curve (AUC), accuracy, f1-score, sensitivity, specificity

and precision. Univariate analysis with F-test was conducted to

compare differences between clinical variables and recurrence status

of LACC, while T-test for the difference comparison of AUCs, and

significant difference was defined by P < 0.05. All statistical analyses

were implemented using R software (version 4.0.2).
FIGURE 2

The architecture of modality fusion module. D is dilation rate in the convolutional layers and N is the number of convolutional kernels, which is set to 4,
8 and 16, respectively, in the three modality fusion modules.
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3 Results

3.1 Clinical characteristics

The clinical baseline characteristics of the enrolled participants are

shown in Table 1. The inclusion and exclusion criteria are shown in

Figure 3 (left). To develop and assess the proposed model, the enrolled

patients were randomly divided into the training cohort and testing

cohort with an approximate ratio of 2: 1. Then, in the training cohort,

we further portioned two-thirds samples for training the network and

the rest for validating the network, respectively. We performed three-

fold augmentation for non-recurrence cases and ten-fold augmentation

for recurrence cases in the training set to bridge the quantitative gap
Frontiers in Oncology 05
between two categories. Totally, 1989 (non-recurrence: recurrence =

999: 990), 882 (non-recurrence: recurrence = 432: 450) and 315 (non-

recurrence: recurrence = 243: 72) patches were generated from training,

validation and testing cohorts. The flow chart of the study is shown in

Figure 3 (right). The all cohorts maintained the same class distribution.
3.2 Training process and prediction
performance of transformer network

The training process of transformer network is shown in Figure 4,

which suggests that the loss of model gradually converged and the

accuracy gradually stabilized as iterations number increased. The
TABLE 1 Clinical characteristics of recurrence and non-recurrence cohorts.

Total Non-recurrence cohort Recurrence cohort P-value*

Number N = 104 N = 80 N = 24

Characteristics

Age (year) 56.68 (8.88) 55.24 (7.89) 59.00 (10.12) 0.2023

FIGO1 (2009 stage) 0.0008

IB2 5 5 (100%) 0 (0%)

IIA1 3 3 (100%) 0 (0%)

IIA2 9 8 (89%) 1 (11%)

IIB 46 37 (80%) 9 (20%)

IIIA 7 6 (86%) 1 (14%)

IIIB 30 21 (70%) 9 (30%)

IVA 2 0 (0%) 2 (100%)

IVB 1 0 (0%) 1 (100%)

Unknown 1 0 (0%) 1 (100%)

Pathologic diagnosis 0.9002

Squamous cell carcinoma 96 74 (77%) 22 (23%)

Adenocarcinoma 4 3 (75%) 1 (25%)

Unknown 4 3 (75%) 1 (25%)

Lymph node status 0.2674

Pelvic + Retroperitoneal 33 24 (73%) 9 (27%)

Pelvic + groin 2 1 (50%) 1 (50%)

Pelvic 15 11 (73%) 4 (27%)

Retroperitoneal 3 2 (67%) 1 (33%)

Unknown 51 42 (82%) 9 (18%)

Dose of radiotherapy 0.8471

45Gy/25F 9 7 (78%) 2 (22%)

45-60Gy/25F 6 6 (100%) 0 (0%)

50.4Gy/28F 2 2 (100%) 0 (0%)

50.4-60Gy/28F 46 31 (67%) 15 (33%)

Unknown 41 34 (83%) 7 (17%)
1 FIGO, International Federation of Gynecology and Obstetrics.
* P-value is derived from the univariate analysis with F-test.
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prediction performance of transformer network on recurrence risk

prediction of LACC is listed in Table 2. From Table 2, we can observe

that the transformer network can accurately predict the recurrence

status of all samples in the training cohort. Meanwhile, it achieved

good performance with AUC of 0.819 ± 0.038, accuracy of 0.869 ±

0.023, f1-score of 0.914 ± 0.016, sensitivity of 0.911 ± 0.038, specificity

of 0.725 ± 0.094 and precision of 0.919 ± 0.025 in the testing cohort.
3.3 Comparison with conventional radiomics
methods and deep neural networks

We compared the proposed transformer network with

conventional radiomics methods and deep neural networks. The

results are shown in Table 2. We can find that the transformer

network is generally superior to other methods in both training,

validation and testing cohorts. Particularly, in testing cohort, the

transformer network achieved the highest AUC of 0.819 ± 0.038,

while conventional radiomics methods got the AUCs of 0.680 ± 0.050,
Frontiers in Oncology 06
0.720 ± 0.068, 0.777 ± 0.048 and 0.691 ± 0.103, respectively. The

AUCs of the ResNet18 and MobileNetV1 were 0.743 ± 0.022 and

0.733 ± 0.027, respectively, which did not show competitive

performances. We analyzed that these two classical networks both

used the input-level modality fusion strategy, which made it difficult

to establish the intrinsic relationship between different modalities of

the same patient, resulting in the degradation of the model

performance (15). By contrast, we adopted the transformer

structure, and used its unique attention mechanism to fully learn

the complementary information between modalities and mined

discriminative semantic features. Therefore, the proposed model

was more accurate and robust. Figure 5 (left) plots the ROC curves

of all competing methods in testing cohort.
3.4 Efficacy of multi-modality data

We compared the prediction performance of the proposed model

on mono-modality data (i.e., only trained with CT or MR images) and
FIGURE 3

Patient inclusion and exclusion criteria, and the study flow chart.
FIGURE 4

The training process of transformer network.
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multi-modality data. The detailed experimental design can be found

in Supplementary Materials. Table 3 shows the experimental results,

and Figure S1 depicts the training process of transformer network on

mono-modality data. We can see that the model with multi-modality

data obtained the best results when compared with the models with
Frontiers in Oncology 07
only mono-modality data. Figure 5 (right) exhibits the corresponding

ROC curves, further validating the above-mentioned contents. It is

not surprising about the observation, in that multi-modality data can

provide more complementary information for the recurrence risk

stratification of LACC.
TABLE 2 Comparison results of the proposed method and other competing methods.

AUC Accuracy F1-score Sensitivity Specificity Precision P-value*

Proposed Training 0.987±0.025 0.986±0.029 0.984±0.031 0.971±0.058 1.000±0.000 1.000±0.000

Validation 0.989±0.021 0.988±0.024 0.987±0.027 0.975±0.050 1.000±0.000 1.000±0.000

Testing 0.819±0.038 0.869±0.023 0.914±0.016 0.911±0.038 0.725±0.094 0.919±0.025

Decision Tree Training 0.968±0.017 0.957±0.016 0.972±0.010 0.974±0.009 0.900±0.075 0.970±0.022 4.20e-05

Validation 0.953±0.053 0.943±0.036 0.962±0.023 0.950±0.025 0.920±0.098 0.975±0.031

Testing 0.680±0.050 0.703±0.034 0.787±0.026 0.711±0.028 0.675±0.061 0.881±0.023

Bayes Classifier Training 0.867±0.020 0.878±0.015 0.924±0.009 0.970±0.015 0.575±0.047 0.883±0.011 7.54e-05

Validation 0.903±0.066 0.867±0.019 0.915±0.013 0.950±0.025 0.600±0.000 0.884±0.003

Testing 0.720±0.068 0.691±0.042 0.777±0.030 0.696±0.028 0.675±0.100 0.879±0.037

KNN Training 0.925±0.031 0.843±0.023 0.905±0.014 0.966±0.014 0.437±0.068 0.851±0.016 1.40e-03

Validation 0.929±0.067 0.838±0.023 0.904±0.012 1.000±0.000 0.320±0.098 0.825±0.021

Testing 0.777±0.048 0.731±0.053 0.807±0.047 0.741±0.084 0.700±0.100 0.895±0.030

SVM Training 0.989±0.013 0.980±0.012 0.987±0.007 0.996±0.008 0.925±0.047 0.978±0.014 7.39e-07

Validation 0.975±0.038 0.952±0.030 0.969±0.020 0.987±0.025 0.840±0.080 0.952±0.024

Testing 0.691±0.103 0.646±0.023 0.737±0.020 0.644±0.030 0.650±0.050 0.862±0.017

MobileNetV1 Training 0.979±0.031 0.977±0.033 0.976±0.035 0.961±0.054 0.994±0.012 0.993±0.014 7.70e-03

Validation 0.975±0.040 0.973±0.044 0.971±0.048 0.954±0.073 0.992±0.016 0.990±0.020

Testing 0.743±0.022 0.811±0.023 0.875±0.020 0.859±0.054 0.650±0.094 0.894±0.020

ResNet18 Training 0.968±0.053 0.966±0.055 0.964±0.060 0.948±0.082 0.984±0.029 0.981±0.034 7.60e-03

Validation 0.977±0.040 0.971±0.052 0.967±0.062 0.946±0.108 0.996±0.008 0.996±0.008

Testing 0.733±0.027 0.800±0.031 0.863±0.026 0.822±0.049 0.725±0.050 0.910±0.011
fro
* P-value is calculated by T-test to measure significant differences from proposed model.
FIGURE 5

The ROC curves of models in testing cohort. The model with the best test result was shown. Left: ROC curves of all competing methods; Right: ROC
curves of the proposed model with mono-modality and multi-modality data.
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3.5 Efficacy of key modules in
transformer network

We also validated the efficacy of key modules in transformer

network. The detailed experimental design and results can be found in

Supplementary Materials.
4 Discussion

In this study, we developed and evaluated a transformer network

for the recurrence risk stratification of locally advanced cervical

cancer (LACC) based on computed tomography (CT) and magnetic

resonance (MR) images. The proposed method achieved excellent

prediction performance, which could be potentially used as an

effective tool for the decision-making support in a non-invasive way.

The individualized treatment of cervical cancer is guided by the

FIGO staging (33, 34). For patients with LACC, the preferred

treatment is concurrent chemoradiation rather than surgery (3).

However, unlike surgery treatment that can evaluate recurrence risk

based on the resected tumor, the concurrent chemoradiation lacks of

the conditions for adequate pathological evaluation after local biopsy.

Hysteretic risk assessment and intervention would lead to cancer

recurrence for partial patients. Therefore, it is desirable to accurately

predict the recurrence risk of LACC so as to determine appropriate

adjuvant treatment strategies.

Under the current advocacy of precision medicine (35) powered

by patient data (36), personalized treatment is the inevitable trend of

current medical technology development. The FIGO 2018 staging

system has acknowledged the value of imaging for optimal risk

stratification and treatment planning (37, 38) and European Society

of Urogenital Radiology (ESUR) guidelines also affirmed the

important role of MR images in the risk assessment of cervical

cancer recurrence (39). Additionally, medical imaging acquisition

and storage techniques enable the non-invasive analysis for various

diseases, which efficiently assists clinicians in disease diagnosis,

treatment and prognosis (40, 41). Typically, radiomics signatures

have been widely used and show promising value (42, 43). With the

widespread promotion of deep learning technology, the threshold for

mastering such high-precision models has been completely lowered.
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Compared to conventional radiomics methods, deep learning

simplifies the multi-step pipeline by automatically learning useful

features from images, and exhibits better predictive performance (44).

As one of the challenges of deep learning, large-scale data are needed

for model training. However, the low incidence of LACC might lead

to insufficient training data. To this end, in our work, we employed

the patch-based strategy to extract a large amount of image patches

from each patient and additionally performed data augmentation to

scale up training data and prevent overfitting. Furthermore, we

designed a relatively simple network, which embedded three

modality fusion modules and a fully-connected module, and the

satisfactory results demonstrated its ability of recurrence

risk stratification.

Computed tomography (CT) and magnetic resonance (MR) have

been considered as the routine examinations of cervical cancer

patients. Previous studies have suggested that CT and MR images

help identify metastatic lymph nodes and distant metastases for

patients with cervical cancer (45) and MR images can also evaluate

the extent of tumors in the cervix and in the pelvis (46). Additionally,

CT and MR images can provide information of tumors, such as lesion

size and invasion degree, which is crucial for preliminary clinical

staging and prognosis evaluation (47–51). Therefore, many models

based on CT or MR images have been proposed for the subtype

identification (52), staging analysis (53, 54), lymph node metastasis

prediction (54, 55) and prognosis analysis (12, 56, 57) of cervical

cancer. Compared to the above methods, the main contributions of

this paper lie in the following aspects: (I) We first investigated the

feasibility of deep learning method in accurately predicting recurrence

risk so as to help formulate the individualized therapeutic schedule for

LACC patients. (II) With matched CT and MR images, we proposed a

multi-modality model to fully extract modality-specific and modality-

sharable features for improving model's performance. (III) We

developed a transformer network which can utilize multi-scale and

multi-modality discriminative information and experimental results

demonstrated its efficacy.

Our study had some limitations. First, our model was constructed

only based on imaging (i.e., CT and MR) features, and more

integrable factors (e.g., tumor size and tumor marker level) can be

collected for further analysis. Second, the VOI segmentation was still

a manual process, which was time-consuming and experience-
TABLE 3 Comparison results of the proposed method on mono-modality data and multi-modality data.

AUC Accuracy F1-score Sensitivity Specificity Precision P-value*

CT+MR Training 0.987±0.025 0.986±0.029 0.984±0.031 0.971±0.058 1.000±0.000 1.000±0.000

Validation 0.989±0.021 0.988±0.024 0.987±0.027 0.975±0.050 1.000±0.000 1.000±0.000

Testing 0.819±0.038 0.869±0.023 0.914±0.016 0.911±0.038 0.725±0.094 0.919±0.025

CT Training 0.998±0.005 0.997±0.005 0.997±0.005 0.995±0.010 1.000±0.000 1.000±0.000 5.75e-04

Validation 0.996±0.008 0.996±0.008 0.996±0.009 0.992±0.017 1.000±0.000 1.000±0.000

Testing 0.677±0.021 0.737±0.042 0.813±0.039 0.748±0.068 0.700±0.061 0.895±0.013

MR Training 0.996±0.008 0.996±0.009 0.995±0.009 0.991±0.018 1.000±0.000 1.000±0.000 2.82e-03

Validation 0.996±0.008 0.996±0.008 0.996±0.009 0.992±0.017 1.000±0.000 1.000±0.000

Testing 0.676±0.068 0.720±0.066 0.795±0.049 0.704±0.052 0.775±0.146 0.914±0.055
fro
* P-value is calculated by T-test to measure significant differences from proposed method on multi-modality data.
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dependent. Last but not the least, this work was a retrospective and

single-site study, and a prospective and multi-site cohort is required

to further evaluate the model's performance. Nevertheless, to the best

of our knowledge, this is the first work to predict the recurrence risk of

LACC patients via the deep learning technique, which might supply a

valuable reference for the application of deep learning in LACC.

In conclusion, we investigated the ability of transformer network

in recurrence risk stratification of LACC based on CT and MR

images. The promising results demonstrated that the proposed

models might help clinicians make clinical decisions for patients

with LACC.
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