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Mammary adenocarcinoma, the most common cancer in female dogs, often

exhibits the lymph node and lung metastases and has a higher mortality rate.

However, mammary adenocarcinoma has no established treatment, except early

surgical excision. Canine mammary carcinoma has many common features with

human mammary carcinoma, including clinical characteristics, heterogeneity, and

genetic aberrations, making it an excellent spontaneous tumor model for human

breast cancer. Diverse cancers comprised heterogeneous cell populations

originating from cancer stem cells (CSCs) with self-renewal ability. Therefore, in

addition to conventional therapy, therapeutic strategies targeting CSCs are

essential for cancer eradication. The present study aimed to extract inhibitors of

canine mammary CSCs that suppress their self-renewal ability. Sphere-formation

assay, which evaluates self-renewal ability, was performed for the canine

mammary cancer cell lines CTBp and CNMp. The spheres formed in this assay

were used in inhibitor library screening, which identified various signaling pathways

such as proteosome, stress inducer, and mammalian target of rapamycin (mTOR).

The present study focused on the mTOR signaling pathway. Western blotting

showed higher levels of phosphorylated mTOR in sphere-forming CTBp and

CNMp cells than in adherent cells. Drug sensitivity examination using the mTOR

inhibitors everolimus and temsirolimus revealed dose-dependent reductions in

viability among both sphere-forming cells and adherent cells. Expression of

phosphorylated mTOR in adherent and sphere-forming cells decreased by

everolimus and temsirolimus treatment. In mice transplanted with CTBp-derived

spheres, everolimus treatment significantly decreased tumor volume compared to

control. These results reveal that the mTOR signaling pathway may be a potential

to be a therapeutic target in both cancer cells and CSCs. Novel therapeutic

strategies for canine mammary carcinoma are expected to benefit to human

breast carcinoma as well.
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Introduction

Canine mammary tumors are the most common tumors in

middle-aged and elderly female dogs (1). Canine mammary

carcinoma accounts for approximately 50% of all mammary tumors

and is associated with poor clinical behavior, including lymph node

and lung metastases, and high mortality (1). Canine mammary cancer

shares many common features with human breast cancer, including

the age of onset, hormonal etiology, stage, tumor diversity, lymph

node metastasis, and genetic abnormalities including breast cancer

susceptibility gene 2 (BRCA), phosphatidylinositol-4,5-bisphosphate

3-kinase catalytic subunit alpha (PIK3CA), and TP53 mutations, and

protein expression, including human epidermal growth factor

receptor 2 (HER2), estrogen receptor, progesterone receptor, and

p63 (2–6). Therefore, canine mammary cancer is considered a

spontaneous model of human breast cancer. Sex hormones are

closely related to mammary tumor development in dogs.

Ovariectomy before the first estrous reduces the mammary tumor

incidence by 99%, and ovariectomy before the second and third

estrous reduces them by 92% and 74%, respectively (7). Surgical

resection is the first choice for mammary tumor treatment in dogs.

Adjuvant therapy is performed for inflammatory breast cancer for

which quality of life improvement cannot be expected after surgical

resection. Adjuvant therapy for canine mammary tumors includes

chemotherapy, such as doxorubicin, cyclophosphamide, and

docetaxel, and molecular-targeted therapy, such as toceranib,

piroxicam, and firocoxib (8–12). Tamoxifen, which is used as

estrogen therapy for human breast cancer, is not recommended in

dogs due to adverse reactions, such as vulva edema, purulent

discharge, pyometra, and conjunctivitis (13). Additionally,

aglepristone, an anti-progestin drug, is used for labor induction and

pyometra treatment. Aglepristone has not been practiced due to

insufficient therapeutic outcome data, although it is expected to

treat dogs with mammary cancers (5). Therefore, developing a

novel treatment strategy in addition to conventional therapy is

necessary because a treatment protocol, including adjuvant therapy

for canine mammary cancer, has not yet been established. Human

patients with breast cancer are treated with molecular-targeted drugs

using monoclonal antibodies, tyrosine kinase inhibitors, cyclin-

dependent kinase 4/6 inhibitors, antiangiogenic agents, and poly

(ADP-ribose) polymerase inhibitors in addition to conventional

chemotherapy (14). Molecular-targeted drugs were developed to

directly act on molecular cancer cell abnormalities and selectively

target various signaling pathways related to cancer cell proliferation,

aggression, and apoptosis, and have yielded more successful results in

cancer therapy (14). Canine mammary cancer has many similarities

with human breast cancer, and molecular-targeted therapy for human

breast cancer is expected to be beneficial in canine mammary

cancer treatment.

Cancer stem cells (CSCs) or tumor-initiating cells are a

subpopulation of cancer cells and play an important role in cancer

development, recurrence, and metastasis. CSCs have self-renewal and

differentiation capacities, higher tumorigenicity in nude mice, and

radiotherapy and chemotherapy resistance (15, 16). Therefore, CSCs-

targeted therapies are essential for cancer eradication. CSCs can be

enriched by various techniques, such as surface antigen analysis, side
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population analysis, aldeflour assay, and sphere-formation assay, in

humans and dogs (17, 18). Sphere-formation assay is an excellent

method to efficiently enrich cell populations with self-renewal ability.

Canine CSCs have been identified in various cancers, such as

mammary adenocarcinoma, hepatocellular carcinoma, pulmonary

adenocarcinoma, rhabdomyosarcoma, and melanoma since the

existence of CSCs was first reported in osteosarcoma in 2007 (19–

27). In veterinary medicine, CSC studies for mammary cancer are

most advanced in dogs. Sphere-forming cells derived from mammary

adenocarcinoma lines have higher stem cell-related gene expression

and higher tumorigenicity in immunodeficient mice compared to

adherent cells (20). Additionally, sphere-formation assay is used for in

vitro sensitivity assay of anticancer drugs, such as doxorubicin and

carboplatin, as well as small-molecule inhibitors targeting

cyclooxygenase-2, and CSCs exhibit lower sensitivity than non-

cancer stem cells (20, 28, 29). Therefore, sphere-formation assay is

not only useful for elucidating the pathogenesis of mammary cancer,

which is as diverse as in humans, but also for searching for inhibitors

and molecular-targeted inhibitors that suppress self-renewal ability.

High-throughput screening in humans, using sphere-formation assay,

is conducted for various cancers, such as breast and lung cancers, for

inhibitors that suppress the self-renewal ability of CSCs (30–32).

High-throughput screening of canine mammary CSCs has not been

reported although a few agents targeting canine mammary CSCs have

been identified so far. Therefore, the present study used a molecular-

targeted inhibitor library to search for drugs that suppress the self-

renewal ability of CSCs derived from canine mammary cancer lines

and focused on the candidate inhibitors targeting the mammalian

target of rapamycin (mTOR) signaling pathway extracted by the in

vitro screening.
Materials and methods

Cell lines and culture

The present study used two canine mammary carcinoma cell lines

(CTBp and CNMp) (33). The cell lines were maintained in Dulbecco’s

modified Eagle medium and nutrient F-12 (DMEM/F12, Invitrogen,

Carlsbad, CA, USA), supplemented with 10% fetal bovine serum

(Hyclone, Logan, UT, USA) and antibiotics (Nakarai Tesque, Kyoto,

Japan) at 37°C in an atmosphere containing 5% CO2.
Sphere-formation assay

The sphere-forming assay was performed as previously described

(18). In brief, singly suspended cells derived from CTBp and CNMp

were plated at a density of 1 × 103 or 1 × 105 viable cells per ultralow

attachment 96-well plate (Coring, NY, USA) for drug sensitivity or

100-mm dish (Coring) for xenograft, respectively. The cells were

grown in serum-free DMEM/F12 supplemented with 10 ng/mL of

basic fibroblast growth factor (bFGF, Invitrogen, Carlsbad, CA, USA),

10 ng/mL of epidermal growth factor (EGF, Invitrogen), 4 mg/mL of

heparin (Sigma-Aldrich, St. Louis, CA, USA), and NeuroBrew-21

(Miltenyi Biotech, Tokyo, Japan).
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In vitro drug screening and sensitivity assay

Sphere assay was performed using SCADS inhibitor Kit IV,

including 39 molecule-targeted inhibitors, obtained from the

Screening Committee of Anticancer Drugs, Japan (Table 1). Singly

suspended cells were cultured in the presence of inhibitors (final

concentration: 1 mM or 10 mM) from the beginning for 5 days.

Everolimus (LC Laboratories, Boston, MA, USA) and temsirolimus

(LC Laboratories) were used for inhibitor sensitivity assay of adherent

cells and spheres derived from CTBp and CNMp. The adherent cells,

seeded at 5 × 103 cells/well on the 96-well plates, were cultured for 24

h and stimulated with a fresh culture medium containing seven

different doses (final concentration: 0.0001, 0.001, 0.01, 0.1, 1, 10,

or 100 mM) of everolimus or temsirolimus for 48 h. The sphere assay

was performed under the same inhibitor concentration and using the

in vitro screening protocol described above. Each living cell was

evaluated using Cell Counting Kit-8 (Dojindo Laboratories,

Kumamoto, Japan).

For analysis of mTOR signaling activity after inhibitor treatment,

CTBp and CNMp cell lines were seeded at 5×104 and 1×104 cells in 35

mm dish for cell culture and 6-well plate for sphere-forming assay,

respectively. Adherent cultures were replaced with medium

containing everolimus or temsirolimus at a final concentration of

10 mM after 3 days of culture. In the sphere-forming assay, after

culturing for 5 days, similar inhibitors were added at a final

concentration of 10 mM. Cells were harvested 1 and 4 hours after

the addition of the inhibitor, and western blotting described below

was performed.
Western blotting

The adherent and sphere-forming cells derived from CTBp and

CNMp cells were collected by centrifugation and washed with

phosphate-buffer saline. The cells were lysed in lysis buffer

(Promega, Tokyo, Japan) with a protein inhibitor cocktail for 15

min. Approximately 10 mg of the extracted protein was analyzed with

the following specific monoclonal antibodies against mTOR (clone

7C10, Cell signaling Technology, Tokyo, Japan), phospho-mTOR

(Ser2448) (clone 49F9, Cell Signaling Technology), 4E-BP (clone

53H11, Cell Signaling Technology) and phospho-4E-BP (Thr37/46)

(clone 236B4, Cell Signaling Technology), and polyclonal antibody

against b-actin (Santa Cruz Biotechnology). The membranes were

incubated with horseradish peroxidase-conjugated immunoglobulin

G (IgG) (GE Healthcare, Tokyo, Japan). The immunoreactivity was

detected using an ATTO EzWestLumi plus reagent (ATTO, Tokyo,

Japan) and ImageQuant LAS4000 mini (GE Healthcare).
Xenograft transplantation

Female BLAB/c nude mice, aged 8 weeks, were purchased from

CLEA Inc. (Tokyo, Japan). A suspension of 1 × 106 sphere-forming

cells derived from CTBp was subcutaneously injected into the

ventrolateral area under anesthesia. We administered saline

(control, n = 6/group) or everolimus (Novartis Pharma, Basel,

Switzerland, 4 mg/kg; oral n = 4/group) intraorally twice a week for
Frontiers in Oncology 03
21 days after tumor formation was macroscopically confirmed. The

tumor volume (V) was estimated using the following equation: V =

[(length) × (width)2]/2. Experiments were approved by the Animal

Experiments Committee of Nippon Veterinary and Life Science

University and were performed following the Guidelines for Animal

Experiments by the Nippon Veterinary and Life Science University.
Histopathology

The tumors formed in nude mice were fixed with 10% neutral-

buffered formalin and routinely embedded in paraffin wax for

histological examination. Sections were stained with hematoxylin

and eosin. Serial sections were immunostained using the

streptavidin-biotin-peroxidase method with primary monoclonal

antibodies specific for Ki67 (1:100, Dako, Denmark A/S, Glostrup,

Denmark) and alpha-smooth muscle actin (SMA, 1:400, Dako),

vascular endothelial growth factor (VEGF, 1:100, Santa Cruz

Biotechnology, California, USA). Briefly, sections were treated in

0.03% H2O2 in 33% methanol at room temperature for 30 min for

endogenous peroxidase blocking, following a pretreatment at 121°C

for 20 min in citrate buffer (pH 6.0) for Ki67 and SMA, and at 121°C

for 15min in citrate buffer (pH 9.0) for VEGF. The validation of

antibodies was confirmed by a positive reaction with biopsy samples

diagnosed with canine mammary adenocarcinoma or by a negative

normal mouse IgG. The intratumor SMA-positive vessel and Ki67

index of tumor cell densities were evaluated as previously described

(34). To evaluate the immunostaining intensity of VEGF, 5 high-

power field (x400) of tumor tissue were selected and measured using

Image J software.
Statistical analysis

The results are presented as means ± standard deviation. Student

t-test and Welch’s t-test were used for statistical analyses with R

version 4.2.2. P-values of <0.05 was considered significant.
Results

In vitro library screening using molecular-
targeted inhibitors in canine mammary
adenocarcinoma cell lines

A sphere-formation assay was performed using a molecular-

targeted inhibitor kit consisting of 39 types to extract inhibitors

that suppress the self-renewal ability. A decreased value of ≥50%

was found in 23 inhibitors in CTBp compared to control under

conditions of final concentrations of 1 mM and 10 mM. Conversely, 4

and 12 inhibitors were extracted at final concentrations of 1 mM and

10 mM, respectively, in CNMp. Eleven inhibitors, such as EGF

receptor (lapatinib, gefitinib), proteosome (bortezomib), stress

inducer (anisomycin), and mTOR (temsirolimus, everolimus, and

torkinib), were common between both lines (Table 1). This study

focused on the mTOR signaling pathway evaluated by western

blotting and the in vitro and in vivo antitumor effects of adherent
frontiersin.org
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TABLE 1 The viability of the sphere-forming cells derived from canine mammary carcinoma cell lines cultured with various concentration of the inhibitors
supplied in SCADS inhibitor kit IV.

SCADS kit4 inhibitors
Viability (% of control)

CTBp CNMp

Targets Inhibitors 1mM 10mM 1mM 10mM

blank none (DMSO) 100.00 100.00 100.00 100.00

Bcr-Abl nilotinib 60.51 64.82 64.25 97.16

Multi-kinases sorafenib 12.85 11.21 90.95 65.01

mTOR temsirolimus 27.64 28.30 74.66 29.27

EGFR/Her2 lapatinib 13.43 12.21 63.35 27.28

Bcr-Abl/Kit imatinib mesylate 136.30 139.07 68.33 105.99

Multi-kinases sunitinib malate 20.27 16.76 139.37 108.65

EGFR gefitinib 12.47 10.77 54.75 20.55

HDAC vorinostat 11.60 9.99 60.63 13.21

EGFR erlotinib 13.22 12.10 93.67 22.01

Proteasome bortezomib 13.26 11.88 50.23 12.01

Bcr-Abl/Src dasatinib 13.22 11.88 90.50 32.82

mTOR everolimus 31.16 30.41 106.33 46.29

Multi-kinases pazopanib 13.76 12.76 150.23 63.47

Rho/SRF CCG-1423 67.68 57.60 106.79 121.89

PIM PIM1/2 Kinase Inhibitor V 69.62 61.38 143.44 151.68

PIM PIM1 Inhibitor II 101.99 85.68 113.57 100.97

Hedgehog AY 9944 12.76 11.43 99.10 76.12

Hedgehog cyclopamine 44.63 36.85 92.76 68.23

Hedgehog Jervine 47.20 39.29 94.57 58.35

STAT3 WP1066 13.39 11.99 134.84 86.98

STAT3 5,15-DPP 67.55 59.49 143.89 128.26

Wnt IWP-2 91.34 69.92 143.44 117.96

Wnt IWR-1-endo 68.50 64.04 74.66 158.72

Wnt FH535 72.81 68.92 75.11 109.54

Notch DAPT 47.16 38.07 186.88 86.75

tankyrase-selective PARP XAV939 112.14 89.57 145.70 178.41

pan-PARP PJ-34 41.07 30.74 185.07 137.95

PARP-1/2-selective Olaparib 17.24 16.32 115.38 92.66

antipsychotic drug chlorpromazine hydrochloride 25.90 43.51 163.35 118.86

depression treatment desipramine hydrochloride 103.44 80.36 208.14 128.52

golgi inhibitor brefeldin A 11.07 9.99 176.02 109.02

stress inducer anisomycin 14.94 11.07 4.58 4.61

thalidomide family thalidomide 126.68 95.98 92.74 92.43

thalidomide family lenalidomide 126.15 102.65 86.30 79.14

retinoids tretinoin 94.34 78.28 66.90 42.83

retinoids tamibarotene 106.01 109.54 40.30 51.73

(Continued)
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cells and sphere-forming cells derived from canine mammary

adenocarcinoma lines.
Activated mTOR signal pathway was
detected in both adherent and
sphere-forming cells

Western blotting was performed to confirm the expression of

mTOR signal-related proteins, such as mTOR and 4E-BP1 in

adherent and sphere-forming cells from canine mammary

adenocarcinoma lines. Expression levels of mTOR and

phosphorylated mTOR proteins were similar between adherent and

sphere-forming cells of both lines (Figure 1). Conversely, 4E-BP1 was
Frontiers in Oncology 05
expressed in adherent and sphere-forming cells and phosphorylated

4E-BP1 was more highly expressed in sphere-forming than adherent

cells of both lines (Figure 1). These results revealed that mTOR

signaling was activated in both CTBp and CNMp.
mTOR inhibitors, including everolimus and
temsirolimus, inhibit adherent proliferation
and sphere formation in vitro

In vitro sensitivity assay was performed using the mTOR

inhibitors, including everolimus and temsirolimus, to examine

inhibitory effects on sphere formation and adherent cell

proliferation. Both CTBp and CNMp decreased the number of
TABLE 1 Continued

SCADS kit4 inhibitors
Viability (% of control)

CTBp CNMp

Targets Inhibitors 1mM 10mM 1mM 10mM

DNA alkylation temozolomide 132.52 103.36 66.54 86.24

EML4-ALK crizotinib 42.50 11.73 43.41 4.64

mTOR Torkinib 36.08 12.11 17.45 6.15
The viability of less than 50% are indicated by boldface. Data represet the mean of triplecate culture.
FIGURE 1

Western blot analysis of mTOR signaling in canine mammary adenocarcinoma lines, CTBp and CNMp. Adherent cells, ad; sphere-forming cells, Sp.
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sphere-forming and adherent cells in a dose-dependent manner with

everolimus and temsirolimus (Figure 2). The IC50 for everolimus and

temsirolimus was 158.8 nM and 123 nM in CTBp-derived (Figure 2A)

and 1.16 mM and 3.13 nM in CNMp-derived sphere-forming cells,

respectively (Figure 2B). Whereas, that in CTBp- and CNMp-derived

adherent cells were 17.0 nM and 39.5 nM (Figure 2C) and 53.6 mM
and 52.9 nM (Figure 2D), respectively. In adherent cultures, the cell

numbers of CTBp and CNMp lines were measured 24 and 48 hrs after

treatment of inhibitors, and their numbers tended to be time-

dependent (Supplemental Figure 1). Furthermore, in the sphere-

forming assay, the number of CTBp-derived sphere-forming cells

was measured 2 and 4 days after addition and was time-dependent

similar to adherent cells (Supplemental Figure 1).
mTOR inhibitors decrease the
phosphorylation of mTOR signal in
adherent and sphere-forming cells

Western blotting was performed to examine the expression of

mTOR signal with 10 mM everolimus and temsirolimus treatment. In
Frontiers in Oncology 06
both cell lines, adherent cells decreased phosphorylated mTOR and

4E-BP1 expression 1 and 4 hours after inhibitor treatment

(Figure 3A). On the other hand, sphere-forming cells treated with

everolimus and temsirolimus also decreased phosphorylated 4E-

BP1and mTOR expression (Figure 3B).
Everolimus exhibits the antitumor effect in
xenograft mice injected with CTBp-derived
sphere-forming cells

The in vivo antitumor effect of everolimus was investigated using

mice transplanted with CTBp-derived sphere-forming cells. A

significant tumor volume reduction was observed in the

everolimus-administered group compared to the control group 14

and 21 days after administration (Figure 4). Histologically, the tumors

formed in mice were similar in both groups and consisted of tubular

or solid tumor cell proliferation (Figures 5A, B). Tumor necrosis and

inflammatory cells, such as lymphocytes and mast cells, were not

observed in both group. The Ki67 index of tumor cells was 12.72 ±

9.17 and 16.43 ± 19.69 in the control and everolimus-administered
A B

DC

FIGURE 2

In vitro sensitivity assay of mTOR inhibitors, including everolimus and temsirolimus, in canine mammary adenocarcinoma lines, CTBp and CNMp.
(A, C) CTBp and (B, D) CNMp. Upper shows for sphere-forming cells and lower shows the sensitivity assay results for adherent cells. The results shown
are representative of at least three independent experiments.
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groups, respectively (Figure 5C). The number of intratumoral SMA-

positive vessels was 14.48 ± 4.08 and 11.50 ± 4.51 in the control group

and the everolimus-administered group, respectively (Figure 5D).

Almost all tumor cells were positive for VEGF. VEGF

immunostaining intensity of tumor cells was 214.5 ± 12.3 and

216.3 ± 6.49 in the control and evelorimus-administrated groups,

respectively (Figure 5E). A significant difference was found in tumor

volume, but with no significant difference between the two groups in

both the Ki67 index, VEGF expression of tumor cells and the number

of SMA-positive vessels.
Frontiers in Oncology 07
Discussion

This study conducted an in vitro library screening to suppress

the self-renewal ability of spheres derived from canine mammary

adenocarcinoma CTBp and CNMp lines and extracted molecular-

targeted inhibitors, such as mTOR, hedgehog, and proteasome. This

study focused on the mTOR signal. The activation of mTOR was

observed in both sphere-forming cells and adherent cells of canine

mammary cancer, and 4E-BP, which is an mTOR downstream

signal, was activated in sphere-forming cells. Furthermore, in vitro
A

B

FIGURE 3

Western blot analysis of mTOR signal after evelorimus and temsirolimus treatment. (A) adherent cells, (B) sphere-forming cells.
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sensitivity assay of everolimus and temsirolimus showed their

growth suppression in both adherent cells and spheres, and

everolimus revealed an antitumor effect in mice transplanted with

sphere-forming cells. These results suggest that in vitro screening by

sphere-formation assay using an inhibitor library is extremely useful

for extracting inhibitors that suppress the self-renewal ability of

CSCs in canine mammary carcinoma.

mTOR is a serine-threonine kinase that functions as a key

downstream target of the phosphatidyl-inositol-3 kinase (PI3K)/

AKT signaling pathway and has various regulatory functions, such

as cell proliferation, metabolism, angiogenesis, and autophagy (35–

37). mTOR forms a complex of mTORC1 and mTORC2, the 4E-BP1

and S6K exist downstream of mTORC1. Additionally, mTOR

activation is associated with tumor development and plays an

important role in maintaining the stemness of CSCs (36, 38). In

human breast cancer, mTOR activation in CSCs is important for

colony-forming and tumorigenicity (39). Activation of mTOR in

CSCs has been reported in various cancers, such as colon cancer,

prostate cancer, salivary gland cancer, and glioblastoma (40–43).

mTOR signaling suppression reduces aldehyde dehydrogenase

activity, which is abundant in immature cells, such as stem cells, in

colon cancer (44). Therefore, mTOR signaling has attracted attention
Frontiers in Oncology 08
as a therapeutic target for various cancers (45). Everolimus has an

inhibitory effect on breast CSCs (46, 47). Additionally, metformin

exhibits antitumor effects on breast CSCs via AMP-activated protein

kinase (AMPK) activation and mTOR suppression (48, 49). In dogs,

mTOR phosphorylation has been detected by immunohistochemistry

in various tumors, such as mammary tumors, squamous cell

carcinoma, trichoblastoma, myxosarcoma, hemangiosarcoma, and

prostate cancer (50–54). Phosphorylated mTOR expression in

canine mammary tumors is associated with tumorigenesis

and negative clinical behavior (51). Additionally, mTOR

phosphorylation has been demonstrated in many cancer lines, such

as osteosarcoma, melanoma, hemangiosarcoma, mast cell tumor,

breast adenocarcinoma, glioma, and lymphoma, by western

blotting, and rapamycin, which is an mTOR inhibitor, is associated

with decreased mTOR phosphorylation and cell viability (50, 55–58).

Cancer therapy targeting the PI3K/mTOR signaling pathway is

expected to have an antitumor effect against canine mammary

cancer and melanoma (59–61). The dual PI3K/mTOR inhibitor,

VDC597, dose-dependently reduces cell proliferation, invasion, and

vascular endothelial growth factor production in canine

hemangiosarcoma (58). However, the role of mTOR signaling in

canine mammary CSCs remains unclear. Therefore, this study
FIGURE 4

Antitumor effects of everolimus in a xenograft model transplanted canine mammary adenocarcinoma CTBp. Everolimus (n = 4, squares) or saline (n = 6,
circles) was administrated twice per week for 21 days. The differences were tested by Scheffe’s F test. *P < 0.05, **P < 0.01.
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proposes the use of mTOR inhibitors as targeted therapies for CSCs

and cancer cells in canine mammary cancers, similar to human breast

cancers. Unfortunately, the mechanism of the antitumor effect of

everolimus in canine mammary cancer model mice could not be

clarified because no difference was found in mitotic figures and

angiogenesis between control and mTOR-administered groups.

VEGF, which plays an important role in tumor angiogenesis,

expression in tumor cells between control and everolimus-

administrated groups supports the result that there is no difference

in intratumoral angiogenesis between both group. Further studies will

reveal the mechanisms underlying the antitumor effect of

mTOR inhibitors.
Frontiers in Oncology 09
Hedgehog (HH) signaling plays an important role not only in

promoting embryonic development and cell differentiation but also

in tumor initiation and progression (62). Additionally, HH signaling

is essential not only for normal stem cells but also for maintaining

CSC stemness (63). HH signaling pathway dysregulation in human

breast cancer has been implicated in triple-negative and HER2-

positive breast cancers and is persistently activated in CSCs, thereby

promoting CSC’s self-renewal ability (63–66). Therefore, HH

signaling is one of the cancer therapeutic targets. HH signaling in

dogs is expressed in cancer cell lines, including osteosarcoma and

transitional cell carcinoma, and HH inhibitors, such as

cyclopamine, GANT61, and vismodegib, suppress tumor
A B

D

E

C

FIGURE 5

Histopathological evaluation of canine mammary carcinoma model mice. Tumors formed in xenografts show similar histology in both control (A) and
everolimus-administered groups (B). Hematoxylin and eosin. Scale bar = 50 mm. No significant difference was found in the Ki67 index (C), smooth
muscle actin-positive microvessels density (D), and VEGF intensity (E) between the control and the everolimus-administered groups. The differences
were determined by the Student t-test and Weltch’s t-test.
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proliferation in these cancers (67–69). However, the antitumor

effects in canine mammary cancer-containing CSCs remained

unknown. In the present study, HH signaling, such as AY9944,

cyclopamine, and jervine, is identified as a candidate to suppress the

self-renewal ability of CSCs from the CTBp line, although detailed

analysis has not been performed. Therefore, HH signaling may be a

potential therapeutic target in canine mammary carcinoma, similar

to human breast cancers.

The proteasome inhibitor, bortezomib, showed high sensitivity

to canine mammary adenocarcinoma lines in this high-throughput

screening. Bortezomib induces cell death via proteotoxic stress and

alters the pro/anti-apoptotic protein balance by inhibiting

ubiquitinated protein degradation by the 20S proteasome (70).

Bortezomib is a Food and Drug Administration-approved

therapeutic drug for multiple myeloma and mantle cell lymphoma

(71, 72). Conversely, bortezomib monotherapy has had poor

outcomes in patients with metastatic breast cancer, whereas a

study reported 11 months of progression-free survival without

adverse events in patients with metastatic triple-negative breast

cancer with TP53 mutations (73, 74). CSCs are more resistant to

bortezomib than differentiated cancer cells, but bortezomib-

encapsulated nanoparticles can affect the stemness of CSCs

compared to free bortezomib (75, 76). Veterinary medicine has

shown higher sensitivity in canine cancer lines, including prostate

cancer, lymphoma, melanoma, and osteosarcoma, as well as

antitumor efficacy in melanoma-transplanted mice, but

bortezomib sensitivity in CSCs has never been evaluated (77–80).

Therefore, molecular-targeted therapy using bortezomib is expected

to be beneficial as a cancer treatment for dogs. Further studies will

reveal that bortezomib has antitumor effects in canine mammary

cancer, although this study performed no detailed bortezomib

analysis in canine mammary CSCs.

Sphere-forming cells are less sensitive to drugs, such as

doxorubicin, carboplatin, and cyclooxygenase-2, than adherent

cancer cells (20, 28, 29). In vitro library screening revealed the

presence of inhibitors, including Wnt, PIM, and thalidomide

family, that showed low sensitivity to the two concentrations used

in this study, suggesting that all inhibitors are insentisitive to CSCs.

Furthermore, further research is essential to determine whether

inhibitors that are sensitive to sphere-forming cells can acquire

resistance to them.

Sphere is a cancer stem cell population with self-renewal and

differentiation ability (20). Characterization of sphere-forming cells

in canine mammary carcinoma will lead not only to the elucidation

of the pathogenesis of mammary carcinoma, but also to the

development of therapies targeting CSCs (18). The tumor

microenvironment plays a critical role in the stemness of CSCs,

and also contributes to tumor progression and resistance to

therapeutic agents (81, 82). The tumor microenvironment

comprises a diverse population of cells, including fibroblasts,

cancer-associated fibroblasts (CAFs), mesenchymal stem cells,

endothelial cells, immune cells, such as T lymphocytes,

macrophages, and dendritic cells (83). However, sphere-forming

assay can not construct a microenvironment. Therefore, co-culture
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of spheres and CAFs can construct a microenvironment that is

useful for further characterization of CSCs (84). Furthermore,

organoids are formed in 3-dimentional cultures, but, unlike

spheres, they form mimics of cancer tissues composed of CSCs,

cancer cells, and microenvironment that are construct in vivo (85).

In further research, in addition to spheres, in vitro drug screening

targeting cancer organoids will be essential for the development of

new therapeutic strategies in veterinary medicine.

Canine mammary cancer is an excellent spontaneous

intermediate animal model for human breast cancer study, and

new therapeutic studies for canine mammary cancer are a promising

area in comparative oncology. However, the results of this study are

limited to cell culture and mammary cancer model mice, and the

therapeutic effect in dogs with mammary cancer remain unclear. In

the future, clinical trials in dogs with breast cancer are essential.

Therefore, establishing new therapeutic strategies and developing

novel therapeutic protocols for canine mammary cancer is expected

to bring beneficial benefits not only to veterinary medicine but also

to human breast cancer treatment. Human and canine oncology

need to collaborate in breast cancer research following the one

health concept.
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SUPPLEMENTARY FIGURE 1

Time-susceptibil ity to everolimus and temsirol imus in mammary

adenocarcinoma cells. CTBp (A, B) and CNMp (C, D) adherent cells treated

with evelorimus and temsirolimus. CTBp-derived sphere-forming cells treated
with evelorimus (E) and temsirolimus (F).
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5. Valdivia G, Alonso-Diez Á, Pérez-Alenza D, Peña L. From conventional to precision
therapy in canine mammary cancer: A comprehensive review. Front Vet Sci (2021)
8:623800. doi: 10.3389/fvets.2021.623800

6. Miao K, Lei JH, Valecha MV, Zhang A, Xu J, Wang L, et al. NOTCH1 activation
compensates BRCA1 deficiency and promotes triple-negative breast cancer formation.
Nat Commun (2020) 11:3256. doi: 10.1038/s41467-020-16936-9

7. Schneider R, Dorn CR, Taylor DO. Factors influencing canine mammary cancer
development and postsurgical survival. J Natl Cancer Inst (1969) 43:1249–61.

8. Poirier VJ, Hershey AE, Burgess KE, Phillips B, Turek MM, Forrest LJ, et al. Efficacy
and toxicity of paclitaxel (Taxol) for the treatment of canine malignant tumors. J Vet
Intern Med (2004) 18:219–22. doi: 10.1892/0891-6640(2004)18<219:eatopt>2.0.co;2

9. Simon D, Schoenrock D, Baumgärtner W, Nolte IJ. Postoperative adjuvant
treatment of invasive malignant mammary gland tumors in dogs with doxorubicin and
docetaxel. Vet Intern Med (2006) 20:1184–90. doi: 10.1892/0891-6640(2006)20[1184:
patimm]2.0.co;2

10. Lavalle GE, De Campos CB, Bertagnolli AC, Cassali GD. Canine malignant
mammary gland neoplasms with advanced clinical staging treated with carboplatin and
cyclooxygenase inhibitors. In Vivo. (2012) 26:375–9.

11. Kuruoglu FE, Ozyigit MO, Nak D, Avci Kupeli Z, Ekici ZM, Koca D, et al. Efficacy
and toxicity of doxorubicin and cyclophosphamide for the neoadjuvant treatment of
locally advanced stage canine mammary tumors. Kafkas Univ Vet Fak Derg. (2020)
26:729–34. doi: 10.9775/kvfd.2020.24112
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