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Objective: To implement artificial neural network (ANN) algorithms for

noninvasive lymph node staging (NILS) to a decision support tool and facilitate

the option to omit surgical axillary staging in breast cancer patients with low-risk

of nodal metastasis.

Methods: The NILS tool is a further development of an ANN prototype for the

prediction of nodal status. Training and internal validation of the original

algorithm included 15 clinical and tumor-related variables from a consecutive

cohort of 800 breast cancer cases. The updated NILS tool included 10 top-

ranked input variables from the original prototype. A workflow with four ANN

pathways was additionally developed to allow different combinations of missing

preoperative input values. Predictive performances were assessed by area under

the receiver operating characteristics curves (AUC) and sensitivity/specificity

values at defined cut-points. Clinical utility was presented by estimating

possible sentinel lymph node biopsy (SLNB) reduction rates. The principles of

user-centered design were applied to develop an interactive web-interface to

predict the patient’s probability of healthy lymph nodes. A technical validation of

the interface was performed using data from 100 test patients selected to cover

all combinations of missing histopathological input values.

Results: ANN algorithms for the prediction of nodal status have been

implemented into the web-based NILS tool for personalized, noninvasive

nodal staging in breast cancer. The estimated probability of healthy lymph

nodes using the interface showed a complete concordance with estimations

from the reference algorithm except in two cases that had been wrongly

included (ineligible for the technical validation). NILS predictive performance to

distinguish node-negative from node-positive disease, also with missing values,

displayed AUC ranged from 0.718 (95% CI, 0.687-0.748) to 0.735 (95% CI, 0.704-

0.764), with good calibration. Sensitivity 90% and specificity 34% were
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demonstrated. The potential to abstain from axillary surgery was observed in 26%

of patients using the NILS tool, acknowledging a false negative rate of 10%, which

is clinically accepted for the standard SLNB technique.

Conclusions: The implementation of NILS into a web-interface are expected to

provide the health care with decision support and facilitate preoperative

identification of patients who could be good candidates to avoid unnecessary

surgical axillary staging.
KEYWORDS
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1 Introduction

Breast cancer in females is the most commonly diagnosed cancer,

with approximately 2.3 million new annual cases worldwide (1). Breast

cancer care has evolved into a multidisciplinary approach, with

increasingly conservative surgical techniques in the breast and axilla

and targeted systemic therapies (2). Evaluation of axillary nodal status

in primary breast cancer determines the pathological stage of the

disease, and the presence of axillary lymph node metastasis remains a

key prognostic factor in breast cancer (3). Therefore, an accurate

assessment of nodal status is still crucial in guiding the extent of

axillary surgery and the need for neoadjuvant and adjuvant therapy

including postoperative radiotherapy. Over the decades, several

landmark trials have established a more conservative and less

extensive approach for axillary nodal staging, from axillary nodal

dissection (ALND) to today’s standard staging by sentinel lymph

node biopsy (SLNB) (4–6). Furthermore, previous routine

completion of axillary lymph node excision in sentinel lymph node-

positive breast cancer has been abandoned by the results of randomized

trials on axillary management (7–10) and further advances in adjuvant

treatment. While paradigm-changing studies such as the ACOSOG

Z0011 study (10) indicate an increasing interest in limiting axillary

surgery, and early detection by mammography screening has shifted

the distribution of breast cancer toward earlier stages (11), SLNB is still

routinely performed in patients with clinically node-negative breast

cancer. The vast majority of these patients present with benign axillary

lymph node status, and the invasive surgical procedure has no

therapeutic benefit but increases the risk of morbidity related to pain,

seroma, neuropathy, arm lymphedema, and postoperative infection

(12–16). In 2021, ASCO published an updated guideline on axillary

staging which included recommendations to forego SLNB in selected

patients and endorsed a case-by-case evaluation to warrant patient-

centered axillary treatment (17).

Although imaging methods for assessing the lymph nodes of the

axilla have shown promising results (18–20), the diagnostic

accuracy of imaging techniques alone has been insufficient to

replace SLNB for nodal staging. Therefore, alternative methods

for surgical staging of axillary lymph nodes have been presented, for

example, prediction models that combine clinical and tumor
02
biological and/or radiological properties to estimate the

probability of axillary lymph node metastasis. Machine learning-

assisted models, including artificial neural networks (ANN), have

been proposed to supplement standard statistical methods in

classification tasks and decision support in cancer (21). An ANN

model can handle non-predefined relations, such as nonlinear

interactions, and does not require distributional assumptions.

However, this technique comes at the cost of reduced

interpretability and difficulty in gaining insight into the model

features (22).

In 2019, our research group presented an ANN prototype for

preoperative noninvasive lymph node staging (23). This original

model utilized fifteen patient-related and clinicopathological

characteristics to predict healthy lymph nodes and showed better

discriminatory ability than a multivariable logistic regression

model. The fifteen variables in the model were selected based on

association to nodal status in previously published models, variable

selection in the ANN prototype and their availability in routine

breast cancer work-up. The potential to abstain from surgical

axillary staging by SLNB was shown in 18−27% of newly

diagnosed breast cancer patients. A health-economic decision-

analytic model demonstrated that the implementation of the

ANN prototype is associated with substantial cost reductions and

overall health gains (24).

This study aims (1) to present the implementation of a further

improved ANN algorithm for nodal status prediction in early breast

cancer into a web-based tool for noninvasive lymph node staging

(NILS), (2) to report on the predictive performance of the NILS tool

with integrated ANN models to handle different access to

preoperative data, (3) to assess the clinical utility by estimating

possible SLNB reduction rates applying the NILS tool to predict

nodal status in early breast cancer.

2 Materials and methods

2.1 Data collection for model development

The current NILS tool is a further development of an ANN

prototype for the prediction of healthy lymph nodes published in
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2019 (23). The study population for training and internal validation

of the initial ANN algorithm was based on a prospectively

maintained pathological database. We identified consecutive

clinically node negative patients with invasive breast cancer who

underwent primary breast surgery and surgical axillary lymph node

staging between January 1, 2009, and December 31, 2012, at Skåne

University Hospital, Lund, Sweden. Ethical permission was

obtained from the local ethics committee at Lund University (LU

2012/340), and patients were allowed to opt out of the study.

Exclusion criteria were: male gender, prior ipsilateral surgery in

the breast or axilla, palpable axillary lymphadenopathy,

neoadjuvant therapy, and unknown pathological nodal status

after routine surgical axillary staging. Fifteen potential

clinicopathological predictors of nodal metastases were identified.

Information on the mode of breast cancer detection (detected at

screening mammography vs. symptomatic presentation) was

obtained from the mammography screening records. Histological

classification and definition of axillary nodal status has previously

been described (23). The following data were collected frommedical

records and surgical pathology reports: age at diagnosis,

menopausal status, body mass index, bilateral disease, tumor

localization in the breast, tumor multifocality, tumor size,

histological type, histological grade, status of estrogen receptor

(ER), progesterone receptor (PR), human epidermal growth factor

receptor 2 (HER2), Ki67 value, and presence of vascular

invasion (VI).
2.2 The ANN structure

2.2.1 Variable selection
The initial ANN algorithm for predicting healthy lymph nodes

vs. metastatic lymph nodes (N0 vs. N+) previously reported

in 2019 required multiple preoperative and postoperative

clinicopathological inputs variables (23). Missing data were handled

using multiple random imputations. The selection of variables from

this first predictive ANNmodel provided a set of candidate predictors

for the current NILS tool. The key features of the variable selection

step are summarized here. Ranking of the input variables was

performed by determining the input weights of the candidate

predictors, and variable redundancy reduction was obtained by

maintaining only the top-ranked variables for the prediction of

healthy lymph nodes. The overall significance of the input variables

was evaluated using a permutation technique. More specifically, a

given input variable was decoupled from the patient by a random

permutation across the evaluation cohort and the impact of this

randomization on predictive ability was assessed. The predictor

variable that is associated with the greatest reduction in predictive

ability was assigned an importance value of one. All other predictors

were given positions according to the associated decrease in the

predictive performance at randomization. The 10 highest-ranking

variables provided the contribution profile of the final input variables

to the current NILS tool. The current tool included in order of

importance: largest tumor size, VI, tumor multifocality, ER status,

histological type, PR status, mode of detection, age at diagnosis,

tumor localization, and Ki67 value.
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2.2.2 Multilayer perceptron model
Ensemble models, each comprising 30 multilayer perceptron

(MLP) neural networks, were used for the development and internal

validation of predictive ANN models. An overview of the original

ANN structure has been presented in a previous publication (23).

For completeness, we present the model training and internal

validation steps in detail.

Each MLP in an ensemble had one hidden layer with 10 nodes

and a single output node encoding the probability of healthy axillary

lymph nodes. The number of input nodes was 12−16, depending on

the specific combination of input features. The activation function

for the hidden nodes is a hyperbolic tangent function and a logistic

function for the output node. An ensemble prediction was

performed by averaging the individual MLP predictions.

2.2.3 Workflow for N0 prediction
The present NILS ANN algorithm was trained to handle

combinations of missing data for 10 input variables. Strategies for

handling missing input variables have been developed to reflect the

clinical pathway of diagnostic workup in breast cancer, with a

special focus on the risk of incomplete preoperative

histopathological reporting. Therefore, the prediction model

required that all variables should be present, except for VI and/or

ER status, PR status, and Ki67 value. Figure 1 shows the N0

prediction workflow, which allows combinations of variable inputs.

In the first step, the application programming interface (API)

verifies whether information on VI is missing. In cases with missing

VI, one of the two imputation models was chosen to acquire an

imputed value for VI. The choice of the VI imputation model was

based on the presence of ER status, PR status, and Ki67 value. If any

of these three input variables were missing, a second model without

these inputs was applied. In the next step of N0 prediction after the

inclusion of VI, one of the two models was selected in the same

manner as described above. If any of the three input variables (ER

status, PR status, and Ki67 value) were missing, a model without
FIGURE 1

Artificial neural network workflow to estimate the probability of
healthy lymph nodes. ER, estrogen receptor; PR, progesterone
receptor; VI, vascular invasion; N0, no axillary lymph node
involvement (benign lymph nodes).
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these features was applied; otherwise, an algorithm using all values

was assigned.

2.2.4 Model training
For each model presented in the N0 prediction workflow

(Figure 1), an ensemble of MLPs was trained. Each MLP was

trained on a unique subsample of the original training dataset.

Such a sample was created by first randomly splitting the original

training dataset into three parts of equal size stratified by class.

One part was removed from the data, leaving two parts that

formed a training dataset. This procedure was repeated 10 times

with different random splits into three parts. In total, 10 × 3

training datasets were created and used to train 30 MLPs in

an ensemble.
2.2.5 Model selection
Each individual MLP was regularized using the weight decay

method (25). This method uses a hyperparameter that sets the

amount of regularization to be used. The same weight decay

parameter was used for all MLPs in the ensemble, and the

optimal parameters were determined using a model selection

procedure. Model selection was accomplished using the method

of repeated 5-fold cross-validation. The original training dataset

was split randomly into five parts of equal size, with a preserved

class fraction within each part. Each part was used to validate an

ensemble model trained on the remaining four parts. This

procedure was repeated five times, resulting in 5 × 5 validation

results. The average of these 5 × 5 results was used to validate the

performance of the ensemble model. This repeated 5-fold cross-

validation procedure was performed for a sequence of different

weight decay parameters. The weight decay parameter

corresponding to the best 5-fold cross-validation performance

was selected as the optimal parameter and was used in the final

ensemble model. An overview of the model selection process is

shown in Figure 2.
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2.2.6 Data preprocessing
A maximum of 10 input variables contributed to 16 values used

as inputs for the MLP according to the following criteria
1) Tumor size (mm): single numerical value. Normalized to

unit standard deviation and zero mean before training.

2) VI: a single binary value. Present = 1, Absent = 0

3) Multifocality: Single binary value. Present = 1, Absent = 0

4) ER status: Single binary value. Positive = 1, Negative = 0

5) Histological type: categorical, three values. Invasive ductal

cancer of no special type (NST) (1,0,0), invasive lobular

cancer (ILC) (0,1,0), and histological subtypes other than

pure NST or ILC (0,0,1).

6) PR status: Single binary value. Positive = 1, Negative = 0

7) Mode of detection: Single binary value. Mammographic

screening = 1; symptomatic presentation = 0

8) Age (years): Single numerical value. Normalized to unit

standard deviation and zero mean before training.

9) Tumor localization: semi-categorical, five values. Breast

tumor localization was computed using two features, the

right/left specification and the o’clock position of the

tumor, and assigned as central or within the breast

quadrants: upper inner (UIQ), upper outer (UOP), lower

inner (LIQ), and lower outer (LOQ).

10) Ki67: Single numerical value. Normalized to unit standard

deviation and zero mean before training.
2.3 Reporting on model predictive
performance, calibration, and
statistical analysis

The development of the NILS predictive tool for healthy lymph

nodes and the report of findings were following an EQUATOR

Guideline for reporting machine learning predictive models (26).

The predictive performance of the model was represented by the

area under the receiver operating characteristics curves (AUC).

Sensitivity and specificity values at defined cut-off point were also

presented. The reported performances of the different ANN models

were obtained from the internal 5-fold procedure. No separate test

set or additional cross-validation loop was used for more unbiased

estimation of prediction performance. To further simplify the

reporting of the performance measures, a single validation result

was computed from the internal 5 × 5 fold. Each of the five

validation lists was fused to a single validation list, incorporating

all training data. Repeated cross-validation led to five validation

lists, and a single final list was computed by averaging the

predictions for each patient. The reported performance measures

(e.g. AUC) were computed from the final validation list and the

Hosmer-Lemeshow (HL) chi-squared statistic was used to assess the

calibration. Predictive and calibration performances were evaluated

using different ANN models within the current NILS tool.
FIGURE 2

Overview of the model selection procedure based on repeated 5-fold
cross-validation. Val, validation; Trn, training; MLP, multilayer perceptron.
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The true positive (TP), true negative (TN), false positive (FP),

and false negative (FN) outcomes were evaluated. The false negative

rate (FNR) was computed as the number of FN cases divided by the

number of cases with confirmed lymph node metastasis FNR= FN/

(FN+TP). Possible SLNB reduction rate, defined as (TN + FN)/(TN

+ FN + TP + FP), was evaluated at a cut-off point equivalent to the

maximum FNR of 10%, to reflect the FNR associated with the SLNB

technique. Sensitivity TP/(TP + FN) and specificity TN/(TN+FP)

values were assessed at the same cut-off point.

The distribution of clinicopathological variables and mode of

detection across the nodal status outputs (comparison between N0

and N+) was assessed using Pearson’s c2 test for categorical

variables and Mann–Whitney U test for variables measured on a

continuous scale. Custom-made software written in C (GCC)

version 7.5.0, Perl version 5.26.1, SPSS Statistics for Windows

version 25.0 (IBM, Armonk, New York, USA), and Stata version

17 (StataCorp, College Station, Texas, USA) were used for statistical

calculations and graphics. A P-value should not be interpreted in

relation to a cut-off point for significance, but as a continuous

measures of evidence against the corresponding null hypothesis.
2.4 The benchmark criteria for N0 status
reflect the accuracy of the SLNB technique

A cut-off point reflecting the accepted FNR of the SLNB

procedure was selected to predict N0. This level of cut-off point,

corresponding to 10% FNR, was intended to discriminate N0 vs. N+

and identify individuals with a low probability of axillary metastatic

disease, where the omission of surgical axillary staging by SLNB

would be supported by the NILS tool. Two cut-off point values were

applied: one for the model with all input variables present and one

for the model with missing input variables (ER status, PR status,

and Ki67 value).
2.5 Development of a user-friendly
interface for personalized prediction
of N0 status

The principles of user-centered design were applied to develop

an interactive web interface and provide a decision support tool to

predict the patient’s probability of healthy axillary lymph nodes.

Specifically, the guiding principles of risk communication (27, 28)

have been implemented in the web-based format of the NILS tool

and involve the following:
Fron
I) Presenting the numeric estimate of the probability of N0 for

an individual patient.

II) The estimate was interpreted in the context of the

background distribution of the estimated probabilities of

healthy lymph nodes in the breast cancer population used

for model development.

III) Conveying uncertainties and disclaimers related to current

research status.
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IV) Combining numerics with a visual display to aid

comprehension.

V) Tailoring estimates with a personalized message for each

individual output.
The design was developed in collaboration with Medos AB, an

external medical software company (https://www.medos.se).

Graphical features allow users to set up the NILS interface on

computers and common mobile devices, such as smartphones

and tablets.
2.6 Technical validation of the
NILS interface

To validate that the implementation of the NILS tool followed

the design specifications, the NILS interface (version 0.1.0) was

validated with 100 reference test subjects, selected to cover different

combinations of missing histopathological input data. The reference

dataset was based on the development cohort, in which the

following random patients were selected:
• 25 patients with a complete dataset.

• 25 patients with a complete dataset, excluding VI.

• 25 patients in whom the ER status, PR status, or Ki67 value

is missing.

• 25 patients where VI is missing in conjunction with a

missing value in at least one of ER status, PR status, or

Ki67 value.
Clinicopathological data were assigned for manual input into

the interface. The NILS tool calculated a prediction value and

identified a cut-point for each datapoint in the reference dataset.

The exact value from the NILS tool was obtained from web browser

console output, since the value displayed in the graphical user

interface is rounded to integer value. The results of the predictions

made through NILS was compared to the results obtained through

the reference ANN algorithms.
3 Results

3.1 Clinical and histological characteristics

Data from a consecutive cohort of 800 invasive breast cancer

cases, one observation per case, were included in the training and

internal validation of the original ANN prototype for healthy lymph

nodes. The benign axillary nodal status was displayed in 516

(64.5%) cases. Patients with N0 breast cancer had smaller tumors

and a higher rate of mammography-detected disease than those

with N+ status (Supplemental Table 1). Furthermore, breast tumors

of patients with N0 displayed a higher proportion of ER negative

status, had lower levels of Ki67, and were more often lacking

multifocality and VI.
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3.2 Model performance

3.2.1 Predictive performance and calibration for
the estimation of VI

In cases with missing data on VI, one of two separate ANN

models was chosen to acquire an imputed value for VI. The model

for VI imputation comprising complete input data (9 variables)

achieved an AUC of 0.795 (95% confidence interval [CI], 0.751

−0.835), Figure 3. If any of the input variables, ER status, PR status,

or Ki67 value were missing, an ANN model without these inputs

was applied for VI prediction and displayed a discriminatory

performance of AUC 0.788 (95% CI, 0.744−0.831). The

corresponding median 8-degree of freedom (df) HL statistic

values were 7.5 (P = 0.480) and 13.4 (P = 0.100), respectively.

3.2.2 Predictive performance and calibration for
the prediction of N0

The present NILS prediction tool to distinguish healthy axillary

lymph nodes with complete data and, if necessary, the prediction of

VI displayed good discrimination with a calculated AUC of 0.735

(95% CI, 0.704−0.764). The NILS tool was well calibrated, with an

observed 8-df-HL statistic of 9.9 (P = 0.270). The prediction model

without input values for ER status, PR status, and Ki67 achieved a

discriminatory performance of AUC 0.718 (95% CI, 0.687−0.748).

The corresponding median 8-df-HL statistic value for this model

was 9.7 (P = 0.290). Figure 4 shows the discriminative ability (N0 vs.

N+) of different ANN pathways within the NILS tool.

3.2.3 Performance of the NILS tool compared to
the previous ANN prototype for N0

The initial ANN prototype presented in 2019 to distinguish

healthy lymph nodes (N0 vs. N+), comprising 15 potential

clinicopathological predictors, achieved a mean validation AUC

of 0.735. The corresponding internally validated AUC for N0 was

0.740 (95% CI, 0.723–0.758) (23). Compared with the present

NILS tool, which includes a reduced number of input variables

and allows missing values for VI, ER, PR, and Ki67, there was a

0.022-point estimate difference between the AUCs, as shown

in Figure 4.
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3.3 Implications for sentinel lymph node
reduction rate

Table 1 shows the possible SLNB reduction rates after applying

the NILS tool to assign healthy lymph nodes (N0 vs. N+) and

accepting missing values for VI, ER, PR, and Ki67. A SLNB

reduction rate of 26% would be attained by applying the present

NILS tool at a cut-off point corresponding FNR of 10% to

discriminate N0. At this cut-off point, sensitivity and specificity

values of 90% and 34%, respectively, were demonstrated.
3.4 The NILS interactive decision
support tool

3.4.1 Background distribution curves
The workflow for the prediction of N0 probability consisted of

the ANNmodel with complete data for all input variables, including

a possible imputation of VI, and the ANN model with missing

values for any of ER, PR, and Ki67. For each model, the output was

the predicted probability (p) of healthy lymph nodes (N0). The

smoothed empirical distribution of the predicted probabilities

obtained during model development is shown in Figure 5. The

smoothing procedure includes a transformation of the empirical

probabilities to logits, that is, ln(p/(1-p)), where the predicted

probability p is a value between 0 and 1, and thereafter kernel

smoothing using the command k-density in the statistics package

Stata/MP 17.0. A Gaussian kernel with a bandwidth of 0.5 was used.

The logit transformation ensures that the support of the

distribution remains within the interval 0 < p < 1.

3.4.2 The interactive web-based NILS interface
The ANN algorithms for nodal status prediction have been

implemented into a fully operative web-based decision support tool.

The NILS interactive prediction tool for healthy lymph nodes was

built to incorporate features of a user-centered design. Using 10

entry values with information on the patient’s age, data from

mammography examination, and core needle biopsies from the

breast tumor, the tool can predict the likelihood of having healthy
BA

FIGURE 3

Receiver operating characteristics (ROC) curves visualizing predictive performance for estimating vascular invasion. Area under the curve (AUC)
(A) Model comprising of complete input data (9 variables); (B) Model without the three input variables: estrogen receptor (ER), progesterone
receptor (PR), and Ki67.
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lymph nodes at the time of breast cancer diagnosis. The NILS

interface includes clickable information icons that display

explanations of the input fields, as shown in Figure 6. The ANN

algorithms of the NILS tool predict the probability of healthy lymph

nodes, which are displayed graphically together with the applicable

cut-off point. Therefore, the outputs are presented numerically, as

the patient’s individual estimated probability of healthy lymph

nodes and graphically in relation to the set cut-off point for the

binary outcome (N0 vs. N+). Individual estimation is visualized

graphically as a vertical line superimposed on a smoothed

histogram, which describes the distribution of estimated

probabilities for healthy lymph nodes in the population used to

develop the NILS tool. In addition, the suggested cut-off point is

superimposed on this distribution. Figure 7 shows an output display

that incorporates these features. The output score was compared to

the specified cut-off point for binary classification (N0 vs. N+). The

result of this comparison is positive if the prediction is above the

cut-off point (the green icon assigns a probability of N0 above the

cut-off point). If the prediction is below the cut-off point, the result

is negative (the red icon assigns a probability of N0 below the cut-

off point).
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The NILS tool was submitted to an initial usability test to assess

the clinical functionality of the interface and to identify necessary

alterations to the layout and interactive elements, such as input and

output fields, information icons, and explanatory information text.

Each individual estimate of nodal status prediction includes a

disclaimer to communicate the uncertainty related to the current

research status. The NILS website has been translated into English

and can be accessed at https://nils.thep.lu.se/.

To ensure quality assurance for future clinical preoperative

applicability, the NILS predictive tool is now applied in a clinical

trial for validation purposes without interfering with the current

breast cancer workflow (ISRCTN registry, study ID 14341750) (29).

The prediction tool or “calculator” is currently accessible within the

research program by entering login credentials.

3.4.3 User interface validation
NILS version 0.1.0 was tested with a total of 100 reference test

patients selected to cover combinations of missing histopathological

input data. Two subjects with no information on multifocality were

mistakenly included (did not fulfilled the eligibility criteria for the

validation) and generated incorrect test results. For the rest, 98

tested subjects, the estimated probability of healthy lymph nodes

made using the NILS tool matched the predictions obtained

through the reference algorithm to the 8th decimal. The cut-point

and graphical curve presented on the output screen were correct for

all test subjects.
4 Discussion

In this study, we present an implementation of ANN algorithms

for the prediction of healthy lymph nodes as a decision support tool

for a personalized, noninvasive lymph node staging in breast cancer.

The NILS tool is the first interactive tool based on ANN to

complement the updated ASCO guideline, which recommend

abstaining SLNB in selected patients on a case-by-case basis (17).

The NILS tool allowed missing histopathological input values, and

achieved predictive performance with an AUC ranging from 0.718

to 0.735 with good calibration. By applying the NILS tool for nodal

status and setting the cut-off point for model classification to reflect

the accepted FNR of the SLNB procedure, the potential to reduce

surgical axillary intervention by 26% was demonstrated.

The clinical utility of the NILS tool for noninvasive prediction

of healthy lymph nodes depends on the information obtained in the
TABLE 1 Possible sentinel lymph node biopsy (SLNB) reduction rates at cut-point equivalent to the maximum false negative (FNR) rate of 10%,
reflecting the accepted FNR of the SLNB procedure.

Model (N0 versus N+) TP TN FP FN Sensitivity Specificity FNR SLNB reduction rate

ANN Prototype* 258 190 324 28 91% 37% <10% 27%

The NILS Tool 256 177 339 28 90% 34% <10% 26%
N0, No axillary lymph node involvement (benign lymph nodes); N+, axillary lymph node positive (metastatic lymph nodes); TP, true positive; TN, true negative; FP, false positive; FN, false
negative; FNR, false negative rate; SLNB, sentinel lymph node biopsy.
*Dihge L, Ohlsson M, Eden P, Bendahl PO, Ryden L. Artificial Neural Network Models to Predict Nodal Status in Clinically Node-Negative Breast Cancer. BMC cancer 2019 (23).
Comparison between potential SLNB reduction rates by applying the former ANN prototype (15 input variables)* and the current NILS tool (maximum 10 input variables) trained to tolerate
missing preoperative input values for vascular invasion, estrogen receptor (ER), progesterone receptor (PR), Ki67.
FIGURE 4

Predictive performance to discriminate healthy lymph node status at
the time of breast cancer diagnosis. The diagram displays the area
under the receiver operating characteristics curves (AUCs) for the
original ANN prototype presented in 2019, which required 15 input
variables and the ANN pathways within the present NILS tool, which
requires the maximum number of 10 top-ranked input variables.
(A) The NILS tool that includes all top-ranked variables and random
imputation of missing data; (B) The NILS tool with top-ranked
variables excluding estrogen receptor (ER), progesterone receptor
(PR), and random imputation of missing data; (C) The NILS tool that
includes all top-ranked variables, vascular invasion (VI) is estimated if
missing, random imputation of the remaining missing data; (D) The
NILS tool with top-ranked variables excluding ER, PR, and Ki67. VI is
estimated if missing random imputation of the remaining missing data.
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preoperative setting. To handle the risk of incomplete preoperative

histological reporting based on core needle biopsy (CNB), the ANN

algorithm in the NILS tool incorporated strategies to allow missing

data for VI and/or ER status, PR status, and Ki67 value. Previous

studies have shown high specificity but low sensitivity for VI

detection in CNB (30) with a reported 30% detection failure rate

(31). Therefore, a separate model for estimating VI is integrated

into the present NILS tool. CNB samples have been shown to be

accurate in determining the ER and PR status (32), however, a

significant difference between Ki67 values in CNB and surgical

specimens has been observed, with a relative decrease from the

biopsy to surgical sample (33). As high Ki67 expression has been

associated with axillary nodal metastasis (34), the NILS tool may

overestimate the risk of axillary nodal spread in the preoperative

setting, indicating appropriate cautiousness of the tool.

Previously, models have been developed to predict sentinel

lymph node status using a variety of clinical and pathological

factors (35, 36). One of the first was the Memorial Sloan-

Kettering Cancer Center nomogram based on logistic regression

analysis to estimate the probability of SLNB metastasis, which

provided an AUC of 0.754. The final variable selection in the

presented NILS tool focused on clinical knowledge, previous

literature and variables associated with nodal status in the present

cohort. The ten highest-ranking variables were included: tumor size,

vascular invasion, multifocality, ER status, histological type, PR

status, mode of detection, age, tumor localization, and Ki67 all of

which have repeatedly been reported to be of value for predicting

nodal status in breast cancer. Machine learning-based algorithms

for predicting axillary nodal spread have been proposed to reflect

the complex multifactorial process of lymph node metastasis (37,

38). Especially, artificial intelligence with a deep learning approach

in radiological image recognition, has gained attention to predict

axillary nodal metastasis (39, 40). However, the clinical significance

of these findings in routine preoperative settings remains limited.

ANNs are usually included in the group of machine learning

techniques described as black-box models and are often criticized

as nontransparent. For a given output, it is typically difficult to gain

a comprehensive understanding of the relative importance of each
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input variable (41). Visualization techniques based on sensitivity

analysis have been proposed (42). Consequently, to better

comprehend the significance of each input variable in the ANN

algorithm within the NILS tool, sensitivity analysis was previously

applied to the variable selection process. In the publication from

2019, mean odds ratios was presented with the corresponding

percentiles to highlight the dynamic nature of the 10 highest-

ranking input variables for the prediction of nodal status (23).

Digital clinical decision support systems in breast cancer

surgical care remains sparse (43). Diverse predictive methods has

been applied on the benefit of adjuvant chemotherapy in the

different systems, such as OncoType DX® embedded in a

decision support algorithm (44) and cumulative hazard function

by PREDICT (45). Hitherto, diagnostic decision support tools have

not had as much impact as other types of clinical decision support

systems (46). Reasons identified included negative perceptions in

health care, inferior accuracy due to missing input data and poor

integration of the tools with medical records (46, 47). Although the

overall performance of the NILS tool was moderate (AUC 0.720-

0.735), the tool displayed a high sensitivity (90%) to distinguish

breast cancer patients most likely to harbor healthy lymph nodes.

The ANN algorithms also allow different cut-off points to be

assigned, which can be determined by the actual clinical setting.

The reduction from the mandatory 15 input variables previously

required (23) to 10 variables in the updated NILS tool, with an

allowance of missing input entries with only 0.005−0.022 decrease

in AUC point estimate, strengthens the clinical utility and

reinforces the potential to spare one in four patients the surgical

SLNB procedure.

Given the increasing evidence around de-escalating axillary

surgery, the Choosing Wisely statement (48) declared that SLNB

is not required for women ≥ 70 years with clinically node-negative

(cN0) breast cancer, which is hormone receptor-positive and

HER2-negative if they are adjuvantly treated with hormonal

therapy. Other advocates omitted SLNB in all low-risk patients

aged ≥75 years, even without planned hormonal treatment (49).

Randomized trials, such as SOUND (50) and INSEMA (51), now

address the possibility of omitting SLNB and include patients of all

ages with ultrasonographically disease-free axillae. Although

advances are promising, the sensitivity of routine axillary

ultrasound alone is considered insufficient to replace SLNB (52).

The updated ASCO guideline on the management of the lymph

nodes in early breast cancer state that patients should be evaluated

on a case-by-case basis to ensure patient-centered care (17).

Consequently, decision support tools that consider the patient’s

individual preoperative clinicopathological variables for nodal

status prediction could contribute to a better differentiation of

breast cancer patients with disease-free axilla from those with

nodal metastasis.

An important step before clinical implementation of a decision-

support tool is to consider both associated health care costs and

impact on patients´ quality of life under plausible scenarios.

Compared to the standard of care with SLNB, the adoption of the

NILS tool for noninvasive staging of nodal status has been shown to

promote reduced health care costs and gains in quality of life,

especially in patients undergoing breast-conserving surgery (24).
FIGURE 5

Smoothed background distributions of the predicted probabilities
(p). Gray: all input values present. Pink: missing estrogen receptor
(ER), progesterone receptor (PR), and Ki67.
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Although the NILS prediction tool has been developed for clinical

use following the framework of the Tripod checklist (53) to increase

the methodological consistency and quality of the prediction

models, the true validity of the model should be assessed in a

fully independent dataset. To address this, a validation study is

currently being conducted based on two external cohorts that assess

the geographic and temporal validity of the NILS prediction tool

(ISRCTN 14341750) (29).

Limitations of the NILS tool include that the model was

developed using data mostly from patients with screen-detected

breast cancer (57%, Supplemental Table 1). This is because Sweden

has a population-based mammography screening program with an

overall attendance of >80% (54). The NILS tool is not designed for

settings with limited access to population-based screening, but the

current tool can provide a range of probabilities of healthy lymph
Frontiers in Oncology 09
nodes in patients with screen-detected versus symptom-detected

breast cancers. Detection by mammography screening appears to be

an independent factor associated with lower risk of axillary lymph

node involvement (55). Another limitation is that variation in the

proportions of node-positive breast cancer may also produce errors

in the accuracy of the tool. However, procedures to adjust outputs of

a classifier to new a priori probability has been proposed to mitigate

these errors and might be applied in the future (56). A third

limitation is that no differentiation was made between

micrometastases and macrometastases using the current

definition of nodal metastatic lesions (N+). While this may

demonstrate the appropriate cautiousness of the NILS tool by

appointing the classification task to differentiate healthy lymph

node status from those harboring any metastasis, the finding of only

micrometastatic deposits in sentinel nodes has no longer relevance
B

C

A

FIGURE 6

The input screen of the online NILS interface. Clinicopathological and mammographical input entries for the prediction of healthy lymph nodes with
essential user interface elements: (A) Clickable information icons with explanatory information text; (B) Clarifying illustration of the required input
entry; (C) Option to choose “Unknown” or “Undefined” icons for input variables: vascular invasion, estrogen receptor (ER), progesterone receptor
(PR), and Ki67.
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as a criterion for completion of axillary surgery (8, 57). Similarly,

the decision on adjuvant systemic therapy is mainly based on tumor

biomarkers and/or gene profiling rather than on identifying low-

burden nodal metastasis (58). However, the presence of nodal

macrometastasis in breast cancer remains relevant for decision-

making regarding adjuvant radiotherapy (59). Ongoing research

efforts to overcome this limitation include validating the NILS tool

in datasets that specify the distinction between micrometastasis and

macrometastasis in sentinel lymph nodes. Improving efficacy of

systemic treatment regimens in breast cancer can pave the way to

further expand de-escalation of axillary surgery and safe omission

of SLNB for more patients. Thus, the NILS tool needs to be flexible

to new target populations and adapt accordingly. The validity of the

NILS tool will be assessed in patients undergoing different breast

surgical approaches (breast-conserving surgery vs. mastectomy).

Furthermore, the predictive performance of the NILS tool with

additional features will be evaluated, including the incorporation of

mammography-based radiomics model for the prediction of

axillary lymph node status.
5 Conclusion

This study reports the implementation of ANN algorithms for

axillary nodal status prediction as a web-based decision supporting

tool for noninvasive lymph node staging. The NILS tool uses 10

routinely available entry values and allows missing histopathological

data on core needle biopsies to predict the likelihood of benign lymph
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nodes at the time of breast cancer diagnosis. The NILS tool is a

personalized decision support tool based on ANN to complement the

updated ASCO guideline, which recommends refraining from SLNB

in selected low-risk patients after evaluation on a case-by-case basis.

By applying the NILS tool for preoperative prediction of lymph node

status, the potential to avoid surgical axillary staging was

demonstrated in about one in four patients. In addition, we have

shown substantial cost reductions and overall health gains associated

with the implementation of the NILS tool. This study highlights the

potential of ANN-based prediction tools in clinical use to aid in

diagnosis and reduce unnecessary axillary surgery in early

breast cancer.
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