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Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
Background: Bladder cancer (BLCA) is a common urinary system malignancy

with a significant morbidity and death rate worldwide. Non-muscle invasive

BLCA accounts for over 75% of all BLCA cases. The imbalance of tumor

metabolic pathways is associated with tumor formation and proliferation.

Pyrimidine metabolism (PyM) is a complex enzyme network that incorporates

nucleoside salvage, de novo nucleotide synthesis, and catalytic pyrimidine

degradation. Metabolic reprogramming is linked to clinical prognosis in several

types of cancer. However, the role of pyrimidine metabolism Genes (PyMGs) in

the BLCA-fighting process remains poorly understood.

Methods: Predictive PyMGs were quantified in BLCA samples from the TCGA and

GEO datasets. TCGA and GEO provided information on stemness indices

(mRNAsi), gene mutations, CNV, TMB, and corresponding clinical features. The

prediction model was built using Lasso regression. Co-expression analysis was

conducted to investigate the relationship between gene expression and PyM.

Results: PyMGs were overexpressed in the high-risk sample in the absence of

other clinical symptoms, demonstrating their predictive potential for BLCA

outcome. Immunological and tumor-related pathways were identified in the

high-risk group by GSWA. Immune function and m6a gene expression varied

significantly between the risk groups. In BLCA patients, DSG1, C6orf15, SOST,

SPRR2A, SERPINB7, MYBPH, and KRT1 may participate in the oncology process.

Immunological function and m6a gene expression differed significantly between

the two groups. The prognostic model, CNVs, single nucleotide polymorphism

(SNP), and drug sensitivity all showed significant gene connections.
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Conclusions: BLCA-associated PyMGs are available to provide guidance in

the prognostic and immunological setting and give evidence for the

formulation of PyM-related molecularly targeted treatments. PyMGs and

their interactions with immune cells in BLCA may serve as therapeutic targets.
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1 Introduction

Bladder cancer (BLCA) is a common tumor worldwide with a

significant morbidity and death rate (1). Over 500,000 new BLCA

cases and 200,000 BLCA-related death have been reported each year

globally (2, 3). The disease is classified into muscle-invasive BLCA

and non-muscle-invasive BLCA. Despite a good 5-year survival rate

of 90% observed in the non-muscle type, research has reported a

risk of disease progression in 15-20% of BLCA patients, resulting

in a compromised overall survival rate by at least 60% (4). Surgery

and postoperative chemotherapy are mainstays of treatment for

BLCA (5), whereas patient prognosis remains poor due to

postoperative relapse despite radical surgical removal with

curative intent (6).Muscle invasive or advanced bladder cancer is

typically managed by chemotherapy. However, long-term

chemotherapeutic medication may cause drug resistance, leading

to tumor recurrence, disease progression, and increased

mortality (7).

Metabolic reprogramming is a characteristic of cancer that

promotes tumor cell proliferation and survival. Research has

demonstrated that nucleotide metabolism influences tumor

growth via sugar, lipid, and amino acid metabolism (8).

Nucleotide metabolism involves the participation of several

enzymes, including catalytic and rate-limiting enzymes such as

lyase, synthase, amidotransferase, and dehydrogenase (9). PyM is

a multifunctional enzyme network that performs nucleoside

salvage, de novo nucleotide synthesis, and catalytic pyrimidine

degradation. Cancer cells, unlike resting cells, rely on the de novo

method to keep a stable supply of deoxyribonucleoside

triphosphates, resulting in their uncontrolled proliferation (10).

The purinosome is also a promising anti-cancer target. When used

with the anti-folate methotrexate, small molecule inhibitors that

disrupt purinosomes yielded a synergistic impact (11). Although
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more investigations are needed to confirm this protein structure as a

viable target, direct control of purinosome formation may provide

an exclusive means to precisely manage both the temporal and

spatial accumulation of purines in cells (12). Similar to purine

biosynthesis, pyrimidine nucleotide biosynthesis has both salvage

and de novo processes, and the chemistry of both is well conserved

(13). In cancer therapy, pyrimidine metabolism and purine

metabolism are closely linked. Despite an association of PyM with

leukemic cell differentiation, its role in solid tumor differentiation is

unknown. PyM genes are connected to epithelial-to-mesenchymal

transition, which is a genetic and molecular pathway associated

with the loss of morphological and/or functional epithelial-like

phenotypes in solid carcinomas. It causes greater resistance to

treatment and improved stem-like cancer cell characteristics.

These findings suggest an unique cancer therapy approach that

targets purinosome development and PyM.

Tumor microenvironments (TME) are characterized by

hypoxia, excessive oxidation, acidity, and malnutrition as a result

of tumor cell proliferation and insufficient angiogenesis (14). Thus,

cancer cells have metabolic properties that distinguish them from

normal cells in order to protect the growth and survival of cancer

cells through a process of metabolic reprogramming to address

hazardous TMEs when carcinogenic signals are silenced. Energy

metabolism reprogramming is essential for cancer cell proliferation

and division (15). The utilization methods of nutrients differ

between cancer cells and normal cells. It has been suggested that

PyM has an impact on oncogenesis and cancer metastasis. There are

172 different types of RNA changesidentified, and M6A, m1A,

M7G, and m5C are the most prevalent chemical alterations. One of

the most common eukaryotic mRNA modifications is m6A (16).

Immune checkpoint inhibitor (ICI) profiles in BLCA patients may

aid in diagnosing, analyzing, and anticipating therapy results (17).

The reason and methods of BLCA’s aberrant gene expression and

PyM are yet poorly understood. Hence, exploration of regulation of

BLCA synthesis via Pym may contribute to identifying effective

biomarkers. The framework of the current investigation is depicted

in Figure 1.
2 Materials and methods

The research methodology adopted herein was developed with

reference to that of Zixuan Wu et al., 2022 (17).
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2.1 Datasets and PyMGs

BLCA gene expression patterns and clinical data were obtained

from TCGA (18). Microdata on mRNA expression was found

using GEO.
2.2 DEGs and mutation rates

To obtain precise mRNA data, transcription data were matched

and sorted using Perl. The IDs were then translated into gene

names. To assess a substantial change in PyM genes expression,

FDR<0.05 and |log2FC|≥1 were adopted. The relevance of

differentially expressed PyMGs was investigated (DEGs).

Cbioportal was used to estimate DEG variant frequencies.
2.3 Tumor classification using the DEGs

We performed cluster analysis using the Limma and

ConsensusClusterPlus packages and divided the prognosis-related

PyMGs into two clusters: cluster 1 and cluster 2. Survminer was

used to investigate PyMG survivorship, and survival was utilized to
Frontiers in Oncology 03
assess PyMG predictive usefulness. The limma was utilized to

identify alterations in particular genes between subtypes and

tissue types.
2.4 Cluster DEGs

To assess a substantial change in PyMGs Cluster DEGs

expression, FDR<0.05 and |log2FC|≥1 were utilized. These genes

are then visualised in a heatmap.
2.5 PyMGs prognostic signature

DEGs were divided into two categories: a low-risk group and a

high-risk group. Lasso regression was connected to two types of

risk. The survival curves for the two categories were compared. To

assess the model’s accuracy in predicting survival in BLCA, the

timeROC was used to generate a ROC curve. PyMGs hazard and

survival status were investigated for the risk score’s probability

curve. A nurse-independent prediction study was conducted to

determine the effect of the model on clinical factors. A link was

identified between two populations ofPyMGs. Risk and clinical

interaction studies are available. T-SNE and PCA techniques were
FIGURE 1

Framework based on an integration strategy of PyMGs. The data of BLCA patients were obtained from TCGA and GEO databases, and then the
PyMGs were matched to carry out difference analysis and risk model construction, respectively. TCGA data set was used as the main body and GEO
data were used to verify the model with good grouping, and PyMGs related to the prognosis of BLCA patients were obtained. Then, GO, KEGG and
GSEA analyses were performed with multiple databases to obtain the functions related to PyMGs. Last, the immune cells, function and RNA changes
were analyzed.
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also studied. To understand if the prognostic model was successful

in separating patients into two groups, the desegregation of

prognosticative markers was utilized to build a representation

that predicts BLCA patients’ 1-, 3-, and 5-year OS.
2.6 GO and KEGG analysis

Using GO and KEGG, the biological function and pathways

linked with the DEGs were investigated. BP, MF, and CC regulated

by differentially expressed PyMGs were explored using R.
2.7 GSEA enrichment analyses

In a range of samples, GSEA was employed to identify related

functions and route alterations. The accompanying score and

diagrams were used to determine that activities and pathways

within the various risk subcategories were dynamic. Each sample

was labeled ‘H’ or ‘L’.
2.8 The levels of immune activation in
different segments

The assessment of ssGSEA was employed. We assessed the

enriching values of immune cells and activities and also examined

the connection between PyMGs, checkpoints, and mRNA chemical
Frontiers in Oncology 04
modifications (m6A, m1A, M7G, and m5C). m6A, m1A, M7G, and

m5C regulators were also identified (19) (Table S2).
3 Results

3.1 Datasets and GlnMgs

The data of 412 BLCA and 19 normal tissues were enrolled in

the TCGA on October 28, 2022. Series: GSE13507, GSE48075, and

GSE48276. Platform: GPL6102, GPL6947, and GPL14951. The

GEO shared database was used to maintain the expression

patterns of 307 BLCA cases (Table 1). A total of 105 PyMGs were

obtained (Table S1).
3.2 Differentially expressed PyMGs

76 DEGs demonstrated a close association with PyM (67

upregulated, 9 downregulated; Table S2) (Figure 2). A protein-

protein interaction (PPI) network was established to evaluate the

interactions of PyMGs, as shown in Figure 2. By lowering the low

required interaction value to 0.7, CTPS2, POLR1B, UMPS, RRM1,

POLR1C, DHODH, and POLR1A were determined as hub genes

(Table S3). These genes, which comprised all DEGs discovered in

both normal and malignant tissues, showed predictive value for

BLCA. Figure 2 depicts a correlation network of all PyMGs. Genetic

anomalies in these PyMGs were further investigated.The most
TABLE 1 The clinical characteristics of patients.

TCGA GEO
(GSE13507, GSE48075, and GSE48276)

Variables Number of samples Variables Number of samples

Gender Gender

Male/Female 304/108 Male/Female 96/211

Age at diagnosis Age at diagnosis

≤65/>65 162/250 ≤65/>65 127/182

Grade Grade

High/Low/NA 388/21/3 High/Low 60/105

Stage Stage

I/II/III/IV/NA 2/131/141/136/2 I/II/III/IV/NA Unknow

T T

T1/T2/T3/T4/NA 3/120/196/59/34 T1/T2/T3/T4/NA 90/134/85/27/26

M M

M0/M1/NA 196/11/205 M0/M1/NA 337/9/6

N N

N0/N1/N2/N3/NA 239/47/76/8/42 N0/N1/N2/N3/NA 323/11/7/1/10
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common types of mutations were truncating and missense variants

(Figure 2). A total of 13 genes mutated at a rate of more than 5%,

with POLR2K commonly altered (15%).
3.3 Alterations of PyM regulatory genes are
associated with clinicopathological and
molecular characteristics

The relationship between alterations in PyM regulatory genes

(CNV, SNP, and mutation) and clinicopathological parameters of

patients were assessed. Correlation analysis of DEG expression in

the prognostic model and SNP revealed four SNP-driven DEGs:

TP53, ELF3, KMT2C, and SPTAN1 (Figure 3). TP53 exhibited a

significantly higher expression level in the single mutations group

than in the non-mutations group (P<0.05), showing that SNP in

BLCA may cause dysregulation of critical genes. A waterfall plot

was employed to display the status of gene mutations. In the
Frontiers in Oncology 05
prognostic model, the total average mutation frequency of DEGs

varied from 12 to 50% (Figures 3B, C), suggesting that BLCA

mutations may be associated with the deregulation of critical genes.

Correlation examination of DEG expression in the prognostic

model and CNV revealed several CNV-driven DEGs (Figure 3D).

The model’s medication prediction revealed certain genes with

significant differences (Figure S1). Furthermore, an investigation of

the connection between DEG expression in the prognostic model

indicated that numerous genes were associated with drug

sensitivity. MYBPH is strongly linked to TESTOLACTONE,

Procarbazine, Olaparib, and Simvastatin, indicating potential

medication pathways (Figure S2).
3.4 Tumor categorization using the DEGs

To assess the associations between PyMGs expression and BLCA,

a consensus clustering analysis was performed on all 414 BLCA
A B

D

C

FIGURE 2

Expressions of the 76 PyMGs and their interactions (A) A PPI network illustrating the interactions of PyMGs (interaction score=0.7). (B): The PyMGs
correlation network (red line: positive correlation; blue line: negative correlation). (C) Mutations in PyMGs. 13 genes over a 5% mutation rate, with
POLR2K being the most often modified (15%). (D) The correlation network of the PyMGs (red line: positive correlation; blue line: negative correlation.
The depth of the colors reflects the strength of the relevance).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1102518
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2023.1102518
patients in the TCGA dataset. With the clustering variable (k) at 2, a

strongest intragroup correlation and a weakest intergroup correlation

were observed, showing that the 414 BLCA patients could be

classified into two groups based on their PyMGs (Figure 4A). A
Frontiers in Oncology 06
heatmap depicts gene expression and clinical features (Figure 4B,

Table S4). Survival research was carried out to investigate PyMGs’

predictive potential utilizing PyMGs subtypes, and cluster 2 had a

better survival rate (P=0.045), Figure 4C.
A B

D EC

FIGURE 3

CNV, SNP and mutation analysis.(A) Correlation study of gene expression in prognostic signatures and SNP. (B) The survival analysis of TP53. (C, D):
The mutation distribution of genes in prognostic signatures. (E) CNV analysis.
A B

C

FIGURE 4

Tumor categorization based on DEGs associated with PyM. (A) The consensus clustering matrix (k=2) was used to divide 414 BLCA patients into two
groups. Heatmap (B). The heatmap and clinicopathologic features of the two clusters identified by these DEGs (T, Grade, and Stage indicate the
degree of tumor differentiation. (C) Kaplan-Meier OS curves for the two clusters.
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3.5 In the TCGA cohort, a prognostic gene
model was developed

The univariate Cox study identified 7 significant PyMGs. These

PyMGs (DSG1, C6orf15, SOST, SPRR2A, SERPINB7, MYBPH, and

KRT1) were considered independent BLCA prognostic indicators

(Figure 5A). The absolute minimal shrinkage and selection operator

(LASSO), Cox regression analysis, and optimum value were used to

establish a gene signature (Figures 5B, C). The risk scores of patients

were negatively related to BLCA survival. The majority of the novel

PyMGs found had a negative link with the risk model, requiring

further investigations (Figure 5D). The presence of high-risk

PyMGs signatures was associated with a lower likelihood of

survival (P=0.002, Figure 5E). The AUC predictive value of the

unique PyMGs signature for 1, 3, and 5-year survival rates was

0.687, 0.694, and 0.693, respectively (Figures 5F). Based on the PCA

and t-SNE findings, patients with differing risks were separated into

two groups (Figures 5G, H). The hybrid nomogram, including

TCGA clinicopathological traits and PyMG’s prognostic signature,

was stable and accurate, indicating considerable promise in the

treatment of BLCA patients (Figures 5J, K).
Frontiers in Oncology 07
3.6 The risk signature is validated externally

The validation group was a GEO cohort of 307 BLCA patients. The

risk score of patients was adversely proportional to BLCA survival.

Similar to the TCGA findings, the majority of the new PyMGs found in

the present study were negatively associated with the risk model

(Figure 6A). The presence of high-risk PRG signatures indicated a

compromised survival status (P=0.015). Figure 6B was plotted using

Kaplan-Meier analysis. The AUC predictive value of the unique

PyMGs signature was 0.763, 0.746, and 0.783 for 1, 3, and 5-year

survival rates, respectively (Figure 6C). The vast majority of BLCA

patients died within five years, which contributed to the lower AUC,

and the PCA and t-SNE results indicated that patients with variable

risks were effectively divided into two groups.(Figures 6D, E).
3.7 The risk model’s independent
prognostic value

COX analysis in the TCGA cohort revealed that the PyMGs

signature (HR: 7.756, 95CI:3.840-15.663) was predominantly
A B D

E F

G

H I J

C

FIGURE 5

The development of a risk signature in the TCGA cohort. (A) A Univariate Cox regression analysis of OS for each PyMGs, with P<0.05 for 7 genes. (B)
Regression of OS-related genes. (C): Cross-validation is used in the LASSO regression to fine-tune parameter selection. (D) The patient’s chance of
survival. (E) Kaplan-Meier curves. (F) The AUC for predicting the 1-, 3-, and 5-year survival rates. (G) A PCA plot. (H) A t-SNE plot. (J, K) Nomogram.
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independent predictive factors for the OS of BLCA patients

(Figures 7A, B). COX analysis in the GEO cohort revealed that N

stage (HR: 3.490, 95CI: (1.535-7.933) was a largely independent

predictive factor (Figures 7C, D). In addition, a heatmap of clinical

features for the TCGA cohort was depicted (Figures 7E) (Table S5-6).

3.8 Enrichment analysis of PyMGs

GO enrichment analysis revealed 278 core targets, including BP,

MF, and CC. The MF mainly involves nucleotidyltransferase activity
Frontiers in Oncology 08
(GO:0016779), catalytic activity, acting on RNA (GO:0140098), and

DNA-directed 5’-3’ RNA polymerase activity (GO:0003899). CC

mainly involves transferase complex, transferring phosphorus-

containing groups (GO:0061695), nuclear DNA-directed RNA

polymerase complex (GO:0055029), and DNA-directed RNA

polymerase complex (GO:0000428). BP mainly involves pyrimidine-

containing compound metabolic process (GO:0072527), nucleobase-

containing small molecule biosynthetic process (GO:0034404), and

pyrimidine nucleotide metabolic process (GO:0006220). In addition,

the main signaling pathways were identified using KEGG enrichment
A B

D E

C

FIGURE 6

The risk model was validated in the GEO cohort. (A) Each patient’s chance of survival. (B) Kaplan-Meier curves for patients. (C) The AUC for
predicting the 1-, 3-, and 5-year survival rates of BLCA. (D): A PCA plot. (E): A t-SNE plot.
A B

D

E

C

FIGURE 7

Cox regression analysis, both univariate and multivariate. (A) TCGA cohort multivariate analysis. (B): TCGA cohort univariate analysis. (C): GEO cohort
multivariate analysis. (D): GEO cohort univariate analysis. (E): Heatmap illustrating the relationships between clinicopathologic characteristics and risk
groups P values were showed as: ns not significant; *P < 0.05; **P < 0.01; ***P < 0.001.
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analysis, which revealed that the over-expressed genes were involved in

Pyrimidine metabolism (hsa00240), nucleotide metabolism

(hsa01232), RNA polymerase (hsa03020), and pyrimidine

metabolism (hsa00230). (Figure 8 and Table S7, 8).

3.9 Analyses of gene set enrichment

According to GSEA, most PyMGs prognostic signatures

regulated immunological and tumor-related pathways such as

allograft rejection, proteasome, DNA replication, alpha-linolenic

acid metabolism, valine leucine, and isoleucine degradation, and

linoleic acid metabolism. The top 6 enriched functions or pathways

for each cluster are shown in Figure 9 and Table 2. The “‘nod-like

receptor signaling pathway” was the most enriched (Tables S9A, B).

3.10 Immune activity levels in different
subgroups are compared

Tumor-associated macrophages (TAMs) are an important cellular

component of the tumor microenvironment (TME). Li suggested that
Frontiers in Oncology 09
TAMs produce considerable variability at the transcriptional,

developmental, metabolic, and functional levels (20). Yulia Kushnareva

used loss-of-function screening to identify genes that were specifically

enriched in the Th1* subpopulation. The genetic screen identified

candidates whose depletion dramatically reduced TCR-induced

interferon gamma (IFN) production. These included genes previously

connected to IFN or MTB susceptibility as well as new possibilities such

ISOC1, which encodes a metabolic enzyme with uncertain roles in

mammalian cells (21). ISOC1-depleted T cells generated less IFN and IL-

17, had deficiencies in oxidative phosphorylation and glycolysis, and a

pyrimidine metabolic pathway deficit. Extracellular pyrimidine

supplementation restored both bioenergetics and IFN production in

ISOC1-deficient T cells, demonstrating that pyrimidine metabolism is a

critical driver of effector activities in CD4+ T cells and Th1* cells (22).

This shows that pyrimidine metabolism is closely related to

immunotherapy and infiltration.

In the two cohorts, the enrichment scores of 16 types of immune

cells and the activity of 13 immune-related activities in risk groups

(ssGSEA) were evaluated. The low-risk group had a higher rate of

Type II IF NReponse (Figure 10A). The low-risk category had more
A

B

FIGURE 8

For PyMGs, GO, and KEGG analyses were performed. GO and KEGG analyses for genes participating in autophagy. (A): Barplot graph for KEGG
pathways (the longer bar means the more genes enriched, and the increasing depth of red means the differences were more obvious); The KEGG
circle shows the scatter map of the logFC of the specified gene. The higher the Z-score value indicated, the higher expression of the enriched
pathway. (B): Bubble graph for GO enrichment (the bigger bubble means the more genes enriched, and the increasing depth of red means the
differences were more obvious; q-value: the adjusted p-value); The GO circle shows the scatter map of the logFC of the specified gene.
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significant infiltration of Mast cells and Th2 cells (Figure 10B).

Similar conclusions were obtained in the immunological condition

of the GEO cohort (Figures 10C, D). Given the importance of

checkpoint inhibitor-based immunotherapies, changes in immune

checkpoint expression between the two groups were analyzed.

LGALS9, TNFRSF14, TMIGD2 and TNFSF15 had a higher rate in

low-risk group, as well as other genes, showed considerable

alterations between the two groups (Figure 10E).
Frontiers in Oncology 10
3.11 mRNA chemical modifications

Currently, 172 distinct kinds of RNA alterations are known. The

most common chemical modifications are M6A, m1A, M7G, and

m5C. When PyMGs expression in M6a was compared between the

two risk groups, HNRNPC, FTO, ALKBH5, WTAP, and RBM15

were more significant in the high-risk group. In the low-risk group,

YTHDC2, METTL3, and RBM15 were more significant (Figure 11A).
FIGURE 9

PyMGs gene set enrichment studies. The top six enriched functions or pathways of each cluster were provided to illustrate the distinction between
related activities or pathways in various samples. The ‘nod-like receptor signaling pathway’ was the most enriched.
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In M1A, ALKBH3 was more significant in the high-risk group

(Figure 11B). In M7G, IFIT5, AGO2, GEMIN5, LARP1, NCBP1,

NUDT11, NSUN2, and EIF4E were more significant in the high-risk

group (Figure 11C). In M5C, TRDMT1, DNMT1, YBX1, and

ALYREF were more significant in the high-risk group (Figure 11D).
4 Discussion

Bladder cancer (BLCA) remains the most prevalent type of urinary

tract cancer (23), with its incidence increasing with age, particularly in

individuals aged between 50 and 70 years. While the age-standardized

incidence of BLCA exhibits considerable variation among different

geographical locations, it is expected to rise further in the coming

decade (24). Gender and exposure to various carcinogens, such as

smoking, have significant impacts on BLCA risks (25). Age-

standardized mortality rates for BLCA have declined in industrialized

countries but exhibit an increasing trend in low-income areas. The

primary symptom of BLCA is microscopic or extensive hematuria (26).

The detection rate of urothelial bladder cancer (UBC) localized to the

bladder mucosa is approximately 75% when a bladder tumor is

discovered. Despite advances in surgical and anesthesiological

techniques as well as widespread use of perioperative chemotherapy,

long-term survival statistics for patients with UBC have remained

stable for decades (27). To prevent the recurrence and progression of

BLCA, prognostic indicators for high-risk populations must be

identified through further research.

Cancer is believed to exhibite a fundamental trait of metabolic

rewiring. Malignant cells alter their metabolic pathways in response to

various intrinsic and extrinsic challenges to fuel cell survival and

expansion (28). A vast body of evidence has shown that PyM failure

is closely associated with cancer growth, and various medications

targeting PyM have been authorized for a variety of cancers. As

cancer evolves from premalignant lesions to clinically apparent

tumors to metastatic malignancies, metabolic requirements, and

phenotypes may emerge (10). Recent research on PyM aimed to

examine the interaction between metabolic abnormalities and

intrinsic genetic variation in cancer. It was discovered that

KRAS mutant, PTEN deficient, and p53 deficient cells have

enhanced pyrimidine de novo synthesis flow (8). This reliance on the

pyrimidine pathway results in the synthetic lethal target of pyrimidine

production in these cells, implying hardwired metabolic vulnerabilities

in many gain-of-function mutant malignancies (29).The

interconnection between the pyrimidine pathway and other
Frontiers in Oncology 11
metabolic pathways enables a better understanding of metabolic

heterogeneity and the development of clinical therapeutic targeting

techniques. Therefore, comprehending the complex cancer metabolism

and identifying its weaknesses could accelerate the discovery of novel

therapies for treating human cancer (9). The study of different PyM

patterns in BLCA progressionmay aid in understanding PyM in BLCA

progression, pointing to an appropriate therapy approach.

In this study, 76 DEGs associated with PyM were identified and

categorized into two groups in BLCA. PyMGs were strongly related

to BLCA prognosis, as prior research has shown that 7 prognostic

PyMGs were expressed differentially in those at risk, with some

PyMGs being overexpressed in the high-risk population (P<0.05).

Furthermore, the role of PyMGs in BLCA was studied, and survival

analysis was used to assess the prognostic value of PyMGs. Patients

who got low-risk PyMGs showed a higher chance of survival.

Moreover, DSG1, C6orf15, SOST, SPRR2A, SERPINB7, MYBPH,

and KRT1 were considerably expressed in the high-risk group,

indicating their potential roles as cancer-promoting genes in the

development of BLCA. The findings of the aforementioned genes

provide insights for future studies, but significant evidence for their

involvement in the expression of certain transcription factors

involved in the control of iron toxicity (e.g. Fin56, NRF2, and

SFRS9) is inadequately studied (30–32).

Through an extensive literature review, it was discovered that

these genes are associated with BLCA and PyM. MYBPH is a

transcriptional target of TTF-1, a master regulator of lung

development that acts as a lineage-survival oncogene in the

formation of lung cancer (33). Aimy Sebastian discovered that a

lower SOST expression in the tumor microenvironment may

enhance bone metastasis in prostate cancer via up-regulation of

MALAT1 in an in vitro co-culture model of PC3 prostate cancer

cells and osteoblasts (34). In gastric cancer, serum small proline-rich

protein 2A (SPRR2A) is a noninvasive biomarker (35). Protein

expression of DSG1 was investigated by immunohistochemistry in

a cohort of 53 anal cancer patients treated with radiation alone or in

combination with 5-fluorouracil and mitomycin C in Myklebust’s

research. They found that DSG1 expression is a prognostic predictor

in individuals with anal cancer (36). According to Funosas, KRT1 is

overexpressed in squamous carcinomas and is linked to aggressive

pathology in breast cancer (37). These investigations corroborate and

reinforce our findings since these 7 PyMGs were linked to the

development of BLCA. The OS and ROC analyses of the Kaplan-

Meier curves for GSE13507, GSE48075, and GSE48276 demonstrated

that a PyM-related signature may serve as a useful prognostic
TABLE 2 The top six enriched functions or pathways.

NAME ES NES NOM p-val FDR q-val

allograft rejection 0.7326922 1.7128558 0.044573642 0.05268823

proteasome 0.7270414 1.9887205 0.006465518 0.047390986

dna replication 0.7185649 1.8164389 0.014403292 0.04490206

alpha linolenic acid metabolism -0.7724566 -2.2641535 0 3.60E-04

valine leucine and isoleucine degradation -0.66707414 -2.1426907 0 0.002941816

linoleic acid metabolism -0.6642279 -2.0364537 0 0.012096318
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predictor. Nevertheless, little knowledge is available related to the

gene alterations associated with PyM. As a result, more research is

needed to discover the mechanism of PyMGs changes, as well as to

identify and confirm present findings.

Based on KEGG analysis, it was found that the genes were

predominantly engaged in the Pyrimidine, Nucleotide, Purine

metabolism, RNA polymerase. Many lipid metabolism-related genes,

including ACLY, were found to be abnormally expressed in endometrial
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cancer tissues in Dai’s investigation. ACLY upregulation increased EC

cell proliferation and colony formation while decreasing apoptosis (9).

Zhu found that UBE2Twas favorably associated with PyM, and that key

PyM products were significantly increased in UBE2T-overexpressing

cells. UBE2T overexpression boosted the activity of multiple key

enzymes involved in de novo pyrimidine synthesis, including CAD,

DHODH, and UMPS (38). 17 metabolites separated BCa patients’ urine

profiles from healthy individuals’ urine profiles in a study by Jacyna.
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FIGURE 10

The ssGSEA scores are compared. (A, B) Comparison of the enrichment scores of 16 kinds of immune cells and 13 immune-related pathways in the
TCGA cohort between the low-risk (green box) and high-risk (red box) groups. (C, D): In the GEO cohort, tumor immunity was compared between
the low-risk (blue box) and high-risk (red box) groups. P values were shown as follows: ns not significant; *P < 0.05; **P < 0.01; ***P < 0.001. (E)
Immune checkpoint.
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Thesemetabolites are mostly involved in amino acidmetabolism, purine

and PyMmetabolism, and energy metabolism, and they may play a role

in BCa pathogenesis (39). The nod like receptor signaling pathway was

considered the most highly enriched route in GSEA. Recent

investigations have found that some botanicals and natural items can

control NOD-like receptor signaling. NOD-like receptors (NLRs) have

been identified as critical regulators of carcinogenesis, angiogenesis,

cancer cell stemness, and chemoresistance in response to

inflammation (40, 41). NLRs detect pathogen-associated molecular

patterns and respond by activating other signaling regulators such as

Rip2 kinase, NF-B, MAPK, and ASC/caspase-1, resulting in cytokine

production (42). Considering the aforementioned features, PyMGs may

alter BLCA cell migration and proliferation via influencing the nod-like

receptor signaling pathway. A number of clinical trials have also

demonstrated that PyM has an effect on BLCA patient survival.

Pro-inflammatory signaling is linked to Th1* cells in rheumatoid

arthritis, multiple sclerosis, and Crohn’s disease. This specific subset of

cells plays a crucial role in the defense against infection and the

management of autoimmunity and inflammation (43). Previous

research has focused on the transcriptome of immunological

hallmark genes in human Th1* cells. More than 400 genes are
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expressed differently in Th1* individuals compared to Th1, Th2, and

Th17 populations. A study of the functional networks of genes

specifically up-regulated in Th1* revealed enrichment of components

related to T cell proliferation, effector activities, and MTB immunity

(44). Yulia Kushnareva discovered that through disrupting cellular

pyrimidine metabolism, ISOC1 deletion lowered IFN and IL-17

production. The findings show that functional screening may be

used to validate immunological signature genes and emphasize the

role of metabolic fitness in adaptive immunity, demonstrating that

pyrimidine metabolism is linked to immunotherapy and invasion. The

survival of BLCA patients was successfully predicted in this research.

An increase in the risk score, according to the PMG’s prognostic

model, is connected to an increase in mortality and the high-risk ratio.

PyMGs may serve as useful biomarkers for predicting the outcomes of

BLCA patients. Recent research has found a relationship between

various cell death mechanisms and anticancer immunity (45).In ICI-

resistant cancers, the activation of proptosis, ferroptosis, and

necroptosis resulted in synergistically improved anticancer efficiency

(46). Insulin involvement in immune checkpoint regulation enhances

PD-L1 expression in pancreatic ductal adenocarcinoma cells viamany

routes in the three cell lines studied, including increased InsR-A
A B

DC

FIGURE 11

mRNA chemical modifications. (A) m6A (HNRNPC, FTO, ALKBH5, WTAP, and RBM15 were significantly more significant in the high-risk group. In the
low-risk group, YTHDC2, METTL3, and RBM15 were significantly more significant). (B) M1A (ALKBH3 was substantially more significant in the high-
risk group). (C) M7G (IFIT5, AGO2, GEMIN5, LARP1, NCBP1, NUDT11, NSUN2, and EIF4E were substantially more significant in the high-risk group).
(D) M5C (TRDMT1, DNMT1, YBX1, and ALYREF were substantially more significant in the high-risk group). P values were showed as: ns, not
significant; *P < 0.05; **P < 0.01; ***P < 0.001.
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expression in A818-6 cells and modification of the adaptor protein

Gab1 in BxPc3 cells (47). Kyrollis Attalla has identified TIM-3 and

TIGIT as viable targets for monotherapy or in conjunction with other

immune checkpoint inhibitors in patients with urothelial cancer of the

bladder. A microscopic examination of the interaction between ICI,

m6a, and PyMwas carried out, and the results indicated a link between

PyMGs alterations and the origin and development of BLCA.

The relationship between PyM and BLCA has been marginally

explored. Studies have used bioinformatics analysis to analyze a

relationship between PyM and cancer (10, 48). DEG analysis was

used by Wu et al. to identify DEGs in the pyrimidine metabolic

signaling pathway. They discovered NT5E, DPYS, and UPP1, three

genes that are substantially expressed in GC. Wang et al. created a

novel Lung cancer prediction model that integrates 5 PyMGs,

including P2RX1, P2RX7, P2RY12, P2RY13, and P2RY14, which

might be utilized to predict prognosis in Lung cancerpatients. There

are now several studies on BLCA, including bioinformatics. Xia

et al. provided uncertain ideas for the prevention and treatment of

BLCA based on iron death or lncRNA through bioinformatics, and

also gave certain references in the calculation model (49–51).

Despite the existing literature on the relationship between PyMGs

and cancer. there remains a dearth of predictive models for PyMGs

and cancer. This study adopted a novel approach to the investigation

of this relationship. First, the current study expanded on earlier

research by utilizing more PyMGs data from the continuously

updated TCGA database. Second, TCGA data were used as the

primary analysis, with GEO data being incorporated into the

common pattern for model validation. The GO and KEGG

analyses, as well as the GSEA analysis, all added credibility to the

study. Finally, there is almost no prediction model for Pyrimidine

metabolism genes that gives specific recommendations for future

metabolic research or therapy based on metabolic interference

BLCA. The present study has the following limitations. First, the

current study expanded on prior research by using more PyMGs data

from the TCGA database, which is regularly updated. Second, TCGA

data were employed as the primary source of analysis, with GEO data

being used to validate the model using a similar pattern. The GO and

KEGG analyses, as well as the GSEA research, all supported the

findings. Fourth, several databases were employed to examine

immune cells and function in order to increase the trustworthiness

of the results. The following are the study’s challenges. This risk model

is mostly based on publicly accessible databases. Furthermore, protein

expression may differ from RNA expression, necessitating additional

research with more data collection.

5 Conclusions

For BLCA, the present study identified seven expected regulatory

patterns of PyMGs, along with transcriptome and immune

infiltration features. The current study elucidates the functions of

PyMGs regulators and provides insight into the reasons for varied

clinical outcomes and immunotherapy responses across different

PyMGs regulatory patterns. The diverse and complex TME is

influenced by multiple PyMGs changing patterns. Our data suggest

that PyMGs may serve as promising prognostic markers, which could

lead to novel BLCA treatment alternatives for BLCA.
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