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Single-cell transcriptome analysis
reveals the metabolic changes
and the prognostic value of
malignant hepatocyte
subpopulations and predict new
therapeutic agents for
hepatocellular carcinoma

Cuifang Han1†*, Jiaru Chen1,2†, Jing Huang1, Riting Zhu1,2,
Jincheng Zeng3, Hongbing Yu1* and Zhiwei He1*

1Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated
Hospital, Guangdong Medical University, Dongguan, China, 2School of Pharmacy, Guangdong Medical
University, Dongguan, China, 3Dongguan Key Laboratory of Medical Bioactive Molecular Developmental
and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics,
Guangdong Medical University, Dongguan, China
Background: The development of HCC is often associated with extensive

metabolic disturbances. Single cell RNA sequencing (scRNA-seq) provides a

better understanding of cellular behavior in the context of complex tumor

microenvironments by analyzing individual cell populations.

Methods: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)

data was employed to investigate the metabolic pathways in HCC. Principal

component analysis (PCA) and uniform manifold approximation and projection

(UMAP) analysis were applied to identify six cell subpopulations, namely, T/NK cells,

hepatocytes, macrophages, endothelial cells, fibroblasts, and B cells. The gene set

enrichment analysis (GSEA) was performed to explore the existence of pathway

heterogeneity across different cell subpopulations. Univariate Cox analysis was

used to screen genes differentially related to The Overall Survival in TCGA-LIHC

patients based on scRNA-seq and bulk RNA-seq datasets, and LASSO analysis was

used to select significant predictors for incorporation into multivariate Cox

regression. Connectivity Map (CMap) was applied to analysis drug sensitivity of

risk models and targeting of potential compounds in high risk groups.

Results: Analysis of TCGA-LIHC survival data revealed the molecular markers

associated with HCC prognosis, including MARCKSL1, SPP1, BSG, CCT3, LAGE3,

KPNA2, SF3B4, GTPBP4, PON1, CFHR3, and CYP2C9. The RNA expression of 11

prognosis-related differentially expressed genes (DEGs) in normal human

hepatocyte cell line MIHA and HCC cell lines HCC-LM3 and HepG2 were
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compared by qPCR. Higher KPNA2, LAGE3, SF3B4, CCT3 and GTPBP4 protein

expression and lower CYP2C9 and PON1 protein expression in HCC tissues from

Gene Expression Profiling Interactive Analysis (GEPIA) and Human Protein Atlas

(HPA) databases. The results of target compound screening of risk model showed

that mercaptopurine is a potential anti-HCC drug.

Conclusion: The prognostic genes associated with glucose and lipid metabolic

changes in a hepatocyte subpopulation and comparison of liver malignancy cells

to normal liver cells may provide insight into the metabolic characteristics of HCC

and the potential prognostic biomarkers of tumor-related genes and contribute to

developing new treatment strategies for individuals.
KEYWORDS

cancer metabolism, hepatocellular carcinoma, malignant hepatocytes, prognostic
biomarker, single-cell RNA sequencing
1 Introduction

The mortality rate for liver cancer is the third highest among all

cancers, and it is the sixth most frequent cancer overall (1). Hepatocellular

carcinoma (HCC) is a tumour of hepatocellular origin. HCC is the

predominant pathological type of primary liver cancer (PLC), as it

represents 75-85% of all instances of PLC (2). A vast majority of HCCs

are caused by chronic disease, and most of these cases reportedly evolve

from chronic liver disease. This is primarily because of viral infections,

including hepatitis B virus (HBV) and hepatitis C virus (HCV), and

alcohol misuse (3). It is recommended that patients diagnosed with HCC

in the early stages receive surgical resection, liver transplantation, and local

resection (radiofrequency ablation) according to the Barcelona Clinic

Liver Cancer (BCLC) staging system. Those in the intermediate stage are

widely treated with trans-arterial chemoembolization (TACE), whereas

systemic therapies are mainly considered for advanced-stage patients.

Advanced-stage patients are often symptomatic, although they exhibit

some degree of impaired liver function (4, 5). Notably, few or no

treatments are available to improve survival rates for patients in

advanced stages.

The development of treatment modalities for advanced HCC has

dramatically expanded recently. To date, the FDA has approved several

oral tyrosine kinase inhibitors (lenvatinib, regorafenib and cabozantinib),

immune checkpoint inhibitors (nivolumab and pembrolizumab) and
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immunotherapies, such as monoclonal antibodies (6–8). These therapies

have steadily improved the overall survival (OS) of HCC patients.

However, the prognosis for HCC patients continues to be poor

because of recurrence and elevated metastasis rates (9). HCC features

have been attributed to a small subpopulation of tumour cells that carry

more aggressive genetic or phenotypic alterations that allow them to

escape conventional detection methods (10).

Although conventional bulk RNA sequencing (bulk RNA-seq) can

provide sufficient gene expression profiles of large blocks of tissue, it does

not effectively distinguish between different cell lineages and cellular

interactions (11). Recently, the emergence of single-cell sequencing

technology has bridged the gap between traditional high-throughput

sequencing technologies and microarray data to provide genomic,

transcriptomic, and epigenetic information from individual cells (12).

Tumours consist of three major cell types, namely, malignant, immune

and stromal cells, whose spatiotemporal interactions constitute a complex

ecosystem (13). Unravelling the interactions between these types involves

understanding tumour development and prognosis and therapeutic

options. Since the advent of single-cell sequencing, various researchers

have produced a relatively complete picture of human cell atlas, which has

subsequently provided a great reference for understanding the complex

composition of the organs of the body (14). Additionally, single-cell

sequencing has been extensively employed to reveal the molecular

mechanisms underlying HCC. For instance, studies have mapped the

single-cell landscape of the early recurrent HCC ecosystem by relying on

the high recurrence and low survival rates of HCC patients to advance the

immunotherapy guidelines for HCC (13). Numerous studies have utilized

single-cell sequencing techniques to elucidate the heterogeneity of

malignant tumour cells, stromal cells, and immune cells. The large scale

single-cell omics study targeting tumor-associated T cells published by

Zhang et al. sketched the tumor immune landscape and laid the

groundwork for a multifaceted understanding of T-cell characteristics

associated with liver cancer (15). Single-cell technology can also identify

rare subpopulations that were previously undetected by bulk RNA

sequencing techniques, and these cell types are pivotal in determining

tumor characteristics, including stemness-associated malignant cells and

cancer-associated fibroblasts (16–18).
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The reprogramming of energy metabolism characterizes tumour

cells and causes rapid cell growth and proliferation. Thus, it is one of

the hallmarks of cancer. Tumour cells actively take up glucose

through the uncommon process of anaerobic glycolysis (Warburg

effect). Studies have shown that this process provides energy to

tumour cells, permitting intermediates to enter the anabolic bypass

to maintain the de novo synthesis of nucleotides, lipids, and amino

acids needed for cell proliferation (19). HCC is closely linked to

metabolic abnormalities, as the liver is the primary metabolic organ.

Most previous studies concerned with liver cancer have focused on

sequencing at the tissue level to reveal the overall metabolic

alterations. Single-cell sequencing technology can compensate for

the shortcomings of bulk sequencing, thereby allowing one to

pinpoint the cell groups most significantly associated with

metabolic alterations from a large number of cell types. This also

allows researchers to comprehensively describe the overall changes in

gene expression patterns and reveal changes across specific cell

groups. Therefore, scRNA-seq and bulk RNA-seq integration are

important techniques for studying tumour development and

heterogeneity. We analysed published single-cell transcriptome

sequencing data to identify metabolically relevant HCC

subpopulations, namely, hepatic epithelial cells. We then used the

identified differentially expressed genes to designate a prognostic

model for HCC patients.
2 Materials and methods

2.1 Data collection

The scRNA-seq data for HCC patients were acquired from GEO

(https://www.ncbi.nlm.nih.gov/geo/, accession number GSE149614)

and TCGA (https://portal.gdc.cancer.gov/) databases, respectively.

TCGA-LIHC samples with complete clinical information were

utilized as the model training set, and HCC samples from the GEO

database (GSE76427) were utilized as the external validation set.

We first constructed a human liver cell atlas by performing cell

classification and marker gene identification relying on Seurat.

There were 17 samples in total from 10 HCC patients. These

included 8 tumour samples (PT), 8 normal paraneoplastic samples

(NTL), and one metastatic lymph node sample (MLN). The data for

these samples were obtained from the GSE149614 project.
2.2 Identification of HCC cell subtypes

The scRNA-seq data were assessed by the Seurat package

implemented in R software (4.1.1), with the exclusion of samples

with more than 30% mitochondrial genes. The data were normalized

using the Normalize Data function, and 2,000 genes with high

intercellular coefficients of variation were subsequently extracted.

Principal component analysis (PCA) was then performed, with 15

PCs selected for subsequent uniform manifold approximation and

projection (UMAP) analysis. Cell types within the obtained clusters
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were annotated by the reported cell marker genes, and the expression

matrix was generated for further analysis.
2.3 Analysis of intercellular communications

To investigate the potential interactions between tumor and

paracancerous normal HCC samples, we employed the CellChat (1.5.0)

package to analyse intercellular communication. We performed CellChat

analysis of the annotated cellular gene expression profile data according

to the official workflow. This package mimics intercellular

communication by assessing the binding ligands and receptors along

with their cofactors (20). Depending on receptor expression in one cell

type and ligand expression in the other, enriched receptor−ligand

interactions between the two cell types were inferred. Signaling

pathways were visualized using the “netVisual_aggregate” function,

where ligands were defined as efferent signals and receptors were

defined as afferent signals.
2.4 Identification of important metabolic
pathways at the single-cell level

Next, we employed the ‘scMetabolism’ package (0.2.1) to calculate

the metabolic state between different cell types in the HCC dataset.

This package combines published gene sets from the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database and the

Reactome database to easily quantify single-cell metabolic activity.

(21). Here, we used the authors’ integrated list of metabolism-related

gene sets from the Reactome database to explore metabolic pathway

changes among six cell subpopulations and further looked at

metabolic changes in epithelial cell subpopulations between tumor

and paracancerous normal HCC samples.
2.5 Copy number variation analysis

To identify malignant cells in HCC patients, we compared patterns

of chromosomal gene expression across cancer cells to those of their

putative noncancerous counterparts using the infercnv package (version

1.12.0). First, we downloaded the human genome annotation file from

the gencode database (https://www.gencodegenes.org/human/),

converting it into a genomic location file. We used paracancerous

epithelial tissue expression profiles from HCC patients as a reference

group. Because our data were 10x scRNA-seq data, we set 0.1 as the cut-

off value, and the denoise = T. Referring to the two indicators used by Itay

Tirosh et al. to determine benign versus malignant cells, here we used the

overall copy number variant (CNV) and the correlation with the average

CNV of the top 5% of cells from the same tumor to estimate the

malignancy or non-malignancy of the cells (22). The following

correlation reference thresholds for determining the malignancy or not

of cells were given: malignant cells: overall CNV > 0.2 & CNV correlation

of the top 5% of tumors > 0.2; non-malignant cells: overall CNV < 0.2 &

CNV correlation of the top 5% of tumors < 0.2.
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2.6 Identification of significantly related
pathways across different epithelial
cell types

After scoring individual cells using a variety of enrichment

methods, we derived multiple gene set enrichment score matrixes

using the 'irGSEA' package (https://github.com/chuiqin/irGSEA/).

Next, we calculated the differentially expressed gene sets for every

single cell subpopulation within the enrichment score matrix for

every gene set using the Wilcoxon test. Employing heat maps, certain

specific enrichment pathways were labelled and then visualized.
2.7 Generation and validation of
prognostic features

Univariate Cox analysis was used to screen genes associated with

OS in TCGA-LIHC patients based on scRNA-seq and bulk RNA-seq

datasets, and then, LASSO analysis was used to select significant

predictors for incorporation into multivariate Cox regression. Next,

we selected and used prognostic characteristics to generate polygenic

risk scores and stratify TCGA-LIHC samples into either low- or high-

risk groups. We also generated time-dependent receiver operating

characteristic (ROC) curves to assess the predictive power of the

prognostic features. The GSE76427 dataset was used to validate the

prognostic value of the prognostic features. The entire analysis and

visualization processes were performed by the survival, survminer,

rms, and time ROC packages in R.
2.8 Gene expression of prognostic genes

Total RNA from cells was extracted with TRIzol reagent (Thermo

Fisher Scientific, 15596026) following the manufacturer ’s

instructions. Complementary DNA (cDNA) was synthesized and

PCRs with cDNA as template were performed using a real-time

detector (The Applied Biosystems QuantStudio 5 Real-Time PCR

System) using Hieff qPCR SYBR Green Master Mix. The primer

sequences are shown in Supplementary Table S1. Transcript levels

were normalized against beta-actin levels as an internal reference and

were evaluated using the 2- D DCt method. All experiments were

repeated three times.

The Human Protein Atlas (HPA) tool was used to visually display

the protein expression of prognostic genes in the form of

immunohistochemical staining. The Gene Expression Profiling

Interaction Analysis (GEPIA) database was applied to further

demonstrate the credibility of the results.
2.9 Cell culture and western blot

An immortalized nontumorigenic normal human hepatocyte cell

line MIHA and HCC cell lines HCC-LM3 and HepG2 were purchased

from the Fenghui Biotech Co., Ltd. (Hunan, China) with STR report.
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The MIHA cells were cultured in RPMI-1640 and HCC-LM3 and

HepG2 were cultured in Dulbecco’s modified Eagle medium (Gibco,

Gaithersburg, MD, USA) with 10% fetal bovine serum (FBS, Sigma),

100 mg/mL penicillin and 100 mg/mL streptomycin (Solarbio,

Shanghai, China) at 37°CC and 5% CO2.

Total protein was extracted by using Takara kit. The Protein

concentration was detected by BCA assay. The primary antibodies

used in this study were anti-CYP2C9 (1:1000, Abcam), anti-PON1

(1:1000, Abcam) anti-beta-Actin (1:1000, Cell Signaling Technology).
2.10 Drug sensitivity analysis

Genomics of Drug Sensitivity in Cancer (GDSC, https://www.

cancerrxgene.org/) is the largest pharmacogenomic database that is

freely accessible for predicting responses to anticancer drugs. GDSC

comprises 2 databases, namely, GDSC1, which contains 958 cell lines

and 367 drugs, and GDSC2, which contains 805 cell lines and 198

drugs (23). To explore the differences in drug treatment effects among

HCC patients, drug inferred sensitivity scores were assessed in

GDSC2 by the ‘oncoPredict’ package.
2.11 Connective map analysis

The Connective Map (CMap) database stores a large-scale

resource of expression profile data of cell lines under different drug

treatments, which allows rapid targeting of drug candidates for the

treatment of target diseases based on aberrant transcriptomic features

in tumor cells (24). These drugs have an inverse relationship with

tumor-promoting factors and may regulate aberrantly expressed

genes in the opposite direction.

Recently, Yang et al. used the Library of Integrated Network-based

Cellular Signatures (LINCS) database to demonstrate that using the

eXtreme Sum (XSum) algorithm is most likely to yield optimal results in

matching compounds and disease features, demonstrating better drug

retrieval performance than the other five available methods, and

obtaining practical targets with desirable results in liver cancer (25). In

addition, the parameters for achieving the best prediction performance in

this study were set at a number of disease molecular features of 100.

Considering the significant difference in dimensionality between CMap

data and LINCS, we incorporate more query signatures using top300

genes for XSum analysis for potential drug prediction.
2.12 Statistical analysis

All statistical analyses were carried out using packages

implemented in R version 4.2.0 (https://www.r-project.org/).

Student’s t test was used to perform comparisons of continuous

variables between two groups, and the Wilcoxon rank sum test was

used to compare more than two groups. Kaplan−Meier curves with

log-rank statistics were used to compare differences in OS between the

two groups. Statistical significance was represented by p < 0.05.
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3 Results

3.1 Single-cell gene expression profiles
reveal six major cell types in the TME of
primary HCC tumours

We performed descending and unsupervised cell clustering to

recognize cell types based on their expression profiles. The raw dataset

was read using the Seurat package. Then, an initial screening of genes

and cells was performed using the following criteria: a gene had to be

expressed in at least 3 cells, and at least 200 genes were measured in

this cell. This was followed by further quality control to extract cells

with >200 and <8000 expressed genes and <30% of mitochondrial

genes. Next, the data were normalized to obtain 2000 highly variable

genes for subsequent downscaling. Removal of the cell cycle effect

resulted in an expression matrix comprising 58,475 cells and 24,746

genes. Next, we employed known marker genes to define broad cell

categories and obtained the following six major cell subpopulations:

T/NK cells, hepatocytes, macrophages, endothelial cells, fibroblasts,

and B cells (Figures 1A, B). Cells from tumours and normal

paracancerous tissues from different patients were classified into six

categories (Figure 1C). Because proliferation is a hallmark of tumour

cells, we employed the cell cycle scoring method to analyse the cell

cycle. This image shows the results indicated that most of the cells

were in the G1 phase, and a small number of cells were in the G2/M

and S phases (Figure 1D).
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3.2 Genes associated with the glucose and
lipid metabolic pathway are upregulated in
hepatocytes

To explore the existence of pathway heterogeneity across different

cell subpopulations, we performed pathway activity and GSEA using

signature genomes. Numerous pathways associated with cancer were

upregulated in the hepatocyte subpopulation; these pathways

included oxidative phosphorylation, glycolysis, and the metabolism

of fatty acids, bile acids, and xenobiotics (Figure 2A). Next, we used

the scMetabolism package to calculate scores for each metabolic

pathway in each cell. We found that the epithelial cell

subpopulation was enriched in most metabolic pathways, mainly

those regulating pyruvate metabolism, the citrate tricarboxylic acid

cycle, and the metabolism of triglycerides, pyruvates, lipids,

carbohydrates, amino acids and their derivatives, ketone bodies,

glucose, and fatty acids, and FoxO-mediated oxidative stress

(Figure 2B). The genes of glucose metabolism and lipid metabolism

pathways were also upregulated in epithelial cells (Figures 2C, D). To

determine the differences in metabolic pathways of hepatic epithelial

cells between tumor and paracancerous tissues, we extracted a

separate subpopulation of hepatocytes and analysed the enrichment

of metabolic pathways. Strikingly, we found an opposite trend

between the glucose metabolism and lipid metabolism pathways in

tumour and paracancerous cells (Figure 2E). Consequently, we

subjected this cell subpopulation to more in-depth analysis.
A B

D
C

FIGURE 1

Profiles of single cells isolated from 8 primary liver cancer lesions with matching adjacent samples. (A) Uniform manifold approximation and projection
(UMAP) plot of the analysed single cells. Each colour reflects one cell type. (B) Expression of marker genes for Hepatocytes, Macrophage cells,
Endothelial cells, Fibroblasts, Mast cells, B cells, and T/NK cells. (C) Distribution of cells derived from either different patients or different sample origins.
(D) UMAP clustering of 58,475 cells. Every colour represents a distinct cell cycle stage.
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3.3 Pattern of intercellular communication
between tumour and normal
paracancerous tissues

We constructed a communication network between tumour

samples and normal paracancerous samples to characterize

alterations in signalling pathways (Figure 3A). A total of 642 and

499 significant ligand−receptor (LR) interactions were identified

between the cell types present in tumour and normal paracancerous

tissues, respectively (Supplementary Table S2). Differences between

the number of communications among all cell populations between

tumour and normal samples are illustrated in Figure 3B. In summary,

tumour samples exhibited more cellular interactions than their

normal counterparts, a phenomenon that was even more

pronounced in the overall signalling pattern (Supplementary Figure

S1). Next, we investigated the potential efferent and afferent signals

among these six cell types and the specific molecular pairs. We found

that the tumour samples consistently had more signal pairs than

normal samples regardless of efferent or afferent signalling. The

potential signalling pathways specific to tumour samples included

SPP1, VTN, OCLN, CD46, GDF, EPHA, AGRN, PERIOSTIN, and

HSPG. In normal samples, endothelial cells and T/NK cells were the

main signalling providers and receptors, respectively, whereas in

tumour samples, fibroblasts and macrophages represented the main

signalling providers and receptors, respectively (Figures 3C, D). The

overall communication probabilities of cells from tumour samples

and normal sample sources were significantly different. Among the

ligand receptors for intercellular communication in the normal
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sample sources, multiple pathways take part in inflammatory and

immune responses, including pathways involving MHC-I, MHC-II,

CXCL, complement, CCL, and TNF. In tumour samples, the

intercellular interactions were mainly active in signalling pathways,

including pathways involving SPP1, VTN, NOTCH, THY1, and

CD46 (Figure 3E). To further elucidate the relationship between

hepatocytes and other cell subpopulations, we generated a network

plot of differences in number and strength. We found that

hepatocytes had significantly higher interactions with endothelial

cells and fibroblasts but a weaker association with immune cells

(Figure 3F-G).

Differential analysis of all ligand−receptor pairs in hepatocytes

and other cell types revealed significantly different patterns between

tumour and adjacent normal tissues (Figures 3H–I). Studies have

shown that CD74 promotes tumour cell growth by interacting with

MIF (26). Remarkably, MIF-(CD74+CD44) signalling between

hepatocytes and T/NK and macrophages, which mediates

immunosuppressive effects that have previously been illustrated for

promoting cancer progression (27). Blocking MIF-CD74 signalling

not only inhibits the proliferation of HCC cells but also exerts

antitumour effects. Therefore, MIF/CD74 axis inhibition could be

an effective treatment for HCC (28). SPP1 encodes osteopontin

(OPN), a phosphorylated glycoprotein expressed in various tissues

and cells associated with human diseases (29, 30). Notably, OPN is

crucial in tumour progression, including HCC metastasis and

prognosis, since it drives the evolutionary adaptation of tumour

cells in the tumour microenvironment. Strikingly, SPP1-CD44

signaling was present between hepatocytes and T/NK cells,
A B

D EC

FIGURE 2

Distribution of glucose and lipid metabolic pathways in cellular subpopulations. (A) Functional annotation of six cellular subpopulations. (B) Dot plots
show the specific metabolic pathways that were enriched in each cell subpopulation. (C, D) Scatter plots demonstrating highly expressed glucose and
lipid metabolic pathways in hepatocytes cells. (E) Metabolic pathways comparison in hepatocytes cells from tumour versus paracancerous tissue.
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macrophages, and fibroblasts in tumor samples, but not in normal

samples adjacent to cancer, further supporting the critical role of

SPP1 in the tumor ecosystem.
3.4 Transcriptome heterogeneity of
hepatocytes in HCC

Despite previous batch effects, tumour cells continued to show

patient-specific expression patterns. This suggests a high degree of

heterogeneity, which could possibly be caused by CNVs. Six major

cell subpopulations were identified after the entire malignant and

normal hepatocytes reclustering (Figure 4A). In addition, UMAP

plots revealed distinct clusters of malignant cells that corresponded to

the sample origin (Figure 4B). Figure 4C illustrates the marker genes

for each cell subpopulation. Next, the irGSEA package was employed

to perform scRNA-seq gene set enrichment analysis and found that

these subpopulations have unique activation signals. These signals

include the Hedgehog signalling pathway (subpopulation 0), the early

oestrogen response (subpopulation 1), the IL6/STAT3 and TNF

signalling pathways (subpopulation 2), the xenobiotic metabolism

and reactive oxygen species signalling pathways (subpopulation 3),

and the KRAS signalling pathway (subpopulation 4). Moreover,

multiple cell proliferation-related pathways were upregulated in

subpopulation 5; these pathways included those involving the MYC

targets V1 and V2, G2M checkpoints, E2F targets, WNT signalling,

and P53 targets (Figure 4D). Activated KRAS is a major driver of

cancer stem cell (CSC) proliferation and tumour metastasis (31). The

results of the present study revealed that the KRAS signalling pathway
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was significantly upregulated in subpopulation 4, and the

marker genes for CSCs were a lso dis tr ibuted in this

subpopulation (Figure 4E).
3.5 Profiles of chromosomal CNV in
hepatocytes subpopulations

Next, we determined the chromosomal CNVs in each sample

based on transcriptomic data to understand the malignancy of the

epithelial cell subpopulation. This image shows the results revealed

low and high CNV in adjacent normal epithelial cell subpopulations

(control samples) and tumour epithelial cells, respectively.

Chromosome amplification primarily occurs within chromosomes

1, 3, 5, 6, 7, 8, 12, 15, 17, 20, 21, and 22, with deletions most

commonly observed in chromosomes 4, 9, 10, 11, 13, 14, 16 and 18

(Figure 5A). First, the copy value (CNV value) was calculated based

on the sum of squares for all genes in each sample. Next, we ranked

the CNV values of the tumour cells, using the top 5% as a reference,

and then calculated correlation coefficients between other epithelial

and reference cells. The determination of tumour cells was achieved at

a threshold CNV >0.2 and a correlation coefficient >0.2. With CNV

value as the horizontal coordinate and correlation coefficient as the

vertical coordinate, black dots represent tumor cells and blue dots

represent normal cells (Figure 5B). Finally, 13,502 tumor cells and

1,718 normal cells were identified and projected on the UMAP

map (Figure 5C).

Thereafter, we employed the FindAllMarkers function and set the

screening conditions logfc = 0.25 (difference multiplicity), min. pct =
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FIGURE 3

Comparison of cellular interactions between samples from tumour and adjacent normal tissues. (A) Cellular interaction number and strength. (B) Bar graph
illustrating the total number (left) and weight (right) of ligand−receptor interactions between samples from tumour and adjacent normal tissues. (C, D)
Heatmap showing possible afferent or efferent signalling pathways between cells. (E) Comparative profiles of pathway signal intensities indicating conserved
and specific signalling pathways in tumour and normal tissue samples. (F, G) Communication quantity and intensity differences network. Red and blue
colours represent upregulated and downregulated pathways, respectively, relative to normal tissues. (H, I) Dot plots show the variation in the signalling action
of hepatocytes relative to other cell types.
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0.25 (minimum differential gene expression ratio) and pct. diff >0.1

(pct.1-pct.2) to identify marker genes in the hepatic malignant and

normal epithelial cell subsets. The results revealed a total of 564

marker genes (Supplementary Table S3). We hypothesize that their

function in HCC differs from that in normal epithelial cells, although

further research exploration is needed.
3.6 Malignant hepatocyte subpopulations
are associated with HCC prognosis

Next, we explored the prognostic role of hepatocyte

subpopulations in HCC patients. Analysis of the mRNA expression

data from HCC samples across the TCGA database yielded 2,900

differentially expressed genes (Figure 6A). Marker genes from

malignant and nonmalignant cells of hepatocyte subpopulations

intersected with DEGs related to HCC development in the TCGA

database. Notably, 2,900 DEGs overlapped with 564 marker genes,

resulting in 203 differentially expressed marker genes in HCC. These

were subsequently named hepatocyte differential genes (HDGs)

(Figure 6B). Univariate Cox regression analysis revealed 101

differentially expressed marker genes that were significantly related

to the prognosis of HCC patients. To obtain a more robust prognostic

profile, we employed the LASSO regression algorithm at 10-fold

cross-validation with a lambda-min of 0.06321515 to designate a

prognostic model consisting of 11 genes, namely, MARCKSL1
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(MARCKS Like 1), SPP1 (Secreted Phosphoprotein 1), BSG

(Basigin, also called CD147 or EMMPRIN), CCT3 (chaperonin

containing TCP1 subunit 3), LAGE3 (L antigen family member 3),

KPNA2 (karyopherin subunit alpha 2), SF3B4 (Splicing Factor 3b

Subunit 4), GTPBP4 (GTP Binding Protein 4), PON1 (Paraoxonase

1), CFHR3 (Complement factor H-related 3) and CYP2C9

(cytochrome P450 family 2 subfamily C member 9) (Figures 6C, D).

Next, the median risk score was used to stratify the patients into

high- and low-risk groups. Patients in the low-risk group showed

significantly higher OS rates than their counterparts in the high-risk

group (p<0.001) (Figure 6E). Application of the 11-gene signature in

the validation cohort also indicated that patients in the low-risk group

had longer OS rates than their counterparts in the high-risk group

(p<0.001) (Figure 6F). To test the prognostic performance of the 11-

gene signature, time-dependent ROC curves were generated targeting

TCGA-LIHC samples. The results revealed area under the curve

(AUC) values of 0.8, 0.7, and 0.7 for 1-, 3- and 5-year survival,

respectively, in the testing cohort (Figure 6G) and 0.8, 0.8, and 0.87,

respectively, in the validation cohort (GSE76427) (Figure 6H). These

findings suggest that the 11-gene signature had good prognostic value

in both cohorts. For the association analysis between the

clinicopathological characteristics and the prognostic model, we

analysed gender, TNM, stage, and risk scores in the TCGA-LIHC

sample. The multivariate Cox regression analysis results revealed that

the risk score was a significant independent prognostic factor for

patients with LIHC (p<0.001) (Figure 6I). Moreover, we generated a
A B
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FIGURE 4

Transcriptome heterogeneity of malignant cells in HCC tissues. (A) UMAP plots of six different epithelial cell subpopulations. (B) UMAP plots
demonstrating the heterogeneity among patients. (C) Heatmap of the top 10 differentially expressed genes(DEGs) across six epithelial cell clusters. (D)
Single-cell pathway analysis of six subpopulations. (E) Scatter plot showing marker genes for cancer stem cells.
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nomogram encompassing gender, stage, age, grade, risk score and 1-,

2- and 3-year survival. Next, we employed a one-sample GSEA

approach to calculate scores for each sample across 175 pathways

based on the risk score to identify relevant regulatory pathways.

Thereafter, the correlation between each pathway and the risk score

was no less than 0.3 for the evaluation. The results revealed 39 positive

and 50 negative correlations with the sample risk score. Pathways that

were positively correlated with the risk score included those related to

cancer development, whereas the negatively correlated pathways

included those regulating glycolysis/glycogenesis, glycine, and the

metabolism of fatty acids, serine, threonine, glyoxylate and

dicarboxylate (Figures 6K, L).
3.7 The relative RNA expression level and
protein expression level of MARCKSL1, SPP1,
BSG, CCT3, LAGE3, KPNA2, SF3B4, GTPBP4,
PON1, CFHR3 and CYP2C9

Based on the initial trend of differentially up- and down-regulated

genes (Supplementary Table S4), To further investigate the gene

expression characteristics of 11 prognosis-related differentially

expressed genes (MARCKSL1, SPP1, BSG, CCT3, LAGE3, KPNA2,

SF3B4, GTPBP4, PON1, CFHR3 and CYP2C9) in the high-risk and

low-risk groups of HCC patients, we performed a correlation analysis

between gene expression levels and risk scores. The results showed

that all eight genes were positively correlated with risk scores, except

for PON1, CFHR3 and CYP2C9, whose mRNA expression levels were
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significantly negatively correlated with risk scores (Supplementary

Figure S3A). Meanwhile, in order to classify the high and low risk

genes, we could see from the forest plot of 11 prognostic genes that the

hazard ratio of MARCKSL1, SPP1, BSG, CCT3, LAGE3, KPNA2,

SF3B4 and GTPBP4 were all greater than 1, suggesting that these 8

genes might be poor prognostic factors and belong to high risk genes,

while PON1, CFHR3 and CYP2C9 were all less than 1, suggesting

that these three genes may be factors with a better prognosis

(Supplementary Figure S3B).

The RNA expression of MARCKSL1, SPP1, BSG, CCT3, LAGE3,

KPNA2, SF3B4, GTPBP4, PON1, CFHR3 and CYP2C9 in normal

human hepatocyte cell line MIHA and HCC cell lines HCC-LM3

(high metastatic HCC cells) and HepG2(low metastatic HCC cells)

were compared by qPCR. It was found that CYP2C9, PON1 and

CFHR3 were low expressed and MARCKSL1, SPP1, BSG, CCT3,

LAGE3, KPNA2, SF3B4, GTPBP4 were over expressed in human

hepatoma cells compared with normal human hepatocyte cells

(Unpaired t-test, p<0.01) (Figure 7A). Figure 7B shows the results

of the protein expression levels of CYP2C9 and PON1 were down

regulated in HepG2 and HCC-LM3 compared to MIHA. At the same

time, CPTAC database analysis results showed that the protein

expression of PON1, CFHR3 and CYP2C9 were low expressed in

tumor tissues compared with paracancer normal tissue, while other

genes were over expressed (Figure 7C).

Furthermore, immunohistochemical analysis from HPA database

confirmed higher KPNA2, LAGE3, SF3B4, CCT3 and GTPBP4

protein expression and lower CYP2C9 and PON1 protein

expression in HCC tissues (Figures 7D–J).
A B

C

FIGURE 5

CNV analysis of HCC patient epithelial cells. (A) Heatmap showing CNV patterns in epithelial cells across 17 HCC samples. (B) Epithelial cells were
classified as either malignant or nonmalignant. The horizontal coordinate represents the CNV value of the cell, whereas the vertical coordinate denotes
the correlation coefficient of the top 5% of CNV values of tumour cells. (C) Distribution of tumour versus normal epithelial cells on the UMAP plot based
on copy number variation.
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3.8 Drug sensitivity analysis of risk models
and targeting of potential compounds in
high risk groups using connectivity
map (CMap)

To determine the impact of risks on clinical practice, we evaluated

the IC50 values of several chemotherapeutic agents in the high- and

low-risk groups using the “oncoPredict” package. This analysis

identified 123 drugs that were statistically significant (p < 0.01)

(Supplementary Table S5). The results showed that afatinib,

dasatinib, 5-fluorouracil, lapatinib, SCH772984, and cediranib had

lower IC50 values in the high-risk group than in the low-risk group,

suggesting that patients in the high-risk group may benefit more from

these drugs. In contrast, JQ1, AT13148, axitinib, AZ960, AZD1208,

and irinotecan had lower IC50 values in the low-risk group,

suggesting that low-risk patients may benefit more from the above

chemotherapeutic agents (Figure 8A).

While single-cell sequencing strategies are powerful tools for

constructing disease signatures specific to individual cell types,

CMap provides unprecedented convenience for researchers to

tightly link the triad of drug, gene and disease in a context where
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detailed mechanism of action or drug target to be provided in advance

to predict therapeutic potential. Therefore, by combining a high-

resolution single-cell sequencing strategy with CMap, we have been

able to directly target effective therapeutic agents based on individual

cell-level expression signatures and thus provide a more accurate

prediction for screening potential drugs for disease.

We used a computational drug discovery strategy based on

“signature reversion” (32) to identify drugs with a high risk of

reversion using the large amount of data in the CMap database

(Figure 8B). The top 300 genes with the highest fold change in the

high- and low-risk groups were extracted for XSum analysis

(Supplementary Table S6). The results of the CMap analysis

revealed several compounds with gene expression patterns opposite

to those specific to the high-risk group, with lower CMap scores

indicating a higher perturbation ability. PHA.00816795,

mercaptopurine, W.13, NU.1025 and arachidonyltrifluoromethane

were the five potentially valuable small molecule drug candidates, as

they were ranked as the top 5 candidates (Figure 8C). Among the top

three of these candidates is mercaptopurine, which is a common

chemotherapeutic drug that produces anticancer effects by interfering
A B D E F

G IH J

K L

C

FIGURE 6

HDG identification and validation in the training (TCGA-LIHC) and validation cohorts (GSE76427). (A) The volcano plot of DEGs in the TCGA-LIHC dataset.
(B) The intersection of DEGs of TCGA-LIHC cohort with marker genes of epithelial cell subpopulation of HCC. (C, D) Coefficient distribution plots of log(l)
sequences (C) and selection of optimal parameters (lambda) in the LASSO model (D). (E, F) Kaplan−Meier survival curves illustrate the prognostic value of the
11-gene signature in the training cohort (E) and validation cohort (F). (G, H) Distribution of the 11-gene signature risk scores and survival status of HCC
patients in the training cohort (G) and validation cohort (H). ROC curves showing the value of the 11-gene signature in predicting the OS rates of HCC
patients at 1, 3, and 5 years in both cohorts. (I) Forest plot showing multivariate Cox analysis results. (J) Nomogram showing the prediction of OS at 1, 2, and
3 years. (K, L) Regulatory pathways potentially related to risk score.
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FIGURE 7

The Relative RNA Expression Level and Protein Expression Level of prognosis-related differentially expressed genes. (A) The Relative RNA Expression
Level of MARCKSL1, SPP1, BSG, CCT3, LAGE3, KPNA2, SF3B4, GTPBP4, PON1, CFHR3 and CYP2C9. (B) Expression of CYP2C9 and PON1 in normal
human hepatocyte cell line MIHA and HCC cell lines HCC-LM3 and HepG2 through western blot analysis. (C) Box plots showed the differential protein
expression of 11 hub genes in the CPTAC dataset in HCC tumor tissue and adjacent normal. (D-J) Immunohistochemical analysis of the CYP2C9, KPNA2,
LAGE3, SF3B4, CCT3, PON1 and GTPBP4 in HCC and liver tissues from the HPA database. HCC, hepatocellular carcinoma; CPTAC, The National Cancer
Institute’s Clinical Proteomic Tumor Analysis Consortium. HPA, Human Protein Atlas. (Unpaired t-test, **P < 0.01, ***P < 0.001, ****p < 0.0001 and ns,
no significance).
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with cell division or DNA synthesis (33). Yu et al. obtained five drugs

associated with HCC by integrating multiple data to define the types

of genes, considering the effect of genetic changes on HCC and the

positive and negative relationships between drugs and HCC (34).

Among these drugs, mercaptopurine is a potential anti-HCC drug.
4 Discussion

The liver is a major site for many metabolic processes, and

metabolic dysregulation is vital for HCC progression and

development (35). Evidence from numerous studies has shown that

HCC originates from adult hepatocytes (36, 37). In this study, we

found that HCC occurs in adult hepatocytes. Moreover, there were

metabolic changes in the hepatic epithelial cells. While normal

hepatocytes produce energy primarily through oxidative

phosphorylation, malignant hepatocytes convert glucose into lactate

through glycolysis to generate energy, a phenomenon known as the

Warburg effect (38). The dysregulation of oxidative phosphorylation

is related to elevated HCC tumorigenicity (39, 40). The liver

synthesizes lactic acid and can store and breakdown lipids.

Therefore, in HCC, aberrant lipid metabolism generates the lipids

required for membrane formation and energy production, and

posttranslational modifications support tumorigenesis (41). In our

study, the gluconeogenic pathway (aerobic gluconeogenesis) was

found to be enhanced in normal hepatic epithelial cells adjacent to

cancerous cells, whereas the lipid metabolism pathway was enriched

in malignant hepatocytes (Figure 2E).

HCC is a heterogeneous disease influenced by multiple factors,

which makes it difficult to diagnose and perform individualized

treatment. HCC patients are often diagnosed after curative surgical
Frontiers in Oncology 12
approaches are no longer possible because these patients are at an

advanced stage of the disease. Traditional sequencing methods often

mask the underlying heterogeneity in phenotypically defined cell

subpopulations. In contrast, scRNA-seq allows the in-depth

exploration of tumour heterogeneity and the analysis of tumour

development, drug resistance, intercellular communication and

immune infiltration patterns (12). Thus, this technique was

employed to comprehensively analyse the HCC landscape at single-

cell resolution.

To understand the interactions among hepatocytes and stromal

cells and immune cells, we conducted intercellular communication

analysis. This revealed enhanced interactions between hepatic

epithelial cells and fibroblasts and reduced contact with immune

cells, macrophages and endothelial cells in tumour samples compared

to normal adjacent samples (Supplementary Figure S2). Cancer-

associated fibroblasts (CAFs) are a major part of the tumour stroma

and contribute to HCC progression. Furthermore, CAFs interact with

tumour cells, immune cells, or vascular endothelial cells in the TME

through direct intercellular contacts or indirect paracrine interactions

to promote HCC (42–44). Similarly, Wang et al. performed a single-

cell level analysis of samples from normal and malignant livers and

found that in HCC, the most significant alteration was the expansion

of ACTA2+ fibroblast populations and malignant cells. This suggests

that the transition of hepatocytes from normal to malignant is

accompanied by alterations in intercellular contact with other cells

in the tumour microenvironment, which produce the complex intra-

and intertumoral heterogeneity of HCC (45).

Differentially expressed genes between malignant and normal

hepatocytes were identified by analysing copy number variations in

single-cell transcriptome data and isolating malignant and

nonmalignant cells from hepatocytes. In addition, analysis of
A B
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FIGURE 8

Drug sensitivity analysis and target compound screening for risk models. (A) Sensitivity analysis of chemotherapeutic agents between different risk
groups. (B) How the “signature reversion”-based calculation method works. (C) The top 5 drugs with the lowest CMap scores.
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TCGA-LIHC survival data revealed the molecular markers associated

with HCC prognosis,including MARCKSL1, SPP1, BSG, CCT3,

LAGE3, KPNA2, SF3B4, GTPBP4, PON1, CFHR3, and CYP2C9.

The identified prognostic risk factors showed good prediction

performance in both HCC cohorts. Based on this, we also

constructed a nomogram risk assessment model, which combines

risk scores with clinical characteristics to facilitate the clinical

application of HCC. It has been reported that CYP2C9 is involved

in the metabolism of many carcinogens and drugs, and is down-

regulated in HCC (46). Wang et al. used time serial transcriptome to

reveal that Cyp2c29 is a key gene in the development of hepatocellular

carcinoma in the mouse model, and its overexpression enhances the

production of 14,15-EET and inhibits inflammation induced

hepatocellular proliferation by inhibiting the IKK-NF-kB pathway

during liver injury (47). Meanwhile, the expression of the human

homologous of Cyp2c29 gene in mice was positively correlated with

the survival time of HCC patients, further suggesting that CYP2C

epoxygenases may be a potential therapeutic target for liver disease.

Chen and others have revealed lncZic2/depletion/MARCKS/

MARCKSL1 pathways can eliminate the liver tumor–initiating cells

(TICs) (48). The overexpression of myristoylated alanine-rich protein

kinase C substrate (MARCKS) and MARCKS like 1(MARCKSL1) can

drive the self-renewal of TICs. Yang et al. demonstrated that BSG may

be a tumor-promoting factor in HCC (49). The potential diagnostic

role of BSG in differentiating HCC specimens from non-tumor

specimens was demonstrated by analysis of multiple cohorts. BSG

mRNA expression levels were significantly upregulated in both HCC

specimens and HCC cell lines, and significantly shorter Overall

Survival (OS) (P = 0.0014) and Disease Free Survival (DFS) (P =

0.0097) were observed in patients with high BSG expression relative

to those with low BSG expression. Han et al. revealed that CCT3 is a

new complementary biomarker for HCC screening and diagnosis

(50). Several studies have shown that CCT3 is overexpressed in HCC

patients by quantitative RT-PCR and western blotting. CCT3 can

influence the progression of HCC by affecting phosphorylation

signaling and translocation of STAT3/STAT3 into the nucleus of

HCC cells (51, 52). The study of Li et al. showed that LAGE3 has

prognostic value in HCC, which may affect the progression path of

HCC tumor by promoting the proliferation, survival, migration,

invasion and anti-apoptosis of HCC cells through the PI3K/AKT/

mTOR and Ras/RAF/MAPK pathways (53). Guo et al. identified

KPNA2 as a potential diagnostic and prognostic biomarker for HCC,

which may affect HCC cell proliferation and migration by regulating

cell cycle and DNA replication (54). Splicing factor 3b subunit 4

(SF3B4) has been revealed to be associated with the diagnosis and

prognosis of HCC (55, 56). Liu et al. further demonstrated that SF3B4

drives cell proliferation and metastasis in HCC (57). Deng et al.

further studied the mechanism and revealed the interaction between

SF3B4 and ENAH in HCC, that is, SF3B4-regulated ENAH promotes

the development of HCC by activating Notch signaling (58). It has

been reported that Guanosine triphosphate binding protein 4

(GTPBP4) is associated with poor prognosis in HCC patients (59).

Additional reports have explored the role of GTPBP4 in metabolic

regulation and the potential mechanisms involved in HCC

development and metastasis (60). GTPBP4 induces the dimer

conformation of PKM2 through the SUMOylation to promote the
Frontiers in Oncology 13
aerobic glycolysis of HCC, thus promoting the progression and

metastasis of HCC (61). Serum Paraoxonase 1 (PON1) has been

reported as a biomarker for evaluating microvascular infiltration in

hepatocellular carcinoma. Complement factor H related 3 (CFHR3)

can be used to predict the prognosis of HCC. Overexpression of

CFHR3 can affect the proliferation and apoptosis of hepatocellular

carcinoma (62). Recent reports suggest that overexpression of CFHR3

may be a potential strategy for overcoming hypoxia and treating HCC

(63). These studies confirm the significance and plausibility of these

prognostic signatures.

Currently, liver transplantation and resection are efficient

treatment options for early-stage disease; however, these treatments

are appropriate for only 20-30% of HCC patients (64). Chemotherapy

is another viable treatment option for advanced HCC. Recently, there

has been significant progress in the development of molecularly

targeted treatments for liver cancer (65). These include sorafenib,

levatinib, and regorafenib, which have been approved as first- and

second-line treatments for HCC. In this study, the sensitivities of

HCC to various treatments were predicted. Low-risk patients showed

higher sensitivity to afatinib, dasatinib, 5-fluorouracil, lapatinib,

SCH772984, and cediranib than high-risk patients, which may be

attributed to their higher metabolic activity. Various drugs were

suggested for low-risk group patients, such as JQ1, AT13148,

axitinib, AZ960, AZD1208, and irinotecan. Cancerous cells have the

potential to evade the immune system (66). Immune escape can be

achieved through a variety of mechanisms. Thus, therapeutic

strategies that block checkpoint inhibitors of the PD-1/PD-L1 and

CTLA-4 pathways can promote tumour-reactive T-cell aggregation,

thereby improving the antitumour response (67, 68).

To the best of our knowledge, the 11-gene signature is the first to

explore the overall molecular prognostic feature of subpopulations

associated with metabolic disorders from single-cell sequencing

data. This risk model exhibited excellent ability to predict the

prognosis of HCC patients, and the AUC values at year 1, year 3 and

year 5 were all greater than 0.7, with the optimal value of

0.8. Meanwhile, a novel XSum algorithm was used to predict

potential drugs targeting high-risk groups from the Cmap database,

and 5 drugs were finally obtained, including PHA.00816795,

mercaptopurine, W.13, NU. 1025 and arachidonyl trifluoromethane.

Small molecule drugs, serving as candidates, embrace potential value

conducive to providing medication strategies for accurate treatment of

HCC patients.

This research also has certain drawbacks. First, more perspective

data with larger sample size should be collected to validate the

accuracy of our established prognostic model. Second, the

characteristics of different fractionated epithelial cells have not been

generated and validated. Further in-depth analysis from specific

epithelial cell subtypes closely related to metabolic changes will be

conducive to obtaining more accurate and valid prognostic

characteristics. Nevertheless, scRNA-seq analysis sheds new light on

the metabolic characteristics of individual cell subsets in HCC, and

anchors the survival and prognosis of relevant cell subsets with the

most significant metabolic changes, which is a key step forward in

clinical practice.

In conclusion, the present study identified prognostic genes

significantly associated with metabolic changes in a hepatocyte
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subpopulation at the single-cell level, and explored the heterogeneity

of this subpopulation and its interrelationships with other cells in the

tumor microenvironment. A prognostic model for OS prediction in

HCC patients was established and validated and the results

demonstrated favourable predictive ability. Additionally, differences

in chemosensitivity between high-risk and low-risk groups were

evaluated, and five potential drugs that might reverse the risk score

were forecasted. These results provided an in-depth understanding of

the metabolic characteristics of HCC. Furthermore, the characteristics

of potential prognostic biomarker can be clarified through the

comparison of tumor-related genes constructed by liver malignant

cells and normal hepatocytes. The above may be conducive to new

strategies of individualized therapy.
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