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University College of Medicine, Columbus, OH, United States
Medulloblastoma (MB) is the most common malignant pediatric brain tumor.

Previous studies have elucidated the genomic landscape of MB leading to the

recognition of four core molecular subgroups (WNT, SHH, group 3 and group 4)

with distinct clinical outcomes. Group 3 has the worst prognosis of all MB.

Radiotherapy (RT) remains a major component in the treatment of poor

prognosis MB but is rarely curative alone and is associated with acute and long-

term toxicities. A hallmark of cancer cells is their unlimited proliferative potential

which correlates closely with telomere length. The vast majority of malignant

tumors activate telomerase to maintain telomere length, whereas this activity is

barely detectable in most normal human somatic tissues, making telomerase

inhibition a rational therapeutic target in the setting of cancer recurrence and

therapy resistance. We and others have previously shown that short telomeres

confer sensitivity to ionizing radiation (IR) suggesting that telomerase inhibition

mediated telomere shortening will improve the efficacy of RT while minimizing its

side effects. Here, we investigated the efficacy of the combination of IR with IMT, a

potent telomerase inhibitor, in an in vivomodel of group 3 MB. Our results indicate

that although IMT inhibited MB telomerase activity resulting in telomere shortening

and delayed tumor growth, the combination with IR did not prevent tumor

recurrence and did not improve survival compared to the treatment with IR

alone. Together, these findings suggest that the radiosensitization by direct

telomerase inhibition is not an effective approach to treat high-risk pediatric

brain tumors.
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Introduction

Telomeres are the physical ends of eukaryotic linear

chromosomes and, in mammals, are composed of several kilobases

of tandem TTAGGG repeats that are bound by the shelterin protein

complex (1). With each cell cycle, telomeres shorten until they reach a

critical length that triggers cellular senescence or apoptosis. This is

counteracted by the activity of the telomerase enzyme. Human

telomerase consists of at least two essential components, a protein

catalytic subunit (hTERT) and an RNA template (hTERC) that

contribute to the synthesis of telomeric repeats, thereby renovating

telomeres. Telomerase activation, a feature of the vast majority of

cancers, is essential for maintaining an immortal phenotype by

conferring unlimited replicative potential, whereas in most normal

somatic cells, this activity is not detectable, supporting the rationale of

targeting telomerase and telomeres to treat cancer (2–4). We and

others have shown that telomere shortening enhances sensitivity to

ionizing radiation (IR) by altering the kinetics of the DNA damage

response (5, 6). We previously conducted a molecular biology and

phase II study of Imetelstat (IMT), a potent inhibitor of telomerase (7,

8) to estimate inhibition of tumor telomerase activity and efficacy in

children with recurrent central nervous system (CNS) malignancies

(9). The regimen proved intolerable and ineffective due, at least in

part, to toxicities that prevented more frequent dosing of IMT to

allow sustained inhibition of telomerase and tumor burden reduction.

Medulloblastoma (MB) is the most common pediatric brain

tumor in the posterior cranial fossa, accounting for approximately

25% of all brain tumors in children (10). Previous studies have

elucidated the genomic landscape of MB leading to the recognition

of four core molecular subgroups (WNT, SHH, group 3 and group 4)

with distinct clinical outcomes (10, 11). Group 3 MB overall displays

the worst prognosis. Radiotherapy is a standard treatment in older

children with group 3MB but is rarely curative alone and is associated

with acute and long-term toxicities (12–14). We have previously

shown that over 90% of MB patients express hTERT and

demonstrated telomerase activity (15). High expression levels were

associated with worse progression free survival and overall survival.

Group 3 patients had the highest hTERT expression. To test the

efficacy of radiation therapy while minimizing its side effects, we

investigated the efficacy of the combination of IMT, as a

radiosensitizer, in in vitro and in vivo models of group 3 MB

telomerase-positive stem-like cells derived from high-risk group 3

pediatric MB (10) (harboring MYC amplification). Our results

indicate that although IMT inhibited tumor telomerase activity

resulting in telomere shortening and delayed tumor progression,

the combination with IR did not prevent tumor recurrence and did

not improve survival compared to the treatment with IR alone. These

findings indicate that the direct telomerase inhibition combined with

IR has limited efficacy and new approaches utilizing this quasi-

universal cancer target are required to treat high-risk pediatric

brain tumors. This is the first report evaluating the combination of

telomerase inhibition combined with IR in high-risk group

3 medulloblastoma.
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Materials and methods

Primary tumor cell culture

High-risk group-3 medulloblastoma primary patient-derived

neurospheres MB004 (TP53 mutated, c-MYC amplified) (16, 17)

were cultured in neurosphere stem cell media as previously

described (18). Briefly, cells were cultured in tumor stem media in

serum-free condition consisting of DMEM/F12, Neurobasal-A, B27

(Gibco); human-basic EGF, FGF (Shenandoah biotech); and

Leukemia Inhibitory Factor (Millipore). For sphere formation assay,

MB004 neurospheres were dissociated by TrypLE express (Gibco),

and single cells were seeded in 96-well plate in serial dilution up to

single cell per well. Sphere re-growth or self-renewal was monitored

by microscopy. Cells were cultured in the presence of 10% FBS to test

adherence and differentiation ability.
Drug treatment

Imetelstat (GRN163L; Geron Corp.) was dissolved in 1X PBS to

prepare a 282 µM stock solution for in vitro use, and 1 mg/mL stock

for in vivo studies. Mismatch (MM) control oligonucleotide was

prepared the same way as Imetelstat. After reconstitution, drug was

aliquoted and stored in -20°C. In vitro, short-term treatments were

conducted for 72 hours, and long-term studies were conducted for up

to 6 weeks then cells were reseeded with fresh media (with or without

Imetelstat). In vivo, Imetelstat (15 mg/kg) was intraperitoneally

(i.p.) administered.
Telomerase activity assay

Telomerase activity was assayed using the TRAPeze Telomerase

Detection Kit (Millipore). Cell extracts were prepared according to

the manufacturer’s protocol. A total of 50 to 100 ng of total protein

was used to assess the telomerase activity.
Telomere restriction fragment analysis

Telomere lengths were determined by Southern blot using the

TeloTAGGG Telomere Length Assay Kit (Roche Diagnostics).

Genomic DNA was extracted from Imetelstat treated or untreated

MB004 cells or xenograft tissue using the Gentra Puregene kit

(Qiagen). 1 mg genomic DNA was digested, separated by gel

electrophoresis, and transferred to a charged nylon membrane.

Hybridization and detection were carried out following the

manufacturer’s instructions. Mean telomere length was determined

by comparing the mean size or the maximum intensity of the smear

relative to the molecular weight marker provided in the kit, using

TeloTool version 1.3 (19). Genomic DNA with known telomere

length supplied in the kit was used as positive control.
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Patient-derived mouse xenograft
and treatments

Six-seven weeks-old athymic Ncr-nu/nu female mice (J:NU

(Foxn1nu/Foxn1nu, The Jackson Laboratory) were subcutaneously

injected in single flank with 10,000 MB004 cells as previously

described (18). Ten days postimplantation, Imetelstat dosing was

initiated intraperitoneally at 10 mg/kg, and 15 mg/kg doses twice a

week along with a vehicle control (PBS). Tumors were measured every

other day by slide calipers taking two longest tumor-diameters (length

and width) perpendicular to each other and volumes were calculated by

using the formula: (p/6) x d3, where d = mean diameter. For irradiation

(IR) experiments, IR doses were started when the tumors reached the

volume of 500 mm3 and were given in fractions of 2 Gy per day for five

days (Monday – Friday) a week. Localized mouse irradiation device with

shielding apparatus was used to deliver focal irradiation to the tumors as

described elsewhere (20). All animal procedures were conducted

according to our IACUC protocol (#IACUC2015-0066, CCHMC).

Immunofluorescence and
immunohistochemistry

Immunostaining was performed as described previously (18, 21).

For immunofluorescence, primary antibodies used were against Ki67

(Abcam), GFAP (DAKO), gH2A.X (Cell Signaling), Nestin

(Millipore), and/or TRF2 (NOVUS), at 1:500 (rabbit) or 1:200

(mouse) dilutions as applicable. Corresponding secondary

antibodies (Alexa-Fluor 488- or 594-conjugated donkey anti-rabbit,

or anti-mouse (1:500) (Jackson ImmunoResearch) were used for 1

hour and washed with TBS (x3) before mounting with DAPI (Vector

Laboratories H1200). Images were captured on Nikon Eclipse Ti

confocal microscope. Formalin-fixed paraffin-embedded (FFPE)

tissue sections of MB004 patient-derived xenograft were used for

histopathological staining (H&E and Synaptophysin IHC). Tissues

were mounted with Permount (Fisher Scientific) and imaged by

Nikon eclipse 80i microscope.

Statistical analysis

Student’s t-test or multiple-way ANOVA were applied as required,

and Kaplan Meier Survival Analysis was performed using the GraphPad

Prism (version 7.02). Each in vitro experiment was repeated at least twice.

Error bars represent standard deviation from different animals considered

as biological replicates. Differences were considered significant at *P <0.05.

Log-rank test was applied to compare the differences in event-free survival

between treated or control groups in vivo. Response, recurrence, or

treatment failure rates, and multiple comparison for the Log-rank test

were performed by the Center for Biostatistics, The Ohio State University,

and as described elsewhere (22, 23).
Results

Characterization of patient-derived high-risk
group 3 medulloblastoma cells

MB004 cells, derived from high-risk group 3 medulloblastoma

patient were cultured in serum-free tumor stem cell media in a
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neurosphere culture system as described previously (18). This

system allowed the selection of primary cancer stem-like cells, also

known as the tumor initiating cells (TICs), representing a small sub-

population of tumor, responsible for tumor growth and recurrence.

We first tested the presence of cancer stem cell properties such as self-

renewal, proliferation, neuronal origin, differentiation ability, and

tumorigenicity. The patient-derived neurospheres, when dissociated

into single cells, were able to form secondary neuropsheres

demonstrating self-renewal property (Figure 1A). Further

characterization of the cells detected the expression of markers of

proliferation, neuronal precursor, and differentiation such as Ki67,

nestin, and GFAP respectively (Figure 1B). Tumorigenic property of

the primary cells was verified by the establishment of patient-derived

xenograft (PDX), that retained high cellularity and evidence of

neuronal origin evidenced by H&E, and synaptophysin staining

respectively (Figure 1B).
Treatment of group 3 medulloblastoma
patient-derived xenograft with radiation
reduced tumor growth, improved survival
but did not prevent recurrence and
subsequent animal death

To assess IR response, subcutaneous PDX tumors were irradiated

with clinically relevant focal radiation given at 2 Gy/day, 5 days/week,

Monday to Friday for 5, 10, 15 and 20 days to complete the

cumulative doses of 10, 20, 30 Gy, and 40 Gy respectively

(Figure 1C). Although initially responding to IR, most tumors

recurred. Response to radiation and overall survival (up to 30 Gy)

was directly proportional to the cumulative IR doses (Figures 1D, E).

The 10 Gy group showed the least response with the majority of the

mice showing no tumor regression. All mice in 20 Gy group showed

either some stabilization or regression in tumor growth for 2 weeks

after the last fraction of 2 Gy. However, all tumors regrew, and no

complete regression was observed. In both 30 Gy, and 40 Gy groups,

at least 1 out of 3 mice (33%) showed complete regression with no

instance of recurrence. The remaining mice (~67%) in both groups

showed tumor volume stabilization or sustained regression for 2

weeks after the last dose. Of note, tumor regrowth was either observed

in the field of irradiation at primary injection site or in distant

locations (OOF, out of field, Figure 1D). Taken together, group 3

MB004 patient-derived neurosphere cells grown in stem-cell media

represented an appropriate medulloblastoma model retaining cancer

stem-cell like properties and tumorigenicity in vitro and in vivo and

radiation alone did not prevent tumor recurrence and animal death.

The hallmark of telomere dysfunction is the formation of DNA

damage foci localized at telomeres called TIFs (telomere dysfunction-

induced foci). TIFs are focal accumulations of DNA damage response

factors such as ATMS1981-P, gH2AX, and 53BP1 at dysfunctional

telomeres (24). We visualized TIFs by FISH combined staining using

gH2AX colocalization with a telomere-specific PNA probe. As

predicted, from MB group 3, MB004 cells displayed high levels of

telomerase activity which was inhibited by IMT in a dose-dependent

manner (0.1 to 2.0 mM) (Figure 2A). Long-term treatments (2, 4 and 6

weeks) of MB004 cells with IMT led to sustained telomerase

inhibition, telomere shortening, and subsequent telomere damage
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evidenced by TIFs formation (Figures 2B–D). Furthermore, treatment

with IMT did not affect the ability of MB004 cells to form

neurospheres and did not induce their differentiation as shown in

Figure 2E when cells were cultured in 10% serum, suggesting that

IMT inhibited the canonical function of telomerase and did not affect

the stemness of MB004 cells. Together, these results indicate that IMT

treatment inhibits telomerase activity in MB004 stem-like cells

leading to telomere shortening and telomere dysfunction-induced

foci (TIFs) without affecting MB004 stemness, and prolonged

treatments sustain this inhibition resulting in telomere shortening.
Imetelstat delayed MB004 tumor
progression, induced intratumoral
telomerase inhibition and telomere
shortening in patient-derived mouse
xenograft model

Next, we tested the ability of IMT to inhibit telomerase activity in

vivo in MB004 PDX and induce tumor growth inhibition. Athymic

nude mice were subcutaneously injected with 10,000 MB004 cells, and

IMT dosing was initiated intraperitoneally at 10 mg/kg and 15 mg/kg

doses twice a week along with a vehicle control (PBS) group ten days

postimplantation. Compared to the control group, IMT treatment

delayed tumor growth (Figure 3A) and inhibited in tumor telomerase

activity (Figure 3B) leading to a decrease in telomere length (Figure 3C).
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Imetelstat treatment combined with
radiation delayed tumor recurrence but did
not significantly improve survival outcome
compared to radiation alone

The aim of our initial experiment with radiation (Figure 1) was to

determine the IR doses to be used in combination with IMT. The

minimal dose that induced minor response (25% tumor volume

reduction in average) and partial response (50% volume reduction

in average) were used with IMT. In the combination study, prior to

IR, IMT was intraperitoneally administered, 15 mg/kg twice per week

for two weeks. Tumors were then irradiated with the doses that

induced minor and partial response, 20 and 30 Gy respectively

(Figure 1). The objective of the combination treatment was to test

the ability of IMT to sensitize tumors to IR by enhancing the minor

and the partial response to IR and improving survival in comparison

with IR alone. Thus, lowering the IR doses to achieve a complete or

better response. We distributed athymic nude female mice into 6

groups (n=10 each): (a) untreated (vehicle), (b) IMT (15mg/kg), (c)

20 Gy IR, (d) 30 Gy IR, (e) IMT (15mg/kg) + 20 Gy IR, and (f) IMT

(15mg/kg) + 30 Gy IR. Following injection of the MB004 cells

subcutaneously, (IMT) treatment (15mg/kg, twice a week) was

started intraperitoneally at day 10 upon tumor initiation evidence.

When the tumors reached 500 mm3, the indicated radiation

cumulative doses (2 Gy/day, 5 days a week) were started focally.

IMT administration was continued until the last IR dose in both the
A

B

D

E

C

FIGURE 1

Characterization of patient-derived MB004 cells. (A), images of neurospheres (left); serial dilution of dissociated single cells (right upper panel) and
secondary sphere formation from a single cell cultured from day 1 to day 7 (right lower panel). (B), upper panel, representative IF images of MB004 cells
showing Ki67 in green (left), nestin and GFAP in red and green respectively (right). DAPI (blue) indicates nucleus staining. Lower panel, H&E (left) and
synaptophysin staining (right) of MB004 patient-derived xenograft. (C), scheme representing the experiment design to assess the effect of different IR
doses in a flank xenograft model of MB004 cells. (M-F indicates Monday to Friday) (D), tumor growth plots showing relative tumor volume (RTV) of
MB004 PDX tumors untreated (0 Gy, n=5) or treated with 10 Gy (n=5), 20 Gy (n=3), 30 Gy (n=3), and 40 Gy (n=3) irradiation (IR). Duration of IR in each
dosed group is indicated (2 Gy/day x 5 days per week). Each line indicates tumor growth per mouse. OOF indicates out of field of irradiation. (E), survival
plots of treated mice. * p< 0.0332; ns, not significant.
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IMT and combination groups. The mice were observed for tumor

growth, regression, recurrence, and survival for up to ~20 weeks after

the end of treatments (Figure 4A). Overall, there was no striking

difference observed between the IR only and combination groups, as
Frontiers in Oncology 05
the majority (90%) of the tumors in all treatment groups recurred

after an initial regression (Figure 4B). The regression was slightly

prolonged in IMT+20 Gy and IMT+30 Gy groups compared to the

corresponding cumulative doses alone. This regression was more
A B C

FIGURE 3

Evaluation of Imetelstat treatment in MB004 patient-derived xenograft (PDX). (A), tumor growth kinetics of mice treated with PBS (vehicle) or 15mg/Kg
Imetelstat. Each line denotes tumor growth per mouse. Mice were subcutaneously injected with 10,000 neurosphere cells. Imetelstat or PBS were
intraperitoneally injected twice per week 10 days post-implantation for the indicated period of time. Each line denotes tumor growth per mouse. tw/wk,
twice per week. (B), left, representative TRAP gel image showing in-tumor telomerase activity levels in control (PBS, vehicle) and in 10 or 15 mg/Kg of
Imetelstat treated MB004 PDX tumors collected at the end of the study. (-)C and (+) C are the negative and the positive controls of the TRAP assay
respectively. IC, Internal PCR control; telomerase products are indicated. Right, corresponding plot showing quantitation of relative telomerase activity in
two collected tumors. Error bars represent the standard deviation from two independent TRAP assays (C), representative telomere restriction fragment
analysis of MB004 PDX tumors treated with PBS (vehicle) or 15mg/Kg Imetelstat. M, molecular weight marker. Each yellow dot indicates the maximum
intensity of each smear in the respective lane indicative of the mean telomere length. *** p< 0.0002.
A B

D
E

C

FIGURE 2

Prolonged telomerase inhibition leads to sustained telomere shortening. (A), telomerase activity in MB004 cells, untreated and treated with Imetelstat
(IMT) from 0.1 to 2 µM for 3 days, or with 2 mM mismatch (MM, IMT negative control) for 3 days. (-)C and (+)C, TRAP assay negative and positive controls
respectively. IC, indicates internal PCR control. Telomerase products are indicated. (B), TRAP assay evaluating telomerase activity in MB004 cells
untreated or treated with 2 µM Imetelstat (IMT) for 2, 4, and 6 weeks. Wk, week, (-)C and (+)C, TRAP assay negative and positive controls respectively. IC,
indicates internal PCR control. Telomerase products are indicated. (C), telomere restriction fragment analysis of MB004 cells untreated or treated with 2
µM Imetelstat for 2, 4, and 5 weeks. along with positive (+ve) control. M, molecular weight marker with their associated sizes denoted in Kilobases (Kb).
Each red dot denotes the maximum intensity of each smear in the respective lane indicative of the mean telomere length. Table (bottom) shows the
maximum intensity values of the respective wells as indicated. wk, week.(D), representative IF images of MB004 cells untreated and treated with 2 µM
Imetelstat (IMT) for 2 weeks showing TRF2 (green, telomere marker), gH2AX (red, DNA damage marker). White Arrows indicate the colocalization of TRF2
and gH2AX, indicative of telomere dysfunction-induced foci (TIFs, yellow). The percentage of cells with TIFs were quantified. Error bars represent the SD
from two different fields (10-15 cells/field). (E), images of MB004 neurospheres untreated or treated with 2 µM Imetelstat (IMT) for 7 days or cultured in
10% FBS for 4 days as indicated. *p< 0.0332.
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pronounced in IMT+30 Gy group (Figure 4B). In IMT+30 Gy group

30% of the tumors (3 out of 10) showed a delayed recurrence

compared to the 30 Gy tumors (Figure 4B). The IMT treated

tumors were evaluated to confirm the in-tumor telomerase

inhibition (Figure S1). Treatment with IMT and 30 Gy accentuated

telomerase inhibition compared to IMT alone. Interestingly, IR

treatment inhibited telomerase activity as previously shown (25,

26). When the mean tumor volumes were compared, IMT+30 Gy

group showed a better regression curve and a significant delay in the

recurrence (Figure 4C). However, both groups eventually reached

exclusion criteria (due to tumor burden). Importantly, the survival

plot did not reveal any significant improvement of survival benefit in

the IMT+IR groups compared to the IR only (Figure 4D) (20 Gy vs 20

Gy + IMT, p = 0.5685; 30 Gy vs 30 Gy + IMT, p = 0.5500). Together,

these findings do not support the hypothesis that the direct

telomerase inhibition will sensitize cancer cells to IR hence making

radiation more effective at lower doses, thus minimizing the

devastating effects of the radiation therapy.
Discussion

Medulloblastoma (MB) accounts for approximately 25% of all

brain tumors in children. Group 3 MB is refractory to multimodal

therapy and displays the worst prognosis. Radiotherapy is a standard

treatment in older patients with group 3 MB but is rarely curative and

is associated with acute and long-term toxicities. Craniospinal RT, at a

young age leads to devastating neurocognitive decline. Achieving a

cure for children with poor-prognosis MB while minimizing
Frontiers in Oncology 06
radiotherapy-associated sequelae remains a major goal of pediatric

neuro-oncology. Given the role played by telomerase reactivation in

oncogenesis, telomeres and telomerase are relevant therapeutic targets

in children with high-risk brain tumors. With the aim to improve

radiation efficacy and minimizing the associated toxicities, we sought

to sensitize MB tumors to radiation by using a direct telomerase

inhibitor. We found here that IMT, used as a radiosensitizer, had a

limited effect on tumor growth, recurrence, and survival. Similar

results were observed using a murine orthotopic model of human

glioblastoma (27). IMT, is the only telomerase inhibitor tested in

adults and children (9, 28–30). We have conducted the first phase I

and II clinical trials with IMT in children (9, 28). Our phase II clinical

trial of IMT proved intolerable and ineffective in children with

recurrent or refractory CNS malignancies due, at least in part, to

toxicities that prevented more frequent dosing of IMT to allow

sustained inhibition of telomerase (9). Specifically, that there were

two deaths due to intracranial hemorrhage associated with

thrombocytopenia. Importantly, IMT treatment led to in-tumor

inhibition of telomerase activity, indicating that IMT crosses the

blood–brain barrier. Targeting telomerase directly, would result in a

significant lag period from the initiation of treatment until telomeres

shortened sufficiently to reduce tumor burden, while stopping therapy

with IMT would lead to rapid telomere regrowth. Therefore, for these

reasons and based on our present findings, we do not recommend

direct telomerase inhibition as a radiosensitization approach to treat

high-risk pediatric brain tumors. We have tested a new approach of

telomere targeting strategy consisting of the incorporation of 6-thio-2’-

deoxyguanosine (6-thio-dG), a telomerase substrate precursor

nucleoside analogue, into telomeres by telomerase (31). Because this
A

B

D

C

FIGURE 4

Limited effect of Imetelstat treatment combined with radiation in MB004 patient-derived xenografts. (A), schematic diagram summarizing the workflow
of combination treatment with Imetelstat (15mg/Kg) and IR (20Gy and 30Gy). tw/wk, twice per week. (B), Relative tumor volumes (RTV) of MB004 PDX
tumors treated with 20 Gy IR (blue) versus Imetelstat (IMT) + 20Gy IR (black) (upper plot); and 30Gy (red) versus IMT + 30Gy IR (black) (lower plot). Each
line indicates tumor growth per mouse. (C), Average tumor growth kinetics of 30 Gy IR only (red) and IR (30 Gy) + IMT (black) treated mice. The duration
of IR or IMT + IR treatments are indicated. P-value is indicated, * P<0.05. Error bars represent the standard error mean between the tumor sizes from all
the mice in their respective treatment groups, collected at each timepoint. (D), corresponding survival plot of mice treated with vehicle (PBS), IMT, IR
(20Gy or 30Gy), and IMT + IR (20Gy or 30Gy). * p< 0.0332; ** p< 0.0021; *** p< 0.0002, **** p< 0.0001.
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effect appears to be telomere length independent, the prediction using

this novel approach is that treatment with 6-thio-dG will require a

shorter time period to achieve a rapid effect on tumor growth and

progression than direct telomerase inhibition-based therapy (32).We

recently tested the in vitro and in vivo effect of 6-thio-dG in

telomerase-positive stem-like cells derived from poor-prognosis

pediatric brain tumors (18). Treatment with 6-thio-dG induced

persistent telomere dysfunction and cell death within days in all

telomerase-positive cell lines tested. Furthermore, 6-thio-dG crossed

the blood–brain barrier and could specifically targeted tumor cells in

an orthotopic mouse model of diffuse intrinsic pontine glioma,

another deadly tumor in children. Our findings documented that 6-

thio-dG is a promising novel approach to treat therapy-resistant

pediatric brain tumors and provided a rationale for 6-thio-dG

testing as a single agent or in combination with radiotherapy.
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