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Identification of immunotherapy
and radioimmunotherapy
targets on desmoplastic
small round cell tumors

Madelyn Espinosa-Cotton1*, Hong-Fen Guo1, Satish K. Tickoo2

and Nai-Kong V. Cheung1*

1Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States,
2Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
Background: Development of successful antibody-based immunotherapeutic

and radioimmunotherapeutic strategies rely on the identification of cell surface

tumor-associated antigens (TAA) with restricted expression on normal tissues.

Desmoplastic small round cell tumor (DSRCT) is a rare and generally neglected

malignancy that primarily affects adolescent and young adult males. New

therapies capable of treating disseminated disease are needed for DSRCT,

which is often widespread at diagnosis.

Methods: We used immunohistochemistry (IHC) on fresh frozen surgical

specimens and patient-derived xenograft (PDX) tumors and flow cytometry on

DSRCT cell lines to evaluate expression of TAAs in these tumors. In vitro

cytotoxicity assays were used to evaluate the efficacy of T cell-engaging

bispecific antibodies (T-BsAbs) directed at these targets. In vivo, we used an

intraperitoneal xenograft mouse model of DSRCT to test T-BsAbs against several

TAAs.

Results: In DSRCT specimens we found widespread expression of B7-H3, EGFR,

GD2, HER2, mesothelin, and polysialic acid, clinical targets for which specific

antibody therapeutics are available. The expression of B7-H3, EGFR, HER2, and

mesothelin was confirmed on the cell surface of DSRCT cell lines. In vitro

cytotoxicity assays confirmed the efficacy of T cell-engaging bispecific

antibodies (T-BsAbs) directed at these targets against DSRCT cells.

Remarkably, a HER2xCD3 T-BsAb was capable of completely shrinking

established tumors in an intraperitoneal mouse model of DSRCT.

Conclusions: We propose that these TAAs should be further investigated in

preclinical models as targets for immunotherapy and radioimmunotherapy with

the hope of providing a rationale to extend these therapies to patients with

advanced DSRCT.

KEYWORDS

tumor-associated antigen (TAA), immunotherapy, radioimmunotherapy, bispecific
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Background

Immunotherapy and radioimmunotherapy have the potential to

cure advanced cancers. Immune checkpoint inhibitors (ICIs) such as

anti-programmed cell death protein 1 (PD-1)/programmed death-

ligand 1 (PD-L1) and anti-cytotoxic T-lymphocyte-associated protein

4 (CTLA-4) antibodies have revolutionized treatment for

immunologically “hot” tumors including melanoma and have led

to long-term survival for a subset of patients. However,

immunologically “cold” tumors, including most pediatric

tumors, don’t readily respond to ICI monotherapy. Successful

immunotherapeutic strategies for these tumors must be capable of

inducing an immune response in an environment with few functional

tumor-infiltrating immune cells. One notable example of this is the

use of the anti-GD2 monoclonal antibodies (mAbs) dinutuximab

(Unituxin, United Therapeutics) and naxitamab-gqgk (Danyelza, Y-

mAbs Therapeutics) to engage myeloid effectors and natural killer

(NK) cells in high-risk neuroblastoma. Alternative strategies include

bispecific antibodies (BsAbs) and chimeric antigen receptors (CAR)

to redirect polyclonal T cells to kill, as was shown in B cell

malignancies and select solid tumor models. Many of these

approaches against “cold” tumors have been antibody-based. These

immunotherapeutic and radioimmunotherapeutic strategies rely on

the identification of cell membrane-bound tumor-associated

antigens (TAA).

In order to prevent on-target, off-tumor toxicity, these TAA

targets must be restricted in their expression to tumor tissue, with

very limited or no expression in normal tissue. We set out to test a

panel of NCI high priority TAA candidates for immunotherapy in

desmoplastic small round cell tumors (DSRCT), a rare and

understudied malignancy that primarily affects adolescent and

young adult males (1, 2). Current treatment for DSRCT includes

high-dose chemotherapy, whole-abdomen radiation, and surgery,

which are ineffective at curing disseminated disease and lead to

long-term toxicities. Despite this aggressive approach, the five-year

survival rate is 15-30% (3). Developing new strategies to treat

disseminated disease is particularly urgent unmet need for

DSRCT, since the majority of patients already have metastases at

the time of diagnosis, and relapse is common. For these reasons,

identifying appropriate TAA in DSRCT that can serve as targets for

immunotherapy and radioimmunotherapy is timely (4). Here, we

report on tumor expression of TAA in 14 DSRCT surgical

specimens using immunohistochemistry (IHC) with a panel of T
Abbreviations: BsAb, bispecific antibody; CAR, chimeric antigen receptor; CDR,

complementarity-determining region; CTLA4, cytotoxic T-lymphocyte-

associated protein 4; DOTA, dodecane tetraacetic acid; DSRCT, desmoplastic

small round cell tumor; ICI, immune checkpoint inhibitor; IFN-gamma,

interferon gamma; IL-2, interleukin 2; IL-6, interleukin 6; IL-10, interleukin 10;

IL-15/IL-15R-alpha, recombinant interleukin 15/interleukin 15 receptor alpha

complex; mAb, monoclonal antibody; MTD, maximum tolerated dose; NK,

natural killer; OBD, optimum biologic dose; OCT, optimal cutting temperature

compound; PD-1, programmed cell death protein 1; PD-L1, programmed death-

ligand 1; PDX, patient-derived xenograft; SADA, self-assembling disassembling;

T-BsAb, T cell-engaging bispecific antibody; TAA, tumor associated antigen;

TNF-alpha, tumor necrosis factor alpha.
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cell-engaging BsAbs (T-BsAbs) built on the optimized IgG-[L]-scFv

platform for clinical development (5, 6) and confirm the anti-tumor

efficacy of these T-BsAbs in vitro and in vivo.
Methods

Patient tumors

Tumor specimens were collected with consent from patients at

Memorial Sloan Kettering Cancer Center. Specimens were frozen in

Tissue-Tek optimal cutting temperature compound (OCT) (Sakura,

Torrance, CA, USA) and stored at -80°C. The MSKCC institutional

review board (IRB) approved all aspects of the project.
Immunohistochemistry

OCT-embedded tumors were sectioned at 5 μm thickness using

a cryostat and mounted to a glass slide. Slides were stored at -80°C.

On the day of the experiment, the immunohistochemical procedure

was performed as follows. All steps were performed at room

temperature unless otherwise specified. Slides were incubated in a

humidified chamber during steps 5-12. For all washing steps, slides

were dipped 15x in three sequential baths of fresh PBS.
1. Frozen slides were thawed for 30 minutes, fixed in acetone

at -20°C for 30 minutes, then washed.

2. Slides were fixed in 0.1% H2O2 diluted in PBS for 15

minutes, then washed.

3. Each tissue section was circled using a hydrophobic PAP

pen (Abcam, Cambridge, UK).

4. Avidin blocking solution (Vector Laboratories,

Burlingame, CA, USA) was dropped onto each tissue

section sufficient to cover the section and left for 20

minutes, then washed.

5. Biotin blocking solution (Vector Laboratories,

Burlingame, CA, USA) was dropped onto each tissue

section sufficient to cover the section and left for 20

minutes, then washed.

6. 10% horse serum diluted in PBS was added to each tissue

section and left for 45 minutes, then removed by turning

the slide sideways and tapping the side of the slide against

a Kimwipe (Kimberly-Clark, Irving, TX, USA).

7. T-BsAbs were diluted to a concentration of 2 μg/mL in

10% horse serum, added to each tissue section, left for 60

minutes, then washed. (For the CD3 staining, a

commercial murine IgG1 anti-human CD3 antibody

(Stemcell Technologies, Catalog #60011) was used in lieu

of a T-BsAb.)

8. Mouse anti-human OKT3 antibody (BioLegend, San Diego,

CA, USA) diluted in PBS was added to each tissue section at

a concentration of 0.1 μg/mL, left for 30 minutes, then

washed. (For the CD3 staining, this step was omitted.)

9. Biotinylated horse anti-mouse IgG antibody (Vector

Laboratories, Burlingame, CA, USA) diluted in PBS at
frontiersin.org
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Fron
1:500 was added to each tissue section, left for 30 minutes,

then washed.

10. VECTASTAIN El i te ABC peroxidase (Vector

Laboratories, Burlingame, CA, USA) was added to each

tissue section, left for 30 minutes, then washed.

11. DAB substrate (Vector Laboratories, Burlingame, CA,

USA) was added to each tissue section, left for two

minutes, then washed in running water for five minutes.

12. Slides were dipped 10 times in hematoxylin, then washed

in running water for five minutes.

13. Slides were dipped 15 times in 75% ethanol, 15 times in

95% ethanol, then left in 100% ethanol for two minutes.

14. Slides were dipped 15 times in xylene, then left in fresh

xylene for two minutes.

15. Three drops of CytoSeal 60 (Richard-Allen Scientific, San

Diego, CA, USA) were added to each slide and covered

with a glass coverslip.
Scoring of TAA expression

Stained tissue sections were examined and reviewed by a trained

pathologist (Dr. Satish K. Tickoo, MSKCC). Scoring was performed

using a modified H-score with a scoring range of 0 to 300 (7). A

score of zero was assigned for negative or trace staining, 1 for weak

staining, 2 for moderate staining, and 3 for intense staining. Each

intensity score was multiplied by the proportion of the tumor cells

with that intensity, and added together as such:

Modified H − score

= ½(0� % score 0) + (1  � % score 1)

+ (2 � % score 2) + (3 � % score 3)�
Generation of T-BsAbs

T-BsAbs were generated as previously described (8). Briefly, the

IgG-[L]-scFv format used for the T-BsAbs consists of a huOKT3

scFv fused to the c-terminus of the light chain of human IgG1. The

T-BsAbs differ in their complementarity-determining regions

(CDRs) of IgG1, which confer specificity for each particular TAA.

The parental antibody clones used to design CDRs of each T-BsAb

are as follows: B7-H3 – 8H9; c-MET – onartuzumab; CD19 –

FMC63; EGFR – C225 (cetuximab); GD2 – 3F8; HER2 – 4D5

(traztuzumab); L1CAM – CE7; mesothelin – MORAb-009;

polysialic acid – HP35; PSMA – J591.
Cell culture

JN-DSRCT-1 cells were a gift from the late Dr. William L.

Gerald (MSKCC). BER cells were a gift from Dr. Emily Slotkin
tiers in Oncology 03
(MSKCC). SK-DSRCT-2 cells were a gift from Dr. Marc Ladanyi

(MSKCC). All cell lines were cultured in RPMI 1640 medium

containing L-glutamine (Corning Scientific, Corning, NY, USA)

with 10% fetal bovine serum (Gibco, Gaithersburg, MD, USA) and

1% penicillin/streptomycin (Gibco, Gaithersburg, MD, USA). Cells

were incubated at 37°C with 5% CO2 and passaged two or three

times per week.
Luciferase transduction

A six-well plate was coated with retronectin (20 mg/mL) and

incubated overnight at 4°C. Retronectin was aspirated, 3 mL 2% BSA

in PBS was added per well, and the plate was incubated for 30°

minutes at room temperature. BSA was aspirated and wells were

washed once with PBS. 3 mL supernatant from a click beetle red

luciferase/tdTomato retrovirus (kindly provided by Vladimir

Ponomarev [MSKCC]) was added to each well and the plate was

centrifuged at 1240 x g for 90 minutes at 32°C. Viral supernatant was

aspirated and 300,000 BER DSRCT cells were added per well. The

plate was checked daily and cells were trypsinized and removed two

days later when they reached ~80% confluency. Transduction was

confirmed by assessing fluorescence of the red fluorescent protein

tdTomato by flow cytometry and by incubating the transduced BER

cells (BER-luc cells) with D-luciferin (GoldBio, St. Louis, MO, USA)

and measuring luminescence using a Synergy H1Hybrid multi-mode

microplate reader (Biotek, Winooksi, VT, USA).
Flow cytometry

1,000,000 DSRCT cells per well were plated in a 96-well, U-

bottom plate and incubated with T-BsAbs (10 μg/mL) in 100 μL cell

culture media at 4°C for 60 minutes. Cells were washed twice with

PBS, resuspended with PE-conjugated mouse anti-human IgG Fc

antibody (BioLegend, San Diego, CA, USA) diluted 1:500 in PBS,

and incubated at 4°C for 30 minutes. Cells were washed twice more

in PBS, resuspended in 50 μL per well PBS, and flow cytometry was

performed using an Attune NxT Flow Cytometer (Thermo Fisher

Scientific, Waltham, MA, USA). Data was analyzed using FlowJo

software (FlowJo LLC, Ashland, OR, USA).
Cytotoxicity assays

Standard chromium-release assays were performed to assess

cytotoxicity as previously described (9). Briefly, DSRCT cells were

incubated with 51Cr chromate (Amersham Biosciences, Arlington

Heights, IL, USA) for one hour, washed, and plated in 96-well, U-

bottom plates. BsAbs and activated human T cells were added and

plates were incubated for four hours at 37°C. Plates were

centrifuged at 400 x g for five minutes. A gamma-counter

(Packard Bioscience Company, Downers Grove, IL, USA) was

used to measure radiation in supernatant.
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In vivo experiments and animal care

Animal studies were conducted in accordance with Institutional

Animal Care and Use Committee guidelines, under protocol 09-05-

010 . S ix to e igh t -week-o ld ma le CIEA BRG C.Cg-

Rag2tm1FwaIL2rgtm1Sug/JicTac mice (Taconic Inc., Hudson, NY,

USA) were housed in pathogen-free rooms in MSKCC’s Research

Animal Resource Center (RARC) and fed chow containing

sulfamethoxazole and trimethoprim (Sulfatrim). Mice were

injected intraperitoneally (IP) with 2 x 106 BER-luc or JN-

DSRCT-1-luc DSRCT cells in 200 μL PBS in the lower right

quadrant of the abdomen near the midline. Initially, 5 mice per

experimental group were injected with tumor cells based on

previous experiments conducted using T-BsAbs in our lab that

suggest this sample size would be sufficiently large enough to

determine statistically significant differences in treatment efficacy.

Tumors were detectable using an IVIS Spectrum in vivo imaging

system (PerkinElmer, Waltham, MA, USA) one to two weeks after

injection, at which time mice were randomized by tumor size into

treatment groups. For tumor imaging, mice were anesthetized using

isoflurane, injected retro-orbitally with 100 μL D-luciferin (30 mg/

mL) and placed supine in the imager. Not all the mice in the

experiment using JN-DSRCT-1-luc cells developed tumors. Mice

that had no detectable tumor signal on day 20 were not included in

the experiment. Mice were treated once weekly with 20 x 106

activated human T cells injected retro-orbitally, twice weekly with

BsAbs injected IP, and once weekly with recombinant human IL-

15/IL-15R-alpha injected SC (10). BsAbs were prepared as

previously described (11, 12). Tumor growth was monitored once

weekly using the IVIS Spectrum in vivo imaging system. All mice

that were randomized into treatment groups at the beginning of the

experiments were included in the data analyses. All cages within an

experiment were housed on the same rack in the same room of

MSKCC’s RARC. The order of treatments and imaging was varied

from week to week to minimize potential confounding. Because one

person was responsible for the execution and data analysis of these

experiments, blinding was not possible.
Frontiers in Oncology 04
ELISAs for cytokines

DuoSet enzyme-linked immunosorbent assays (ELISAs) were

purchased from R&D Systems (Minneapolis, MN, USA). Blood was

collected from mice 24 hours after the first administration of

activated human T cells and BsAbs, centrifuged at 2000 x g for 10

minutes, and serum was removed and frozen at -80°C for later use.

On the day the ELISA assays were performed, serum was thawed at

room temperature and diluted 1:10 with reagent diluent. Assays

were performed according to manufacturer’s instructions.
Statistical analysis

Statistical analysis was performed using Graphpad Prism software.

One-way ANOVAwith Dunnett’s multiple comparison tests were used

to compare areas under the curve for tumor growth experiments and

cytokine secretion in ELISA experiments. P values < 0.05 were

considered statistically significant.
Results

DSRCT expresses known clinical targets for
immunotherapy and radioimmunotherapy

Tumor specimens were collected from DSRCT patients

undergoing surgery at MSKCC. 14 were randomly chosen from a

list of 63 archived samples with intact histology. Figure 1 shows

demographic and tumor site information on these patients. 13 of

the patients were male and one was female. The median age of all

patients at the time of surgery was 16.6 years, the mean was 17.2

years, and the age range of all patients was 3-31 years. For

specimens with tumor site information, the majority were found

within the abdomen and pelvis, with one each in the

retroperitoneum and the thorax. The characteristics of this

sample set of tumors is representative of DSRCT tumors in
A B C

FIGURE 1

Demographic characteristics of DSRCT patients. (A) Biological sex of patients. (B) Ages of patients at the time of surgery to remove the tumor
specimen used in IHC experiments. (C) Anatomical site of the tumor specimen resected during surgery and used in IHC experiments. N = 14.
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general, which are most commonly found in the abdomen or pelvis

of adolescent and young adult males (13, 14).

IHC was performed to evaluate the expression of known TAA

targets for immunotherapy and radioimmunotherapy including

B7 homolog 3 (B7-H3) (15, 16), c-Met (17, 18), epidermal growth

factor receptor (EGFR) (19, 20), GD2 (21), human epidermal

growth factor receptor 2 (HER2) (22), L1 cell adhesion molecule

(L1CAM) (23, 24), mesothelin (25, 26), polysialic acid (27), and

prostate-specific membrane antigen (PSMA) (28) using target-

selective antibodies built using a IgG-[L]-scFv T-BsAb format as

previously outlined (5, 9, 11, 12, 29, 30). IHC using commercial

antibodies against human CD3 revealed very few CD3-positive

cells (T cells) in the tumors which were almost uniformly

restricted to the stroma and absent from the nests of tumor

cells (Figure 2). This is consistent with other reports describing

DSRCT as an immunologically “cold” tumor (31–33).

Importantly, these findings mean that the results of our

staining with the IgG-[L]-scFv T-BsAbs are not confounded by

the anti-CD3 scFv binding T cells in the tumor, and instead

reflect expression of TAAs only. Figure 2 shows examples of weak

(score 0-100), moderate (score 101-200) and strong (score 201-

300) staining for each antigen. B7-H3, EGFR, GD2, HER2,

mesothelin, and polysialic acid exhibited clear membrane

staining with the moderate and strong staining tumors also

exhibiting some cytoplasmic staining. In general, there is

heterogeneity among tumors for all the TAAs studied. Mean

score was lowest for L1CAM followed by c-MET, and EGFR. Four

of the antigens examined (B7-H3, GD2, HER2, and mesothelin)

had mean scores in the moderate range (Figure 3A). This staining

strategy was repeated on a group of eight DSRCT patient-derived

xenograft tumors with similar results (Figure 3B).
Expression of immunotherapy and
radioimmunotherapy targets on DSRCT
cell surface

In order for BsAb-based immunotherapy or radioimmunotherapy

to be effective, TAAs must be expressed on the cell surface. To

determine whether this was the case for our TAAs, we performed

flow cytometry to assess binding of T-BsAbs to DSRCT cell lines. The

cells were not permeabilized and therefore BsAb binding could only

occur with targets expressed on the outer surface of the cell membrane.

Figure 3C shows binding of B7-H3, EGFR, GD2, HER2, L1CAM, and

mesothelin in at least one of three DSRCT cell lines. B7-H3 showed

high cell surface expression in all three cell lines, while expression of

EGFR, HER2, and mesothelin, were detected at lower levels in all cell

lines tested. GD2 and L1CAM were detectable on the surface of one or

two cell lines, respectively, but not all three. There was no expression of

c-MET or polysialic acid on any of the three DSRCT cell lines tested.

The lack of cell surface c-MET expression was consistent with IHC

results in Figure 2. Although polysialic acid was found on the surface of

DSRCT patient tumor specimens (Figures 2 and 3A), it were absent

from all three cell lines tested. Outgrowth in vitro of clones missing

polysialic acid with proliferative advantage could explain

these differences.
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In vitro cytotoxicity of T-BsAbs against
DSCRT cell lines

One way to assess the ability of T-BsAbs to engage cytotoxic T

cells and kill tumor cells is by using in vitro cytotoxicity assays. We

performed standard chromium-release assays using T-BsAbs

directed against our TAAs of interest and activated human T cells
FIGURE 2

Representative IHC images of DSRCT tumor specimens. Images were
taken of DSRCT specimens stained with T-BsAbs (specific BsAb
indicated on the left of the images) or commercial anti-human CD3
antibody and scored with a modified H-score system. Specimens
deemed to have weak or no staining had H-scores between 0 and
100, specimens deemed to have moderate staining had H-scores
between 101 and 200, and specimens deemed to have strong staining
had H-scores between 201 and 300. If a representative image is
missing from the moderate or strong staining categories, this indicates
that no specimens stained in this range for this particular target.
Arrows indicate CD3+ cells in the stroma.
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in culture with three DSRCT cell lines. Figure 4 shows that the T-

BsAbs specific for B7-H3, EGFR, and HER2 were highly cytotoxic

in all three cell lines. The mesothelin T-BsAb was moderately

cytotoxic in the JN-DSRCT-1 and BER cell lines and highly

cytotoxic in the SK-DSRCT-2 cell line. The GD2 T-BsAb showed

minimal cytotoxicity at high concentrations, consistent with the low

level of GD2 expression on the surface of these cell lines. The c-

MET, L1CAM, and polysialic acid T-BsAbs exhibited no or very

little cytotoxicity, even at high concentrations. In general, the level

of TAA cell surface expression (shown in Figure 3C) correlated with
Frontiers in Oncology 06
the level of in vitro cytotoxicity mediated by the corresponding

T-BsAbs.
In vivo efficacy of T-BsAbs against
intraperitoneal DSRCT xenografts

While several of our T-BsAbs were able to engage T cells to

destroy tumor cells in vitro, the ability to do so in vivo should

greatly enhance their clinical relevance. To determine in vivo anti-
A B C

FIGURE 3

Expression of target antigens in DSRCT specimens, PDX, and cell lines. (A) 14 DSRCT specimens were scored for the intensity of staining for each
target antigen using a modified H-score system. The scores are plotted individually with dots. The bar shows the mean of the scores of the
specimens for that particular target antigen. (B) Scores of PDX specimens. (C) Three DSRCT cell lines (JN-DSRCT-1, BER, and SK-DSRCT-2) were
incubated with T-BsAbs specific for the target antigens of interest. Flow cytometry was performed to measure binding of the BsAbs to the surface of
the cells. GMFI = geometric mean fluorescence intensity. Error bars indicate standard error of the mean. N = 14.
A B

C

FIGURE 4

In vitro cytotoxicity of BsAbs incubated with DSRCT cells and activated human T cells. Chromium-release assays were performed on cells from three
DSRCT cell lines (JN-DSRCT-1 [A], BER [B], and SK-DSRCT-2 [C]) incubated with different concentrations of T-BsAbs and activated human T cells.
All assays were performed a minimum of three times per cell line. Representative plots are shown. N = three technical replicates per data point.
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tumor efficacy we tested the EGFR (n=4), HER2 (n=4), and

mesothelin (n=3) T-BsAbs in an intraperitoneal model of DSRCT

(JN-DSRCT-1-luc), which more closely recapitulates human disease

than a standard flank xenograft. Mice in these treatment groups

were engrafted with human activated T cells (ATC) and given

recombinant human IL-15/IL-15R-alpha to support T cell survival

in vivo. ATC only (n=2) and irrelevant T-BsAb + ATC (CD19xCD3

BsAb, n=5) groups were included as negative controls. Figures 5A

(showing comparisons between groups of 2-5 mice each) and 5C

(showing tumor growth for all 18 mice individually) show that only

the HER2 T-BsAb was able to control tumor growth (p = 0.02

compared to ATC only group). The EGFR T-BsAb performed no

better than ATC alone (p = 0.28), and the mesothelin T-BsAb-

treated group had one tumor that began to regress around day 40

but ultimately did not statistically differ from the ATC only group

(p = 0.09). The HER2 T-BsAb completely ablated tumors by day 27

after tumor implantation, one week after treatment began

(Figure 5D). The lack of in vivo anti-tumor efficacy by EGFR and

mesothelin T-BsAbs despite their in vitro potency was surprising

although similar negative results have been seen with other tumor

targets, such as B7-H3 (data not shown). This discordance could

result from position of the epitope being too distal from the cell

membrane, insufficient antigen density or antibody affinity (34, 35).

The mice did not lose weight during treatment (Figure 5B) and did

not show any of sign of clinical toxicity until around day 60 when

signs of graft versus host disease (GVHD - hair loss, skin reddening,

weight loss) appeared, at which point the experiment was

terminated and the animals were euthanized. This is a known

consequence of engrafting activated human T cells into

immunocompromised mice.
In vivo efficacy of a HER2xCD3 T-BsAb
against aggressive intraperitoneal
DSRCT xenografts

After observing the striking efficacy of the HER2 T-BsAb

against JN-DSRCT-1-luc xenografts, we sought out to evaluate

the efficacy of this T-BsAb in a faster-growing model of DSRCT

(BER-luc). In this experiment, average total flux (photons/second)

was around 106 cells for BER-luc tumors at the beginning of

treatment, versus 104 cells with JN-DSRCT-1-luc in the previous

experiment (Figures 5A and 6A). A total of 30 mice were used in

this experiment. Four dose levels of HER2 T-BsAb were tested (0.3,

1, 3, and 10 mg per dose, n=5 mice per treatment level) and all

tumors treated with at least 1 mg/dose began to shrink after the

second injection of ATC and third dose of BsAb (Figures 6A).

Figure 6C shows the tumor growth of each individual mouse. No

treatment and irrelevant T-BsAb + ATC groups (CD19xCD3 BsAb)

were included as negative controls (n=5 mice each). The lowest dose

of HER2 T-BsAb had no effect on tumor growth at any point during

the experiment compared to the negative control untreated group

(p = 0.99). The two intermediate dose levels (1 mg and 3 mg/mouse)

completely ablated tumors by day 49 after tumor implantation (p =

0.03 and 0.07, respectively, vs no treatment control), with no

luciferase signal detectable by day 49 (Figure 6D). The highest
Frontiers in Oncology 07
dose level (10 mg/mouse) also shrunk established tumors (p = 0.04

vs no treatment control), however, 3/5 mice in this group still had

detectable luciferase signal in their abdomens on day 49. None of

the mice exhibited signs of toxicity and no significant weight loss

was observed (Figure 6B). Around day 50 the mice treated with

ATC began to exhibit signs of GVHD at which point the experiment

was terminated and the animals were euthanized.
Effects of T-BsAbs on cytokine secretion
from human T cells in vivo

In an effort to evaluate the effects of different doses of HER2 T-

BsAb on the activity of T cells in vivo, blood was taken from the

mice 24 hours after the first administration of T-BsAbs and

activated human T cells and ELISAs were performed on the

serum. Interferon gamma (IFN-gamma) was detected in the

blood of all mice treated with HER2 T-BsAb in a dose-

dependent trend (Figure 7D). The overall levels of interleukin 2

(IL-2) were low and near the limit of detection for the assay,

though IL-2 in the 10 mg HER2 T-BsAb group was significantly

higher compared to the untreated group (p = 0.026) (Figure 7A).

Only two mice, one in each of the highest dose groups, had

detectable interleukin-6 (IL 6) in their serum at this timepoint

(Figure 7B). Interleukin 10 (IL-10) was detectable in many of the

mice treated with HER2 T-BsAb but was highest in the two

highest dose groups (Figure 7C), with the 3 mg group being

significantly higher compared to the no treatment control (p =

0.0003) and the 10 mg group approaching significance (p = 0.05).

IFN-gamma was significantly elevated in the 1 mg, 3 mg, and 10 mg
groups (p = 0.0016, 0.0006, and <0.0001, respectively). Finally,

tumor necrosis factor alpha (TNFa) was significantly upregulated
in the 10 mg HER2 T-BsAb group compared to the untreated

control (p = 0.0039) (Figure 7E). It was detected at high levels in 3/

5 mice in the 10 mg HER2 T-BsAb group but only detectable at

very low levels in two other mice in different groups (Figure 7E).

TNFa has been described as the “master of T cell exhaustion” and

has been shown to influence T cells towards an exhausted

phenotype (36). This finding may explain why 10 mg HER2 was

less effective than 1 mg or 3mg. This phenomenon has been noted

by other researchers studying biologic drugs and is the basis for

the rational move away from determining the maximum tolerated

dose (MTD) in early stage clinical trials and towards instead

identifying the optimum biologic dose, which may well be lower

than the MTD (37).
Discussion

The results of our IHC staining in a panel of 14 DSRCT surgical

specimens supports the findings previously reported by our lab and

others (16, 38–40) that B7-H3 and GD2 are expressed in DSRCT in

both the cell membrane and stroma (16, 38, 39). Using a semi-

quantitative scoring system, B7-H3 and GD2 were both abundant in

DSRCT surgical specimens and PDXs. Furthermore, our work

confirms previous reports in the literature of EGFR, HER2, and
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FIGURE 5

In vivo efficacy of T-Bsabs against intraperitoneal JN-DSRCT-1-luc xenografts. 25 mice (five per treatment group) were injected intraperitoneally
with 2 x 106 JN-DSRCT-1-luc cells stably transduced with luciferase. Two weeks after injection, tumor establishment was evaluated using an IVIS
bioluminescent imager. Mice with visible tumors were treated intravenously with activated human T cells (ATC) once weekly, intraperitoneally with
T-BsAbs twice weekly, and subcutaneously with recombinant human IL-15/IL-15R-alpha once weekly. Mice without any visible tumors two weeks
after injection were excluded from treatment. A group treated with an irrelevant BsAb (CD19xCD3 BsAb), activated human T cells, and IL-15/IL-15R-
alpha was included as a negative control. Tumor growth was monitored weekly using bioluminescent imaging. (A) Plot of mean total flux (photons/
second), indicating tumor size. (B) Plot of weight of mice in each group. (C) Plots of each treatment group showing individual mice. Error bars
indicate standard error of the mean. (D) Mice were injected retro-orbitally with 50 mL D-luciferin (30 mg/mL) one minute before imaging,
anesthetized with isoflurane, and situated in a supine position. A 10 second exposure was used for all images and other parameters are identical in
all images to allow comparison across groups and timepoints. N = two to five mice per group. * = p < 0.05.
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mesothelin expression in smaller sample sets of DSRCT specimens

assayed by IHC (41–43).

We have previously described BsAbs for targeting T cells and

radioisotope using this panel of TAAs in other solid tumors (5, 8, 11,

12, 30, 44–46). Before applying these BsAbs to DSRCT, IHC was
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used to confirm their membrane expression. Once extracellular

expression of TAAs is confirmed, both immunotherapy and

radioimmunotherapy can be exploited. One important finding

among the panel of DSRCT was the near absence of CD3+ T cells

(Figure 2), which is typical for immunologically “cold” tumors, such
A B
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D

FIGURE 6

In vivo efficacy of a HER2 T-BsAb against intraperitoneal BER-luc xenografts. Mice were injected intraperitoneally with a DSRCT cell line stably
transduced with luciferase (BER-luc). Tumor growth was monitored with an IVIS bioluminescent imager. Mice were treated intravenously with activated
human T cells once weekly, intraperitoneally with T-BsAbs twice weekly, and subcutaneously with recombinant human IL-15/IL-15R-alpha once weekly.
An untreated group (no treatment) and a group treated with an irrelevant BsAb (CD19xCD3), activated human T cells, and IL-15/IL-15R-alpha
(CD19xCD3) were included as controls. (A) Plot of mean total flux (photons/second), indicating tumor size. (B) Plot of weight of mice in each group.
(C) Plots of each treatment group showing individual mice. Error bars indicate standard error of the mean. (D) Mice were injected retro-orbitally with 50
mL D-luciferin (30 mg/mL) one minute before imaging, anesthetized with isoflurane, and situated in a supine position. A 10 second exposure was used
for all images and other parameters are identical in all images to allow comparison across groups and timepoints. N = five mice per group. * = p < 0.05.
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as most solid pediatric tumors. The absence of CD3 positivity allows

us to use T-BsAb in IHC without the concern of nonspecific

background staining. Once TAA expression is confirmed in human

specimens, these targets can now be exploited for treatment with IgG,

T-BsAb, DOTA-BsAb, or CAR constructs. One DSRCT patient

included in a basket trial for HER2-positive sarcomas had stable

disease for 14 months following treatment with HER2 CAR T cells

(47). As molecular profiling of tumors becomes more commonplace

clinicians should be able to direct patients to basket trials using these

types of immunotherapeutic strategies. This could especially benefit

DSRCT patients, whose tumors are so rare that few clinical trials exist

for them specifically. One clinical trial that did enroll DSRCT patients

specifically evaluated the safety of intraperitoneal 131I-8H9, a

radioiodinated anti-B7-H3 antibody (48). This therapy was shown

to be safe and well-tolerated and has since progressed to Phase II.

Another type of radioimmunotherapy, a three-step pre-targeted

radioimmunotherapy (PRIT) system, has been successfully applied

using the same IgG-[L]-scFv platform as our T-BsAbs (45). More

recently, the self-assembling disassembling (SADA) 2-step PRIT

system was successfully employed to deliver ablative doses of beta-

emitters or alpha-emitters without any evidence of myelosuppression,
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nephrotoxicity, neurotoxicity, or hepatotoxicity (49). These PRIT

strategies have increased therapeutic indices to levels not previously

possible, allowing high radiation doses to be delivered to the tumor

with minimal off-tumor effects compared to traditional radio-

conjugated antibodies.

Another recent development in immunotherapy and

radioimmunotherapy is the use of compartmental (e.g.

intraperitoneal) delivery. By delivering the agent intraperitoneally it

is possible to achieve high tissue levels restricted to body

compartments while sparing systemic exposure, decreasing the on-

target, off-tumor toxicities often encountered with IgG

radioimmunoconjugates. This strategy was employed in the 131I-

8H9 clinical trials. DSRCT is particularly well-suited for

compartmental therapy due to its propensity to spread within the

peritoneal cavity. Here, we demonstrated the efficacy of delivering T-

BsAbs intraperitoneally against DSRCT IP xenograft tumors. While

the HER2xCD3 T-BsAb was effective at ablating established DSRCT

xenografts, this strategy may prove less effective in human patients,

whose tumors tend to be much more heterogenous than cell line-

derived xenografts. For T-BsAbs, employing a dual-target approach

may overcome tumor heterogeneity while also increasing the potency
A B

D E
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FIGURE 7

Serum cytokine levels in mice treated with HER2xCD3 BsAb. 24 hours after the first injection of activated human T cells and T-BsAbs, blood was
collected from mice retro-orbitally. Serum was separated and assayed for the presence of human cytokines ([A] IL-2, [B] IL-6, [C] IL-10, [D] IFN-
gamma, [E] TNF-alpha) using ELISA kits. Values from individual mice are plotted using dots and the mean of each group is plotted using a bar. Error
bars indicate standard error of the mean. N = five mice per group. * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001 ns, not significant.
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against tumor cells and reducing bystander side effects. For

radioimmunotherapy, using beta-emitters (which have longer

[mm] path lengths than alpha emitters) may be employed to

overcome heterogeneity.
Conclusions

In summary, we have identified several TAAs that are highly

expressed in DSRCT. T-BsAbs directed against these TAAs were

effective at directing T cell to kill tumor cells in vitro, and one T-

BsAb (HER2xCD3) was remarkably effective at ablating established

and disseminated IP xenografts in vivo. We propose that these

TAAs should be further investigated in preclinical models as targets

for immunotherapy and radioimmunotherapy with the hope of

providing a rationale to extend these therapies to patients with

advanced DSRCT.
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