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Objectives: To objectively and accurately assess the immediate efficacy of

radiofrequency ablation (RFA) on colorectal cancer (CRC) lung metastases, the

novel multimodal data fusion model based on radiomics features and clinical

variables was developed.

Methods: This case-control single-center retrospective study included 479 lung

metastases treated with RFA in 198 CRC patients. Clinical and radiological data

before and intraoperative computed tomography (CT) scans were retrieved. The

relative radiomics features were extracted from pre- and immediate post-RFA CT

scans by maximum relevance and minimum redundancy algorithm (MRMRA). The

Gaussian mixture model (GMM) was used to divide the data of the training dataset

and testing dataset. In the process of modeling in the training set, radiomics model,

clinical model and fusion model were built based on a random forest classifier.

Finally, verification was carried out on an independent test dataset. The receiver

operating characteristic curves (ROC) were drawn based on the obtained

predicted scores, and the corresponding area under ROC curve (AUC), accuracy,

sensitivity, and specificity were calculated and compared.

Results: Among the 479 pulmonary metastases, 379 had complete response (CR)

ablation and 100 had incomplete response ablation. Three hundred eighty-six

lesions were selected to construct a training dataset and 93 lesions to construct a

testing dataset. The multivariate logistic regression analysis revealed cancer

antigen 19-9 (CA19-9, p<0.001) and the location of the metastases (p< 0.05) as

independent risk factors. Significant correlations were observed between

complete ablation and 9 radiomics features. The best prediction performance

was achieved with the proposed multimodal data fusion model integrating

radiomic features and clinical variables with the highest accuracy (82.6%), AUC

value (0.921), sensitivity (80.3%), and specificity (81.4%).
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Conclusion: This novel multimodal data fusion model was demonstrated efficient

for immediate efficacy evaluation after RFA for CRC lung metastases, which could

benefit necessary complementary treatment.
KEYWORDS

computed tomography (CT), radiomics, clinical variables, colorectal cancer, lung
metastasis, radiofrequency ablation (RFA), efficacy evaluation
Introduction

Colorectal cancer (CRC) is one of the most common malignant

tumors and a leading cause of cancer-related mortality worldwide (1).

About 25% of CRC patients present with distant metastases at the

time of initial diagnosis, with the most common sites including liver

and lung (2, 3). In addition, patients with rectal cancer are more likely

to have lung metastases because of anatomical differences (4, 5).

However, not all patients meet the criteria for surgical resection due to

lesion location, tumor burden, comorbidity, or the presence of extra-

pulmonary disease. For this group, thermal ablation, including

radiofrequency (RFA) or microwave (MWA), is considered a safe

alternative (6).

RFA has been proven safety and efficacy in lung metastases from

CRC (7–9). However, there is no pathological histological evidence of

complete ablation after RFA, and recent studies demonstrated that the

incomplete RFA promoted increased tumorigenesis (10) and

hindered the efficacy of anti-programmed cell death protein-1

immunotherapy (11). In addition, the existence of remnant tumor

masses was associated with earlier new metastases and poor survival

(11). Therefore, it is crucial to clarify the local recurrence factors and

assess the early-stage efficacy. To achieve complete ablation of lung

cancer, any peritumoral lung parenchyma within 5 to 10 mm needs to

be ablated (12–14). This area presents as necrosis, effusion and

congestion from the inner zone to the outer zone on

histopathology, accordingly (15), and manifests as ground-glass

opacity (GGO) on CT, which is the typical post-ablation

presentation and the crucial area in the early assessment after RFA

(16). Previous studies based on the morphological changes of

unenhanced CT found that the size of GGO was associated with

residual tumor and recurrence (17, 18). However, intraoperative

complications such as intra-alveolar hemorrhage (IAH) or

atelectasis, make it impossible to determine the extent of ablation

(9, 12, 19, 20). Therefore, the observation and measurement of the

intraoperative GGO range to ascertain whether ablation is complete is

subjective and uncertain as such an approach is easily influenced by

doctors with differences experience.

The modified response evaluation criteria in solid tumors

(mRECIST) are used to evaluate the efficacy of lung tumor ablation

(21–23). However, the inflammatory response surrounding the lesion

make it difficult to clearly evaluate the early efficacy. The lesions do

not stabilize or shrink until at least six months after ablation,

eventually manifesting in the form of disappearance, fibrosis,

nodules, and cavities (24, 25). This time-lapse evaluation method
02
may also result in a missed opportunity for the optimal

complementary therapy for patients, thus affecting their survival

benefits. Therefore, there is an urgent need for objective and

reliable characteristic metrics or models to evaluate the immediate

ablative efficacy of RFA for pulmonary metastases.

Radiomics can mine high-dimensional quantitative imaging

features of medical images, which contain information related to

tumor heterogeneity and microenvironment (26–29), allowing for

more accurate quantification of phenotypic features and assessment

of treatment response (30–33). Radiomics analysis includes target

lesion segmentation, feature extraction, machine learning classifier

training, and performance evaluation (34–36). However, the

radiomics feature analysis approach just takes full advantage of a

single mode of radiological data which is incomplete and noisy whilst

ignoring other modalities data, such as histopathology, genomics, or

clinical information, leaving multimodal data integration relatively

underdeveloped (37).

In this study, we developed novel multimodal data fusion models

integrating radiomics features based on radiological data with clinical

variables originating from textual data to assist interventional

physicians in evaluating the immediate efficacy of RFA for CRC

lung metastases, so as to make necessary supplementary treatment

during operation.
Materials and methods

Data collection

CRC patients with lung metastases who underwent percutaneous

RFA under CT guidance between August 2016 and January 2019 were

enrolled in this study. Patients were recruited based on the following

eligibility criteria: (1) histologically confirmed CRC; (2) ablated lung

metastases with maximum diameter ≤3 cm; (3) chest enhanced CT

examination within 4-6 weeks before RFA; (4) complete CT images

during the procedure; (5) re-examination by chest enhanced CT at

least 6 months after RFA; (6) technically successful ablation; (7)

adequate normal organ function. Exclusion criteria, based on the

European Society for Medical Oncology (ESMO) guidelines (38)

were: (1) > 5 lung metastases; (2) maximum diameter > 3 cm; (3)

other local or regional treatments such as radiotherapy before or after

RFA; (4) incomplete clinical data; (5) second ablation (i.e., re-

ablation). We allowed the inclusion of patients with multiple

nodules and analyzed each nodule individually. A cohort of 198
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patients with 479 lung metastases who received RFA was

retrospectively selected (Figure 1).

The following clinical data were retrieved: age at diagnosis,

gender, serum tumor markers, including carcinoembryonic antigen

(CEA) and cancer antigen 19-9 (CA19-9). The radiological data were

recorded as follows: the location of pulmonary metastases, proximity

to the heart, great blood vessels (diameter > 3 mm), pleura or

diaphragm (within 1 cm) through the preoperative CT images; the

IAH or pneumothorax were acquired.

All CT examinations (United Imaging uCT 760, Shanghai

United Imaging Medical Technology Inc., China and Philips

Brilliance 64 slice, Philips Medical Systems Inc., USA) were

performed with a fixed tube current of 200 mA and a tube

voltage of 120 kVp. The pixel spacing ranged from 0.684 to 0.748

mm, and the slice thickness was 1 mm or 1.5 mm. The

intraoperative CT images were of fixed tube current of 200 mA,

tube voltage of 120 kVp, and slice thickness of 1 mm or 3 mm. The

image reconstruction method of both CT scanners is iterative

reconstruction. Radiological follow-up consisted of chest-

enhanced CT scans performed at 1, 3, 6, 12 months, and every 6

months after that. The shortest follow-up time was over 6 months.

This study was approved by the Institutional Review Board of the

Ethics Committee of Fudan University Shanghai Cancer Center.

Written informed consent was obtained from all patients.
RFA procedures and local
efficacy assessment

RFAmainly utilizes 460 ~ 480 kHz high-frequency current to heat

a tissue volume around a needle electrode and induce focal

coagulative necrosis with minimal injury to surrounding tissues (39,

40). Here, RFA was performed using a radiofrequency applicator

(MedSphere International), with the mode of temperature control or

impedance control for choice. The power settings were adjusted

according to the manufacturer’s protocols: 5 min for a 2.0 ~ 2.5 cm
Frontiers in Oncology 03
active tip at 30 W, 8 min for a 3.0 ~ 3.7 cm active tip at 50 W, and 10

min for a 4.0 ~ 4.7 cm active tip at 60 W, respectively.

All the operations were performed by three senior interventional

radiologists (L.X., Y.W. and X.H. with over 10 years of experience in

thoracic interventions under CT guidance). Depending on the

location of the target nodules, patients were placed in a prone

position, lateral position or supine position to ensure the best

puncture site and entry route and avoid important structures,

including ribs, interlobular fissures, and blood vessels. Lidocaine

was administered at the puncture site to induce local anesthesia of

the pleura. With CT monitoring, the radiofrequency electrode was

punctured according to the predetermined direction and angle. The

ablation was not performed until the CT scan confirmed that the

electrode hooked the lesion. Considering tumor shape and size, one or

two needle ablations with a constant antenna position were usually

acceptable to achieve complete ablation. The operators strived to

achieve ablation range greater than the lesions by at least 5 mm. If the

intraoperative complications such as intra-alveolar hemorrhage

(IAH) or atelectasis, made it impossible to determine the extent of

ablation, at least 2 cycles of ablation would be performed to raise the

impedance until ablation stopped. After completion of the RFA

session, the ablation electrode was withdrawn, and a repeat CT

(same parameters) scan was performed to evaluate whether the

ablation zones covered the tumor and the occurrence of ablation-

related complications, mainly including pneumothorax

and hemorrhage.

Local efficacy was assessed by two radiologists who were blind to

clinical data (H.C. and H.H. with over 5 years of experience) through

chest enhanced CT examination at least 6 months after RFA

according to mRECIST criteria (24, 41). If they had disagreements,

it would be determined in consultation with the senior expert (W.L.

with over 20 years of experience). The follow-up CT examination one

month after ablation was taken as the baseline (42). Based on the

mRECIST criteria, CR was defined if any of the following

manifestations on CT were seen: the disappearance of the lesion,

cavity, fibrosis or nodule without enhancement. If two consecutive CT
FIGURE 1

Study flow chart. CRC, colorectal cancer; CR, complete response; Non-CR, Non-complete response.
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examinations demonstrated the target lesions had irregular

enlargement or enhanced solid components, they were classified as

a non-complete response (non-CR).
Pre-processing of CT images, radiomics
feature extraction, selection and
data division

In order to avoid the data bias due to the difference in scanning

spacing and slice thickness between preoperative and immediately

postoperative CT images, the following preprocessing steps were

adopted: the CT images were uniformed to a common resolution of

1 mm × 1 mm × 1 mm by B-spline interpolation algorithm, and then

the window width was adjusted within the range of - 1200 Hu to 600

Hu and the intensity was scaled within the range of 0 ~ 255. After

normalization of all CT images, the samples containing pulmonary

metastases were trimmed to 3D cubes with the size of 40 mm × 40

mm × 40 mm. Finally, the gray values of sample cubes were

normalized between 0 and 1 (Figure 2).

To objectively and accurately delineate the target lesions in the

preoperative CT images and the boundary of the ablation area

immediately after RFA, A 3D U-Net model (43) was used to

segment the lesions and ablation region automatically, and two

junior radiologists (H.C.and H.H.) verified the segmentations and

made the necessary adjustments to guarantee the accurancy and

repeatability (Figure 3). If they had disagreements, it would be

determined in consultation with the senior expert (W.L.).

For each segmented preoperative lesions and ablation region,

1252 radiomics features were extracted through the open-source

feature toolboxes PyRadiomics (44) and PREDICT. The radiomics

features were comprised of 13 intensity features, 35 shape features, 9

orientation features and 507 texture features which contained 144

Gray Level Co-occurence Matrix (GLCM) features, 16 Gray Level Size

Zone Matrix (GLSZM) features, 16 Gray Level Run Length Matrix

(GLRLM) features, 14 Gray Level Dependence Matrix (GLDM)
Frontiers in Oncology 04
features, 5 Neighborhood Grey Tone Difference Matrix (NGTDM)

features, 156 Gabor filters features, 39 Laplacian of Gaussian (LoG)

filters features, 39 Local Binary Patterns (LBP) features (32, 44–47),

and 688 wavelet features.

In order to reduce unnecessary, redundant information and

complexity in the process of calculation and modeling, the

maximum correlation and minimum redundancy algorithm

(MRMRA) (48) was used for features selection. There are five

common variants under the MRMRA framework (49): mutual

information difference (MID), mutual information quotient (MIQ),

F-test correlation difference (FCD), F-test correlation quotient (FCQ),

and random-forest correlation quotient (RFCQ). The formulas were

as follows:

Assuming that there were m features in total, for a given feature

Xi, i∈ (1, 2,…, m), the importance of the feature could be determined

by MRMRA, commonly in the following five forms:

f MID(Xi) = I(Y ,Xi) −
1
jSjoXs ∈ SI(Xs,Xi)

f MIQ(Xi) = I(Y ,Xi)=½ 1jSjoXs ∈ SI(XS,Xi)�
f FCD(Xi) = F(Y ,Xi) −

1
jSjoXS ∈ SP(XS,Xi)

f FCQ(Xi) = F(Y ,Xi)=½ 1jSjoXS ∈ SP(XS,Xi)�
f RCQ(Xi) = IRF(Y ,Xi)=½

1
Sj joXS ∈ SP(XS,Xi)�

where, Y is the category label corresponding to the variable, S is the

selected feature set, |S| is the size of the feature set, Xs∈S is a feature

outside the feature set S, and Xi represents a feature that was not

currently selected; the functionI(·,·) represents mutual information,p(·,·)

is the Pearson correlation coefficient, F(·,·) is the Fstatistics, and IRF(·,·)

is the random forest feature importance score. Since inconsistent results

of various methods under different super parameter conditions, we

utilized the above 5 methods to filter features. The frequency of the top

5, top 10, and top 15 features was counted in the importance ranking,

and the experiments were conducted from 5 to 15 features with the

highest frequency to obtain the best performance, and eventually to

confirm the 9 selected features.

As the Gaussian mixture model (GMM) had good performance

in the evaluation of sample distribution and similarity in high-
FIGURE 2

Flow chart of image preprocessing.
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dimensional space (50–52), we used distance metric learning based

on the Gaussian mixed model (DML-GMM) rather than random

splitting to divide data according to our previous research results

(53). We demonstrated that when the sample size was large, there

was little difference between random splitting and the DML-GMM

model. As for a smaller sample size, however, the DML-GMM

model could obtain more stable results than random splitting.

Therefore, the log-likelihood of the extracted radiomic features

was calculated by DML-GMM model to describe the distribution,

the data was split into multiple clusters and then was divided into 5

groups by stratified sampling. One group was selected as the testing

set and the remaining 4 groups were used as the training set.

Actually, we did five-fold cross-validation and chose a single split

data including 386 lesions for the training set and 93 for the

testing set.
Model building and performance evaluation

Due to the unbalanced distribution of case counts in CR and non-

CR, we adopted the oversampling method (synthetic minority over-

sampling technique, SMOTE) (54) to mitigate the biased impact of

data imbalance on the models during training.

Clinical model: all the clinical and radiological features were

included in the univariate Logistic regression analysis, after which

the variables with P< 0.1 were included in the multivariate analysis.

Finally, the independent factors with P< 0.05 were selected for

modeling. The random forest technique was a regression tree

technique which utilized bootstrap aggregation and randomization

of predictors to achieve a high degree of predictive accuracy (55).

Since the random forest algorithm has been proven to be effective and

superior in building clinical models (56, 57), our clinical model was

also built on it.
Frontiers in Oncology 05
Radiomics model: A random forest, which was the most common

classifier used for radiomics features classification, contained multiple

decision trees, and the total output result was determined by the

subcategories of each decision tree. When processing high-dimensional

data, it had a strong ability of anti-interference and anti-overfitting,

especially for unbalanced medical data. Several studies have confirmed

that the random forest model could be used to predict the survival rate,

recurrence risk, and efficacy evaluation of lung cancer patients (58–

60).Multimodal data fusion models: the random forest model was

integrated based on radiomics and clinical models (Figure 4). The

weighted fusion strategy (61) adopted in our study was decision level

fusion (late fusion) (62). This level of fusion allowed features from

different representations to be combined in the same format of

representation, which had more and better scalability and flexibility

(63). The exact formula was confidence=w1·confidenceimage

+w2·confidenceclinical· The fusion prediction score was calculated to

obtain the final prediction result.

In order to evaluate the performance of various models, we

validated them on an independent test dataset, drew receiver

operating characteristic curves (ROC) with the obtained prediction

scores and calculated the corresponding area under curve (AUC). The

difference in the predictive performance of models was compared by

the Delong test (64). Meanwhile, the accuracy (ACC = TP+TN
TP+FP+TN+FN ),

sensitivity (Sensitivity =   TP
TP+FN ), and specificity (Specificity =   TN

TN+FP )

were also calculated. In the formula, TP was true positive, FP was false

positive, TN was true negative and FN was false negative.
Statistical analysis

Statistical analyses were performed using IBM SPSS (version 26.0,

Chicago, USA). Man-Whitney U test was used for continuous

variables which were presented as mean ± standard deviation (SD).
A

B

FIGURE 3

Segmentation of metastasis and ablation area. (A) Flow chart of the 3D U-Net model; (B) CT images and segmentation images of colorectal cancer lung
metastasis and ablation area immediate after RFA.
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Chi-square or Fisher test was used for categorical variables. All

statistical tests were conducted at a two-sided significance level of

P<0.05. All the medical image processing procedures and evaluation

processes were performed on Python 3.6. In order to build the models

and calculate the evaluation scores, we used publicly available

packages such as SimpleITK, PyTorch, scikit-learn, numpy, and scipy.
Results

Characteristics of patients and lesions

A total of 198 patients with 479 lung metastases from CRC were

enrolled; the detailed demographic characteristics are listed in

Table 1. After RFA treatment, there were 379 CR lesions and 100

non-CR lesions. Due to the small sample size, we analyzed each lesion

individually in the same patient with multiple metastases as the recent

literatures (20, 65–67). Through the GMM method, 386 lesions (305

CR and 81 non-CR) were selected to constitute the training dataset,

and 93 lesions (74 CR and 19 non-CR) were chosen to constitute the

independent testing dataset (Figure 1). There were 227 lesions

(47.4%)< 10 mm, and most lesions (399, 83.3%) were not close to

the mediastinum or great vessels (diameter greater than 3 mm), but

close to the pleura or diaphragm (287, 59.9%). The incidences of IAH

and pneumothorax were 25.9% (124/479) and 24.0% (115/

479), respectively.
Clinical and radiomics feature selection

Univariate logistic regression analysis in Table 2 showed that

CEA, CA19-9, lesion location (including upper lobe of the right lung,

right lower lobe, and left lower lobe), and intra-alveolar hemorrhage

(P< 0.1) could completely identify ablated lesions. Furthermore,
Frontiers in Oncology 06
multivariate regression analysis demonstrated that CA19-9 (odds

ratio [OR] = 1.007, P< 0.001) and lesion location (including right

upper lobe [OR = 1, P = 0.005], right lower lobe [OR = 2.997, P =

0.003], and left lower lobe [OR = 2.498, P = 0.011]) were independent

risk factors for incomplete ablation. These two clinical variables were

used to construct a clinical model.

In order to prevent the model from overfitting because of the

small sample size, 5 to 15 vital features with the highest scores were

selected by MRMRA, and the five forms of MRMRA features

importance scores were calculated separately, and compared with

the default important feature s of the random forest model as the

benchmark. The results demonstrated that the important features

selected by MRMRA in the form of MID, MIQ, FCQ, and RFCQ had

better performance than the features automatically selected by

random forest, and the experimental model with 9 selected features

had achieved better stability and smaller deviation. The selected

feature results are shown in Table 3.
Prediction performance comparison

The AUC values of each model were calculated in an independent

testing dataset, and the DeLong test compared the corresponding P

values (Tables 4, 5 and Figure 5). When radiomics features were

integrated with clinical variables, and the coefficient of the radiomics

model was 0.7 and the coefficient of clinical model was 0.3, the

resulting AUC value achieved the highest (0.921) with the statistically

significant difference (P values of 0.043) compared with the clinical

model alone (0.830). In addition, the accuracy, sensitivity, and

specificity of this multimodal data fusion model were also the best

(82.6%, 80.3%, and 81.4%, respectively).

Figure 6 presents one example of a patient with post-lung RFA CR,

with a nodule in contact with a vessel, complicated by IAH. In contrast,

Figure 7 illustrates another example with post-lung RFA non-CR.
FIGURE 4

Fusion framework of radiomics features and clinical information.
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Discussion

In 2016, the ESMO proposed a toolbox for oligometastases of

CRC, which emphasized the clinical value of local therapy (38). In
Frontiers in Oncology 07
patients who are not eligible for surgery, RFA seems to have more

evidence as a locoregional alternative for tumors< 3 cm (6).

After ablation, lung tumors undergo a natural evolution of the

outcome process: in the early stage (within 1 week), the lesions are
TABLE 1 Characteristics of patients and colorectal cancer lung metastases.

Characteristics Training dataset(N= 386) Testing dataset(N=93) P Total(N=479)

Pre-RFA clinical features

Gender Male 221 48 0.0347 269

Female 165 45 210

Age (years, mean ± SD) 57.9±10.3 57.3±11.1 0.5860

Tumor markers CEA (ng/ml) 4.6±4.1 3.9±3.6 0.4594

CA19-9 (U/ml) 10.8±6.2 10.9±6.4 0.8112

Pre-RFA characteristics of the lung metastasis

Nodule size (mm) < 10 186 41 0.0622 227

10–19 141 37 178

20 - 30 59 15 74

Location RUL 91 21 0.0011 112

RML 41 11 52

RLL 76 12 88

LUL 72 36 108

LLL 106 13 119

Distance 1 (cm) > 1 329 70 0.3997 399

< 1 57 23 80

Distance 2 (cm) > 1 151 41 0.0739 192

< 1 235 52 287

Immediate post-RFA features

Pneumothorax Yes 92 23 0.2932 115

No 294 70 364

Intra-alveolar Yes 100 24 0.2654 124

Hemorrhage No 286 69 355
RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; SD, standard deviation; Distance 1, the distance between the lesion and the large vessels
or mediastinum; Distance 2, the distance between the lesion and the pleura or diaphragm.
TABLE 2 Uni- and multi-variate analysis of clinical and radiological characteristics.

Characteristics
Univariate analysis Multivariate analysis

OR (95% CI) P OR (95% CI) P

Clinical features

Gender Male 1.259 (0.803-1.974) 0.316

Female 1

Age 0.994 (0.974-1.015) 0.588

Tumor biomarkers
CEA 1.007 (1.001-1.012) 0.028 1.004 (0.999-1.009) 0.166

CA 19-9 1.006 (1.002-1.009) 0.001 1.007 (1.003-1.011) <0.001

(Continued)
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covered by GGO, with larger scopes than the lesions, and the interior

of the lesions presents a low-density honeycomb appearance. In the

middle stage (1 week to 2 months), the ablation area becomes larger,

and an enhanced ring appears due to the absorption of inflammation

around the lesion. Finally, in the late stage (after 2 months), the

ablation area remains relatively stable or slightly larger, gradually

shrinking or stabilizing after 6 months (24, 25). Therefore, contrast-

enhanced CT of the chest at least 6 months after RFA was used to

evaluate the efficacy of RFA in this study, so as to determine whether

the lesions were completely ablated.

We found that the level of CA19-9 and location of the metastases

were significant correlations with complete ablation. In terms of

recurrence and survival prognosis, the combined evaluation of CEA
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and CA19-9 could obtain more relevant information than the

evaluation of CEA alone (68, 69). However, this study found no

significant association between CEA levels and complete ablation

based on the multivariate logistic regression analysis. On the other

hand, the location of nodules, including lung lower lobes, was an

independent risk factor with values of OR > 2, possibly due to the

influence of patient’s respiratory movement on the correct

positioning of the probe. Also, IAH was associated with a higher

risk of local recurrence, which reached significance in the univariate

analysis, likely because of the increasing difficulties in locating the

target nodule in the background of the dense and radiopaque zone. In

addition, the heat sink effect was associated with a higher risk of

incomplete ablation for tumors with blood vessel contact resulting

from the blood flow and microscopic extension (12, 70, 71). However,

our variables relating to vessels did not reach significance, probably

with the influence caused by the enrolled cases close to

the mediastinum.

In contrast to conventional CT-based imaging features, radiomics

analysis enables a greater degree of information reflecting underlying

biologic heterogeneity to be derived and qualified at a low cost (27,

46). A radiomics signature, as a panel of multiple features, has been

regarded as a more powerful prognostic biomarker, which could

provide additional information to clinical data, and has reportedly

been a significant predictor for clinically relevant factors (72–74).

Previous studies have demonstrated that the size and shape of

metastases are the important risk factors for local recurrence (9, 12,

75), as the shape feature selected by MRMRA. In addition, GLRLM

features could quantify gray level runs, defined as the length in a
TABLE 3 Radiomics features selected by MRMRA.

pre-RFA radiomics features post-RFA radiomics features

shape_Elongation GLCM_Idmn

GLCM_Idmn GLRLM_RunEntropy

GLCM_Imc1 GLCM_Imc2

GLCM_InverseVariance

GLCM_ClusterShade

GLDM_DependenceEntropy
MRMRA, maximum relevance and minimum redundancy algorithm; RFA, radiofrequency
ablation; GLCM, Gray Level Co-occurence Matrix; GLDM, Gray Level Dependence Matrix;
GLRLM, Gray Level Run Length Matrix.
TABLE 2 Continued

Characteristics
Univariate analysis Multivariate analysis

OR (95% CI) P OR (95% CI) P

Pre-RFA features of the lung metastases

Location

RUL 1 0.013 1 0.005

RML 1.323 (0.538-3.253) 0.542 0.949 (0.357-2.525) 0.917

RLL 2.968 (1.468-6.002) 0.002 2.997 (1.442-6.23) 0.003

LUL 1.293 (0.615-2.718) 0.497 1.216 (0.557-2.654) 0.624

LLL 2.23 (1.125-4.419) 0.022 2.498 (1.228-5.08) 0.011

Distance 1 (cm)
> 1 1

< 1 0.693 (0.402-1.197) 0.189

Distance 2 (cm)
> 1 1

< 1 0.957 (0.608-1.506) 0.848

Immediate post-RFA features

Pneumothorax
Yes 1.08 (0.652-1.789) 0.764

No 1

IAH
Yes 0.612 (0.354-1.059) 0.079 0.644 (0.364-1.138) 0.130

No 1 1
frontie
The bold p vales in the univariate analysis (in the first column) mean < 0.1, and those in the multivariate analysis (in the second column) mean < 0.05.
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number of consecutive pixels that have the same gray level value (76)

and could reflect the volumetric texture of the early ablation zone

(77). A GLCM feature, which could reflect and quantify homogeneity

to reflect the risk of local recurrence, is a common method of

describing texture by studying the spatial correlation characteristics

of gray levels (78). A GLDM feature quantifies gray level

dependencies, which correspond the number of connected voxels

within distance d dependent on the center voxel (79), likely reflecting

the difficulties in identifying the nodule.

Recent work has highlighted important efficacy and prognostic

information captured in radiological, clinicogenomic, and

histopathological data, which can be exploited through machine

learning. However, little is known about the capacity of combining

features from these disparate sources to improve the prediction of

treatment response. Therefore, we combined radiomics with patients’

clinical variables to construct multimodal data fusion models to

objectively and accurately evaluate the immediate efficacy of RFA

for CRC lung metastases.

An observer study was conducted by testing an independent dataset

to validate the performance of models (i.e., results shown in Tables 4, 5

and Figure 5). Compared with the baseline model only based on clinical

variables, the radiomics-based models showed further improvement in

performance with a significant statistical difference (P<0.05).

Compared with the model only based on radiomics features, the

corresponding performance indicators of the multimodal data fusion

model (Radiomics + Clinical) were higher, but the Delong test did not

confirm significant difference (P>0.05) between the models, indicating

that the radiomics features have a dominant role in the models. At the

same time, it suggests that the clinical variables could provide

supplementary information to improve the predictive performance of

the models, although they could not reach significance, possibly

because of the limited sample size.

The main advantages of this study are as follows: first of all,

different types of data might contain complementary information;
TABLE 5 Comparison of prediction performance of different models in the
testing dataset.

Models ACC
(%) AUC Sensitivity

(%)
Specificity

(%)

Clinical 71.4 0.830 69.6 75.3

Radiomics 80.8 0.887 79.1 80.6

Radiomics +
Clinical

82.6 0.921 80.3 81.4
ACC, accuracy; AUC, area under ROC curve.
The bold values mean the best performance of the multimodal data fusion model integrating
radiomic features and clinical variables.
FIGURE 5

Comparisons of ROC curves of different models. ROC, receiver
operating characteristic; AUC, area under the curve.
TABLE 4 AUC values of different models in the testing dataset.

Models AUC

Clinical 0.830

Radiomics 0.887

Radiomics + clinical 0.921

0.1× Radiomics + 0.9 × clinical 0.839

0.2× Radiomics + 0.8 × clinical 0.852

0.3× Radiomics + 0.7 × clinical 0.869

0.4× Radiomics + 0.6 × clinical 0.885

0.5× Radiomics + 0.5 × clinical 0.904

0.6× Radiomics + 0.4 × clinical 0.913

0.7× Radiomics + 0.3 × clinical 0.921

0.8× Radiomics + 0.2 × clinical 0.916

0.9× Radiomics + 0.1 × clinical 0.903
frontie
The bold value means the highest AUC value of the best model.
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therefore, we developed novel multimodal data fusion models

integrating radiomics features based on radiological data and

clinical variables originating from textual data for evaluating early

ablation efficacy. In the second place, we proposed an information

fusion scheme based on preoperative and immediately postoperative

CT images, which could integrate the characteristics of the same

target area in different periods. Finally, we adopted the GMMmethod

(80) proposed in the previous study to conduct more reasonable data

division to improve the model’s stability, accuracy and generalization,

and minimize the deviation problem resulting from limited sample

size when training the model.

There are few studies on the application of artificial intelligence

methods to evaluate the efficacy of radiofrequency ablation for CRC lung

metastases. A recent study (81) has retrospectively observed the

instantaneous changes in intratumor density heterogeneity after MWA

of pulmonary tumors via radiomics-based CT features and determined

the prognostic value in predicting treatment response and local tumor
Frontiers in Oncology 10
progression (LTP). However, only 50 patients with different diseases (39

primary and 11 metastatic) were enrolled, which could not guarantee a

sufficient sample size and the homogeneity of disease. In addition, it was

not appropriate to evaluate ablation efficacy by chest contrast-enhanced

CT afterablation, which was usually used as the baseline for evaluation

(82). Another retrospective study (20) utilized radiomics, clinical,

radiological, and technical features to access local control of 48 CRC

patients with 119 lung metastases treated by RFA. In order to observe the

nodule position in the ablation zone (categorized as nodule seen and

remote from borders, or not [i.e., hidden or marginal]), patients

underwent chest CT 48 hours after RFA. However, the related results

might be subjective among doctors because of different experiences, so

they could not assist operators in evaluating the ablation efficacy during

the operation, thus allowing for more timely interventions, and in turn,

reducing tumor load and prolonging overall survival (83).

Despite the promising results, our study has several limitations.

Firstly, the sample size was relatively small because of strict exclusion
frontiersin.or
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FIGURE 6

Example of a patient with post-lung RFA complete response. The multimodal data fusion model predicted the results: CR: 0.87, Non-CR: 0.13. (A) A 77-
year-old female pT2N1M1R0 rectal cancer patient with a lung metastasis one year after rection, which was located in the left upper lobe (red arrow). (B)
The mediastinal window of enhanced CT showed that the lesion was enhanced and adjacent to the blood vessel, with a maximum diameter of 6 mm
(red arrow). (C) The histogram of the densities within this nodule on the pre-RFA CT scans displayed an asymmetric, skewed distribution corresponding
to intra-tumoral enhancement (x-axis: attenuation in Hounsfield units, y-axis: number of voxels). (D) The RFA was performed under CT guidance. (E) IAH
occurred after RFA (red arrowhead). (F) The histogram of the densities within the ablation zone on the immediate post-RFA CT scans was rather flat,
without peak among the high tissular atenuations (x-axis: attenuation in Hounsfield units, y-axis: number of voxels). (G) Chest CT scan showed high
density patch shadow in the ablation area one month after RFA (red arrowhead). (H–J) One year, two years and five years after RFA, chest CT scans
showed that the lesion disappeared (red arrowhead). RFA, radiofrequency ablation; CR, complete response; IAH, intra-alveolar hemorrhage.
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criteria regarding imaging follow-up. Secondly, the immediate chest

CT after RFA was a non-contrast-enhanced CT which might result in

the loss of some potentially valuable information related to

efficacy. Thirdly, the absent of deep learning algorithm which could

identify non-specific features of target lesions and surrounding tissues

through automatic learning to achieve information complementation.

Thus, a larger patient population from multicenter with deep learning

algorithm might further improve the performance in future studies.

In conclusion, the novel multimodal data fusion model

(combining radiomics features and clinical variables) was developed

to assess the early ablation efficacy. Based on these promising results,

our study provides evidence that could assist interventional

physicians in objectively and accurately evaluating the immediate

efficacy of RFA for CRC lung metastases so as to make necessary

supplementary treatment during operation.
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FIGURE 7

Example of a patient with post-lung RFA non-CR. The multimodal data fusion model predicted the results: CR: 0.06, Non-CR: 0.94. (A) A 52-year-old female
pT4N1M1R0 rectal cancer patient with a lung metastasis eight months after rection, which was located in the left lower lobe (red arrow). (B) The mediastinal
window of enhanced CT showed that the lesion was accompanied by small cavities with a maximum diameter of 9 mm (red arrow). (C) The histogram of the
densities within this nodule on the pre-RFA CT scans was flat, without peak among the high tissular attenuations (x-axis: attenuation in Hounsfield units, y-
axis: number of voxels). (D) The RFA was performed under CT guidance. (E) GGO occurred after RFA (red arrowhead). (F) The histogram of the densities
within the ablation zone on the immediate post-RFA CT scans displayed an asymmetric, skewed distribution (x-axis: attenuation in Hounsfield units, y-axis:
number of voxels). (G) Chest CT scan showed high density GGO with clear boundary one month after RFA (red arrowhead). (H) Five months after RFA, the
GGO became a high-density nodule (red arrowhead). (I) Seven months after RFA, the high-density nodule shrank, but there was an irregular nodule near the
vessel in the ablation area (red arrowhead). (J) Nine months after RFA, the irregular nodule was progressively enlarged and the recurrence was considered
(red arrowhead). RFA, radiofrequency ablation; CR, complete response; GGO, ground glass opacity.
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