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system tumors based on
immunologic gene sets
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According to 2020 global cancer statistics, digestive system tumors (DST) are

ranked first in both incidence andmortality. This study systematically investigated

the immunologic gene set (IGS) to discover effective diagnostic and prognostic

biomarkers. Gene set variation (GSVA) analysis was used to calculate enrichment

scores for 4,872 IGSs in patients with digestive system tumors. Using themachine

learning algorithm XGBoost to build a classifier that distinguishes between

normal samples and cancer samples, it shows high specificity and sensitivity on

both the validation set and the overall dataset (area under the receptor operating

characteristic curve [AUC]: validation set = 0.993, overall dataset = 0.999). IGS-

based digestive system tumor subtypes (IGTS) were constructed using a

consistent clustering approach. A risk prediction model was developed using

the Least Absolute Shrinkage and Selection Operator (LASSO) method. DST is

divided into three subtypes: subtype 1 has the best prognosis, subtype 3 is the

second, and subtype 2 is the worst. The prognosis model constructed using nine

gene sets can effectively predict prognosis. Prognostic models were significantly

associated with tumor mutational burden (TMB), tumor immune

microenvironment (TIME), immune checkpoints, and somatic mutations. A

composite nomogram was constructed based on the risk score and the

patient’s clinical information, with a well-fitted calibration curve (AUC = 0.762).

We further confirmed the reliability and validity of the diagnostic and prognostic

models using other cohorts from the Gene Expression Omnibus database. We

identified diagnostic and prognostic models based on IGS that provide a strong

basis for early diagnosis and effective treatment of digestive system tumors.

KEYWORDS

digestive system tumors, immunologic gene set, diagnostic, prognostic, XGBoost
1 Introduction

The digestive system consists of auxiliary organs of the digestive tract and gastrointestinal

tract. Digestive system tumors have the highest mortality rate in the world. Digestive system

tumors mainly include gastric cancer, colorectal cancer, esophageal cancer, etc., which come
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from different but related tissues and have their own unique clinical

features, but also have some similar features (1). Common risk factors

for gastrointestinal tumors include infection, smoking, alcohol

consumption, high-fat diet, age, race, gender, family history, and

geographic location (2). The therapeutic effect and survival time of

tumors are closely related to the time of discovery, but there is still a

lack of effective means for early detection, early diagnosis and early

treatment of gastrointestinal tumors (3). Therefore, early diagnosis of

gastrointestinal tumors, systematic research on the regulatory

network during the development of gastrointestinal tumors, and

development of new therapeutic strategies will be crucial to

improving the survival rate of patients with gastrointestinal tumors,

and are of great significance for improving the reduction of social

pressure and disease burden (4–6). The current treatment methods,

including surgery, radiation therapy, and immunotherapy, are

constantly improving. In recent years, the research of

immunotherapy has been steadily expanding, and research results

have been continuously applied in clinical practice (7). However, due

to the hidden early symptoms, the rapid development and aggression,

the average survival time of patients with late DSC is still very low.

Therefore, researchers are committed to discovering new features

used for diagnosis or prognosis and improving treatment methods

(8). There are already some very valuable studies, to assess the

association of local expression of CD44 and CD24 with

clinicopathologic features of disease in patients with large chronic

kidney disease, the role of these markers as cerebrospinal fluid (CSF)

was explored more fully (9). It has been found that Lg5High/DCLK1

high phenotype is significantly associated with the expression of early

gastric cancer specimens, and its expression pattern can be

considered a signature phenotype of gastrointestinal tumor

subtypes (10).

The tumor immune microenvironment has been shown to play a

key role in tumor development and influence clinical outcomes, and

can serve as potential biomarkers to improve the reliability and

accuracy of diagnosis and prognosis (11, 12). However, our

understanding of its role remains incomplete due to the complexity

and dynamics of the immune microenvironment (13). Tumor-

infiltrating immune cells are part of a complex microenvironment

(14). They play a key role in inhibiting or supporting tumor growth and

development, can be effectively targeted by drugs, and are associated

with patient survival (15). Gene expression profiling has become a

mainstay of the TIME research field (16). However, due to its high

heterogeneity and dynamics, studies on changes in individual genes

cannot precisely dissect time. Typically, immune cell (IC) function is

influenced by a group of related genes rather than a single gene.

Therefore, the study of gene sets can provide new insights into cancer

immunotherapy (17).

In this study, we evaluated the enrichment changes of IGS from

ImmuneSigDB in patients with digestive system tumors. First, an

IGS-based diagnostic model was established for tumor diagnosis,

and then an IGS-based prognostic risk prediction model was

established, its correlation with clinical and immune

characteristics was evaluated, and a nomogram was constructed

to make the results of the prediction model more readable It

provides a powerful means for the early detection and prediction

of DST.
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2 Materials and methods

2.1 Raw data

The data used in this paper are from public databases. The DST

cohort used to identify the immune gene set enrichment score

consisted of 1345 patients in The Cancer Genome Atlas (TCGA).

There are six main cancer types: ESCA, STAD, LIHC, PAAD, COAD,

and READ. All transcriptome data and clinical data were downloaded

from the TCGA database (https://tcga-data.nci.nih.gov/tcga/).

Clinical data included clinical characteristics such as age, gender,

survival time, survival status, and tumor status. Data was extracted

from the TCGA database, strictly following TCGA-approved

publication guidelines. Therefore, no ethics committee approval is

required. The external validation dataset comes from the Gene

Expression Omnibus (GEO) database.
2.2 Immunologic gene set and gene set
variation analysis

ImmuneSigDB is a manually annotated database of

approximately 5,000 gene sets in immunology from various cellular

states, experimental manipulations, and genetic perturbations (18).

ImmuneSigDB’s IGS (c7.ImmuneSigDB.v7.5) was obtained from the

Molecular Signature Database (MSigDB). The enrichment score (ES)

for each IGS in samples was calculated using the GSVA algorithm

from the “GSVA” package in R. The GSVA enrichment algorithm is

widely used in medical research (19–23).
2.3 Diagnostic analysis

Samples of primary or normal tissue were selected for further

diagnostic analysis. First, the limma package was used for differential

analysis, and the screened differential gene sets were used for

subsequent diagnostic analysis. Patients were randomized into

training and validation cohorts (4:1) using StratifiedKFold in scikit-

learn. Extreme Gradient Boosting (XGBoost), is a scalable distributed

gradient boosting decision tree machine learning library that provides

parallel tree boosting capabilities and is an advanced machine learning

library for regression, classification, and ranking problems (24). A

diagnostic model was constructed on the training cohort using the

XGBoost algorithm, and the sensitivity and specificity of the diagnostic

model were analyzed by ROC curve. We searched for optimal

parameters for XGBoost using Optuna (25).
2.4 Tumor subtypes based on immunologic
gene set

According to the ES of IGSs, we used the consistent clustering

method of the R package ConsensusClusterPlus (K-means,

Euclidean distance, reps = 1000, pItem = 0.8, clusterAlg =

“pam”, seed = 0) for the unbiased classification of all patients to

explore the relationship between different tumor subtypes and
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patient prognosis (26). We used the square sum error in elbow

(WSSE group; this method was to find the best cluster number by

finding the “elbow point”) and the fastest falling point of the gap

statistic (WK; the K value corresponding to the maximal value of

gap) to evaluate the best class number K. In addition, we

performed survival analysis for various immune subtypes.
2.5 Immune cell infiltration analysis

CIBERSORT (https://cibersortx.stanford.edu/) is a computational

method for quantifying cellular components from gene expression

profiles of ontology tissues (27). We used CIBERSORT to estimate the

proportions of 22 ICs for digestive system tumors in TCGA and GEO.

The immune and stromal scores were obtained by calculating the

expression signatures of specific molecular biomarkers in immune and

stromal cells using the ESTIMATE algorithm (https://r-forge.r-

project.org) (28).
2.6 Prognostic analysis

For prognostic analysis, tumor samples with complete clinical

characteristics and survival information were selected. Subsequently,

eligible patients were randomized into training and validation cohorts

(7:3) using R package caret. Predictive features were then screened

from the training cohort using LASSO-Cox analysis. The coefficients

characterize the risk score by using the R package glmnet according to

the Least Absolute Shrinkage and Selection Operator (LASSO)

algorithm. Optimal cut-off values for risk scores were calculated

based on patient survival data using X-tile. Kaplan-Meier survival

curves were used, and time-dependent ROC (survival ROC) curves

were applied to assess the prognostic power of risk scores (29).
2.7 Validation of diagnostic and prognostic
model using GEO dataset

Additional cohorts in the GEO database were used for the

validation of the diagnostic and prognostic models according to the

following inclusion criteria: (i) for the validation of the diagnostic

model, the dataset provided tumor and normal samples containing

mRNA expression levels in tissue samples; (ii) For validation of the

prognostic model, the dataset provided patient survival information.

Exclusion criteria were: (i) datasets with small sample sizes (n < 50); (ii)

datasets using cell linesor animal samples. Therefore, we selected

GSE37023, GSE23400, GSE37182, GSE90627, GSE22058, GSE62452

for diagnostic data, and GSE84433, GSE62452, GSE87211, GSE39582,

GSE10186, GSE53624 for prognostic data to validate the results in the

TCGA database.
2.8 Nomogram construction

The nomogram is based on multi-factor regression analysis,

integrates multiple predictors, and then uses scaled line segments to
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draw on the same plane according to a certain proportion, and

assigns each value of each influencing factor to each value ep26.

Then, the individual scores are added to obtain the total score.

Finally, the predicted value of the individual outcome event is

calculated through the functional transformation relationship

between the total score and the probability of occurrence of the

outcome event. The total score projected on the bottom scale

represents the probability of 2-year, 3-year, and 6-year overall

survival. A calibration curve was drawn to compare expected and

observed survival probabilities. The prognostic value of the

nomogram and other clinical features was compared at 2, 3, and

6-year overall survival using ROC curves. The R package “rms” is

used to draw nomograms and the R package ßurvivalROC” is used

to draw ROC curves.
2.9 Statistical analysis

Statistical analysis was performed using R software (version

4.1.0). Continuous variables were expressed as mean ± standard

deviation and compared using Student’s t-test or Wilcoxon rank-

sum test. Categorical data were compared using the chi-square test.

Use the python package xgboost to build diagnostic models. Least

Absolute Shrinkage and Selection Operator (LASSO) regression

models were performed using the “glmnet” and ßurvival” packages.

Kaplan-Meier survival analysis with log-rank test was performed

using the R package ßurvminer”. Differential expression analysis

was performed using the “limma” package. Statistical significance

was set at P < 0.05, shown as *P < 0.05, **P < 0.01, ***P < 0.001.
3 Results

3.1 Patient characteristics

According to the screening criteria, a total of 1345 patients were

used for diagnostic analysis (including 148 normal samples and

1197 cancer samples) and 1197 tumor samples were used for

prognostic analysis. The detailed distribution of the patients is

summarized in Table 1, and the workflow of the study is

illustrated in Figure 1.
3.2 Construction of diagnostic model
based on immunologic gene set

A total of 4,872 IGSs were obtained from ImmuneSigDB. IGSs for

all 1345 digestive system tumors were calculated using the GSVA

algorithm based on transcriptome RNA-seq data. Differential

expression analysis showed that there were 60 significantly different

gene sets (padj < 0.01) between normal samples and cancer samples,

of which 31 gene sets were up-regulated and 29 were down-regulated

(Figure 2A). All samples are then divided into training and validation

sets while maintaining the same proportion of normal samples and

cancer samples. A diagnostic model was constructed using the

XGBoost algorithm based on the training set, and the ROC curve
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indicated that our model had high accuracy on the training set,

validation set, and the entire dataset (AUCs of 1, 0.993, 0.999,

respectively)(Figures 2C–E). Features importance analysis shows

that GSE29614_CTRL_VS_DAY3_TIV_FLU_VACCINE_PB

MC_DN and GSE17974_IL4_AND_ANTI_IL12_VS_UNTREAT

ED_6H_ACT_CD4_TCELL_UP are the most important in the

diagnostic model (Figure 2B).
3.3 Construction of tumor subtypes and
prognostic model based on immunologic
gene sets

Prognostic analysis of digestive system tumors used 1197 tumor

samples. First, 1134 gene sets significantly associated with prognosis

were screened from 4872 immune gene sets by univariate Cox
Frontiers in Oncology 04
regression analysis. Based on the prognosticIGS, the consistent

clustering method of the R package “ConsensusClusterPlus” was

used to classify the digestive system tumors into three subtypes

(DSTS), namely subtype 1 (N=657), subtype 2 (N=273), and

subtype 3 (N=267) (Figures 3A-C). The relationship between

tumor type and subtype is shown in Table S1. The immune gene

set enrichment score was the highest in subtype 2, followed by

subtype 1, and the lowest in subtype 3 (Figure 3D). Kaplan-Meier

survival analysis showed that subtype1 had the best prognosis,

subtype 2 had the worst prognosis, and subtype 3 had an

intermediate prognosis (Figure 3E). The above results suggest that

DSTS can effectively discriminate patients with different prognosis.

To explore the mechanisms behind the prognostic differences

between the different subtypes, we performed a differential analysis of

the gene sets between the IGSS subtypes. There were 534 differential

gene sets between subtypes 1 and 2, and 555 differential gene sets
FIGURE 1

Workflow of this study.
TABLE 1 Distribution of all samples.

Tumor sample (n=1197) Percent (%) Normal sample (n=148) Percent(%)

Tumor type

LIHC 276 23.1 50 33.8

STAD 263 22.1 32 21.6

COAD 303 25.3 41 27.7

READ 118 9.8 10 6.8

PAAD 117 9.7 4 2.7

ESCA 120 10 11 7.4

Diagnosis analysis

Training 956 80 118 80

Validation 241 20 30 20

Prognosis analysis

Training 838 70

Validation 359 30
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between subtypes 1 and 3. Then, taking the intersection of the two

differential results, we obtained 299 differential gene sets (Figure 3F).

These gene sets were then applied to LASSO regression analysis, and

finally, a prognostic model consisting of nine gene sets was

constructed (Figures 4A, B). The nine gene sets are: Gene Set 1

(GSE17301_ACD3_ACD28_VS_ACD3_ACD28_AND_IFNA2_ST

IM_CD8_TCELL_UP), Gene Set 2 (GSE20366EXVIVO_VS_HO

MEOSTATIC_CONVERSION_TREG_DN), Gene Set3 (GE554

2_IFNG_VS_IFNA_TREATED_EPITHEIAL_CELLS_24H_UP), G

ene Set4 (GSE35543_IN_VIV

O_NTREG_VS_CONERTED_EX_ITREG_DN), Gene Set5

(GSE19198_1H_VS_24H_IL21_TREATED_TC

ELL_DN), Gne Set6 (GSE37301_AG2_KO_VS_RAG2_A

ND_ETS1_KO_NK_CELL_DN), Gene Set7 (GSE14699_DELE

TIONAL_TOLERANCE_VS_ACTIVATED_CD8_TCELL_DN),

Gene Set8 (GSE17580_UNINFETED_VS_S_MANSONI_INF_TRE

G_UP), Gene Set9 (GSE6566_STRONG_VS_WE

AK_DC_STIMULATED_CD4_TCELL_UP). Table S2

summarizes the genes included in gene sets 1-9. By calculating

the sum of the products of ES and coefficients for each gene set, we
Frontiers in Oncology 05
can quantify the prognosis of each patient. Risk Score = (Gene

Set 1 × -0.016) + (Gene Set 2 × -0.105) + (Gene Set 3 × -0.644) +

(Gene Set 4 × 0.008) + (Gene Set 5 × 1.017) + (Gene Set 6 × -0.102)

+ (Gene Set 7 × -1.032) + (Gene Set 8 × 0.867) + (Gene Set 9 ×

-2.585). Use X-tile to calculate optimal cutoffs for risk scores based

on patients’ survival data to classify patients in the training cohort

into low-risk and high-risk groups. Kaplan-Meier curves were

drawn to confirm that patients in the high-risk group had a

significantly higher risk of survival in the training cohort (P <

0.0001) (Figure 4D). At the same time, Kaplan-Meier curves were

also drawn in the validation and the whole cohort, consistent with

the results of the training cohort, patients in the high-risk group had

a lower overall survival time than those in the low-risk group (P =

0.013, P < 0.0001) (Figures 4E, F). Furthermore, the risk score

showed the strong predictive power of 2-, 3-, and 6-year survival in

the training cohort (AUC = 0.69, 0.7, and 0.63, respectively)

(Figure 4C). Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway analysis showed that gene sets 1-9 most enriched in DNA

replication, Cell cycle, Bacterial invasion of epithelial cells, Mannose

type O-glycan biosynthesis, Viral myocarditis, Fatty acid
DA

B

EC

FIGURE 2

Construction of Diagnostic Model. (A) Volcano plot of differential analysis results between normal and cancer samples. Red, upregulated; green,
downregulated. (B) Top10 feature importance in the diagnostic model. (C–E) ROC curves of the diagnostic model in the training cohort (C),
validation cohort (D) and the entire cohort (E).
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degradation, Human T-cell leukemia virus 1 infection,

Hematopoietic cell lineage, Aldosterone synthesis and secretion

(Figures 4G-I). The enrichment of the other six gene sets is shown

in Figure S1.
3.4 Correlation of risk prediction model
with immune cell infiltration and
expression of immune checkpoints

The heatmap of the high- and low-risk groups shows that the

high-risk group has a higher gene set enrichment score (Figure 5A).

Infiltration of 22 ICs in the digestive system cohort was analyzed

using the CIBERSORT package. We found that the infiltration of B

cells memory, Plasma cells, T cells CD4 memory activated, T cells

follicular helper, Mast cells activated, and Eosinophils was higher in

the low-risk group. In contrast, B cells naïve, T cells CD4 memory

resting, T cells regulatory (Tregs), Neutrophils, and Mast cells resting

had higher infiltration levels in the high-risk group (Figure 5B). The

stromal score and immune score of all samples were obtained using

the ESTIMATE algorithm, and the scores ranged from -1009.408 to

1112.625 and -607.9489 to 1571.0439, respectively. There were

significant differences in the stromal score and immune score in

the high and low-risk groups, and they were all higher in the high-risk

group (Figures 5D, E). Correlation analysis showed that risk scores

were negatively correlated with Mast cells activated, T cells CD4

memory activated, and Eosinophils, while positively correlated with
Frontiers in Oncology 06
stromal scores, immune scores, Mast cells resting, and T cells

regulatory (Tregs) (Figure 5F). In addition, we compared the

expression of immune checkpoint molecules including CD274,

PDCD1, PDCD1LG2, CTLA4, HAVCR2, LAG3, and TIGIT in

high-risk and low-risk groups. We found that the expression levels

of immune checkpoint molecules were significantly higher in the

high-risk group compared with the low-risk group (Figure 5C). We

analyzed simple nucleotide variation data from the digestive system

cohort to characterize somatic mutations in high- and low-risk

groups. We found that the overall mutation rate was significantly

higher in the low-risk group (92.28 vs. 83.59). Except for TP53,

KRAS, TTN, MUC16, LRP1B, ARID1A, CSMD3, FLG, SYNE1, APC,

PIK3CA, RYR2, OBSCN, PCLO, FAT4, and DNAH5, these genes

had high mutation rates in both high-risk and low-risk groups.

Compared with the low-risk group, the high-risk group had higher

mutation rates of HMCN1, PCDH15, SPTA1, and USH2A, while

compared with the high-risk group, the low-risk group had higher

mutation rates of CSMD1, ZFHX4, FAT3, ADGRV1mutation rate is

higher (Figures 5G, H). In addition, the risk score was also

significantly negatively correlated with TMB and had higher values

in the low-risk group (Figures 5I, J).
3.5 Nomogram construction

The nomogram transforms the complex regression equation

into a visual graph, making the results of the prediction model more
D

A B

E

F

C

FIGURE 3

Tumor subtypes based on immunologic gene sets. (A) Delta area plot showed the relative change in area under the CDF curve. (B) Consensus
matrices of the DST cohort for k=3. (C) Consensus cumulative distribution functions (CDF) of the consensus matrix for each k value (indicated by
colors). (D) Gene set heatmap and clinicopathological features of the three subtypes identified. (E) Kaplan-Meier overall survival curves for the three
subtypes. (F) Venn plot of the results of the analysis of differences between different subtypes.
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readable and facilitating the evaluation of patients. Construct a

prognostic nomogram based on clinical information such as age,

tumor stage, and cancer status, and generate a quantitative method

for predicting the prognosis of patients with cancer of the digestive

system (Figure 6A). Calibration curves for nomograms showed

good agreement between predictions and observations in the

training cohort. A good agreement was also observed across

validation and the entire cohort (Figures 6B–D). Moreover, the 2-

year, 3-year, and 6-year ROC curves directly show the value of risk

factors. The nomogram had the highest accuracy, with areas under

the ROC curve (AUC) of 0.738, 0.762, and 0.703, indicating

appropriate clinical applicability of the nomogram (Figures 6E–G).
3.6 Use GEO datasets to verify diagnostic
model and prognostic model

Get GSE37182 (COAD), GSE23400 (ESCA), GSE22058 (LIHC),

GSE62452 (PAAD), GSE90627 (READ), GSE37023 (STAD) from

the GEO database to verify the diagnostic model. We used these

datasets to evaluate the ability of tumors and normal tissues in
Frontiers in Oncology 07
diagnostic models, showing the high accuracy of diagnosis (AUC

was 0.9736, 0.9576, 0.9884, 0.8067, 0.9993, 0.975) (Figures 7A-F).

Use GSE39582 (COAD), GSE53624 (ESCA), GSE10186 (LIHC),

GSE62452 (PAAD), GSE87211 (READ), and GSE84433 (STAD).

Among them, COAD, ESCA, and READ are consistent with our

TCGA database. Higher risk scores indicate that patients are more

likely to survive. However, the survival rate of patients with high-

risk scores in LIHC, PAAD, and STAD is higher (Figures 7G-L).
4 Discussion

It is worth noting that the latest development of new cancer

treatment methods is mainly concentrated on early intervention.

Munoz and Plevritis et al. (30) propose a predictive model that uses

estrogen receptors and human epidermal growth factor receptors 2

to determine the potential survival results. Similarly, Chen et al. (31)

use lncRNA data in the TCGA database to obtain five lncRNA

signatures for independent risk factors for OC recurrence. HUANG

et al. (32) use clinical pathological risk factors to build a radiological

characteristics and radioactive group diagram of lymph nodes
D
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FIGURE 4

Construction of an IGS-based risk prediction model. (A) Least absolute shrinkage and selection operator (LASSO) coefficient profiles of the
fractions of IGSs. (B) Ten fold cross-validation for tuning parameter selection in the LASSO model. (C) Risk score measured by survival receiver
operating characteristic (ROC) curves in the training cohort. The area under the ROC curve (AUC) was 0.69, 0.7, and 0.63 at 2, 3, and 6 y,
respectively. (D–F) Kaplan-Meier curves for overall survival by risk score group in the training (D), validation (E) and entire cohorts (F). (G–I)
KEGG pathway analysis of the genes in Gene Sets 1–3.
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metastasis of colorectal cancer, which facilitates the preparation

prediction before surgery. However, most of these studies are based

on the analysis of single genes. In our research, we focus on the

collection of immune genes, not a single gene, which will improve

our understanding of the overall function of IC (33–35).

First, we used the XGBoost algorithm to construct a diagnostic

model based on a set of 57 immune genes differentially expressed
Frontiers in Oncology 08
between normal and cancer samples. The high AUC values indicate

that our model is accurate and effective in diagnosing tumors in the

digestive system, and that the immune system is involved in the

development and progression of cancer.

There were 534 and 555 differentially expressed immune gene sets

between subtypes 1 and 2 and between subtypes 1 and 3, respectively.

Although there were also significant differences in the expression of IGS
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FIGURE 5

Correlation of risk prediction model with immune cell infiltration,immune checkpoints, and somatic mutation. (A) Heatmap of immune gene set
enrichment scores for high- and low-risk groups. (B) Immune cell infiltration in low- and high-risk groups. (C) Compared with the low-risk group,
the expression levels of immune checkpoint molecules in the high-risk group were significantly increased. (D, E) Violin plots show significant
associations between risk group and stromal score (D), immune score (E). (F) Correlation between risk score and infiltrating immune cell density and
stromal/immune score. (G, H) Somatic mutation profiles of the 20 most frequently mutated genes in low- and high-risk groups. (I, J) Correlations of
risk scores with TMB. The violin plot showed that the low-risk group had higher TMB than the high-risk group (I). TMB was significantly negatively
correlated with risk score (J) . Statistical significance was set at P<0.05, shown as *P<0.05,**P<0.01, ***P<0.001.
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between subtypes 2 and 3 (n = 486), we found poor prognosis for both

subtypes. Subtype 1 had the best prognosis compared to subtypes 2 and

3. There are also different clinical, molecular and immune associations

with subtypes 2 and 3. Therefore, we compared the differential

expression of IGS between subtypes 1 and 2 and between subtypes 1

and 3 to better elucidate the underlying mechanisms of subtype 1.

Discovery of nine gene sets to construct IGS-based prognostic

models provides new insights into functional diversity of TIME,

leading to potential biomarkers and therapeutic targets for cancer

management. The Kaplan-Meier curve confirmed that patients with

high-risk scores had a higher chance of survival in the training

cohort. The results of the internal and external validation sets were

largely consistent with the above results.

To improve prognostic accuracy, we combined risk scores, age,

sex, tumor stage, cancer status, and residual tumors to construct a

lineup and ROC curves for 2, 3, and 6 years of survival. The results
Frontiers in Oncology 09
show that the line diagram has good clinical applicability. In

addition, calibration curves show that prognostic immune scores

predict clinical outcomes in patients. Taken together, this study

provides a comprehensive immune map of tumors in the digestive

system, resulting in diagnostic and prognostic models that can be

used as biomarkers for early diagnosis to initiate treatment and

predict patient survival.

Numerous studies have reported the influence of tumor

microenvironment on tumor development and prognosis

including esophagus (36), pancreas (37), colorectal cancer (38),

gastric cancer (39) and melanoma (40). However, this study still has

some limitations. First, the patients in the TCGA database that we

used lacked some clinical information, such as acute infection or

immune system disease, which would affect the results of the

analysis. In addition, information on more meaningful risk

factors for diagnosis and prognosis, such as smoking, alcohol
D

A

B

E F G

C

FIGURE 6

Construction and validation of a nomogram in patients with digestive system tumors. (A) Nomograms used to predict 2-, 3-, and 6-year overall
survival for patients in the training cohort. (B–D) Calibration curves of nomograms in terms of agreement between predicted and observed 2-, 3-,
and 6-y outcomes in the training (B), validation (C), and entire (D) cohorts. Dashed line at 45°represents perfect prediction, and the actual
performance of our nomogram is the red, blue, and pink lines. (E) ROC curve for predicting 2-year OS by risk score. (F) ROC curve for predicting 3-
year OS by risk score. (G) ROC curve for predicting 6-year OS by risk score.
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consumption, and family history, was incomplete. In the future, we

need to collect more complete clinical information for analysis to

further improve the reliability of the results. Second, because all

samples were from retrospective collections, further prospective

studies are needed to validate the results. We will apply the

analytical results to the clinic.
5 Conclusions

All in all, we have established an IGS-based diagnostic model

that enables accurate early diagnosis of digestive system tumors. In

addition, we construct DSTS to provide new insights into the

relationship between immune processes and TIME features, while

IGS-based prognostic prediction models can accurately predict the

prognosis of DST patients, and their predictive ability is verified in

GEO data. Diagnostic and prognostic models can be used as useful

tools for early diagnosis of biomarkers and the development of new

strategies for cancer immunotherapy.
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FIGURE 7

GEO datasets verification diagnostic model and prognostic model for digestive system tumors (A–F) The ROC curve of the diagnostic model on the
GEO dataset. [(A), COAD; (B), ESCA; (C), LIHC; (D), PAAD; (E), READ; (F), STAD]. (G–L) The survival curve of the prognostic model on the GEO
dataset. [(G), COAD; (H), ESCA; (I), LIHC; (J), PAAD; (K), READ; (L), STAD].
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