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Cross-attention multi-branch
CNN using DCE-MRI to
classify breast cancer
molecular subtypes
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Yuxin Lin2, Chang Liang2, Tang Liu2* and Yiping Zhao2*

1The College of Computer Science and Technology, Dalian University of Technology, Dalian,
Liaoning, China, 2Department of Radiology, The Second Affiliated Hospital of Dalian Medical
University, Dalian, Liaoning, China
Purpose: The aim of this study is to improve the accuracy of classifying luminal or

non-luminal subtypes of breast cancer by using computer algorithms based on

DCE-MRI, and to validate the diagnostic efficacy of the model by considering the

patient’s age of menarche and nodule size.

Methods: DCE-MRI images of patients with non-specific invasive breast cancer

admitted to the Second Affiliated Hospital of Dalian Medical University were

collected. There were 160 cases in total, with 84 cases of luminal type (luminal A

and luminal B and 76 cases of non-luminal type (HER 2 overexpressing and triple

negative). Patients were grouped according to thresholds of nodule sizes of 20 mm

and age atmenarche of 14 years. A cross-attentionmulti-branch net CAMBNET)was

proposed based on the dataset to predict the molecular subtypes of breast cancer.

Diagnostic performance was assessed by accuracy, sensitivity, specificity, F1 and

area under the ROC curve (AUC). And the model is visualized with Grad-CAM.

Results: Several classical deep learning models were included for diagnostic

performance comparison. Using 5-fold cross-validation on the test dataset, all

the results of CAMBNET are significantly higher than the compared deep learning

models. The average prediction recall, accuracy, precision, and AUC for luminal

and non-luminal types of the dataset were 89.11%, 88.44%, 88.52%, and 96.10%,

respectively. For patients with tumor size <20 mm, the CAMBNET had AUC of

83.45% and ACC of 90.29% for detecting triple-negative breast cancer. When

classifying luminal from non-luminal subtypes for patients with age at menarche

years, our CAMBNET model achieved an ACC of 92.37%, precision of 92.42%,

recall of 93.33%, F1of 92.33%, and AUC of 99.95%.

Conclusions: The CAMBNET can be applied in molecular subtype classification

of breasts. For patients with menarche at 14 years old, our model can yield more

accurate results when classifying luminal and non-luminal subtypes. For patients

with tumor sizes ≤20 mm, our model can yield more accurate result in detecting

triple-negative breast cancer to improve patient prognosis and survival.

KEYWORDS

breast cancer, molecular subtypes, deep learning, attention mechanism, MRI
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Introduction

Breast cancer is one of the most prevalent cancers in women

and one of the main causes of cancer-related death in women under

the age of 45. There are nearly 410000 patients who die of breast

cancer annually all over the world (1, 2). Breast cancer is highly

heterogeneous. The different molecular subtypes of breast cancer

are significantly different in treatment, radiochemotherapy

sensitivity, and prognosis (3, 4). Luminal type A breast cancer

subtype well responds to endocrine therapy, has a low risk of

recurrence and metastasis, and has a good prognosis. Luminal

type B well responds to endocrine therapy, but is more

proliferative than luminal type A and may easily recur in the

early stages (5). HER2-positive and triple-negative subtypes have

a high malignancy grade and poor prognosis (6). Meanwhile,

HER2-positive well responds to targeted molecular therapy.

Therefore, it is important to distinguish between luminal and

non-luminal breast cancer for accurate treatment.

Molecular typing of breast cancer mainly depends on

immunohistochemical examination of biopsy specimens.

Histopathological examination is not only invasive, time-

consuming, and expensive, but also easily leads to infection,

hematoma, and other complications. Because of the great

heterogeneity of the tumor, the biopsy tissue cannot fully

represent the biological behavior of the tumor. MRI has the

advantages of being non-invasive, resolving soft tissue well, and

non-radiation, and it has unique advantages for breast examination.

The studies show that MRI imaging features are helpful in

identifying molecular subtypes of breast cancer. luminal A and

luminal B masses are irregularly shaped and have burr-like edges

(7). Triple-negative breast cancer usually shows a well-defined

round mass with annular enhancement (8). Therefore, the

prediction of molecular subtypes of breast cancer based on MRI

features can effectively reduce the number of biopsies, alleviate the

pain of patients, reduce the burden on patients, and provide a

reference for individualized treatment.

However, predicting the molecular subtype of a tumor based on

the MRI features of breast cancer is difficult because of two issues:

(1) low contrast between the lesion area and normal tissue; (2) In

clinical practice, the shapes of different subtypes of tumors are very

similar, and the interpretation results of professional physicians are

greatly influenced by the subjective factors of the physicians. So it is

difficult to distinguish the molecular subtypes of breast cancer from

the naked eye.

Many traditional machine learning algorithms have been

applied to relevant breast cancer analysis tasks (9–13). However,

these traditional machine learning methods rely on manual feature

extraction with strong a priori, poor model generalization, and low

robustness, which are difficult to find discriminating features

manually and solve the classification of breast cancer subtypes. In

recent years, with the development of deep learning technology,

deep learning algorithms have been widely used in medical image

processing, such as tumor detection (14–16) and segmentation (17–

19), benign and malignant differentiation (20–23), etc. A lot of work

(24–27) has been devoted to the problems related to breast cancer

subtype classification, They try to extract discriminative features of
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breast cancer MRI by using deep learning models. Their

experimental results illustrate the feasibility of predicting the

molecular subtypes of tumors based on the MRI features of

breast cancer.

At the same time, because these models are only direct

applications or simple modifications of existing models, they do

not make targeted measures to address the above-mentioned

problems in breast cancer subtype classification. Therefore, these

models cannot distinguish well between the different molecular

subtypes of breast cancer. So to solve the above issues and improve

the performance of breast cancer subtype classification based on

breast MRI images, we propose a new deep network model

CAMBNET to extract high-level feature information and focus on

lesion objects. The model includes a multi-branch module, a cross-

attention mechanism, and a deep feature extraction module.

Specifically, using only a single branch for feature extraction may

not be effective and the multi-branch module is used to extract

richer features, In response to the problem of low contrast between

lesions and normal areas in the data set and the very similar shape

of lesions in different diseases, the attention mechanism has been

widely used in similar problems. Therefore, we designed the cross-

attention module to help the network pay attention to salient

objects, and as the depth of the model increases, the model can

extract deeper features and further improve the feature extraction

capability of the model. So the deep feature extraction module is

used to further extract the deep features. Due to many limitations

such as the rarity of the disease and the lack of appropriately labeled

medical expertise, resulting in a relatively small dataset for breast

cancer subtype classification, we chose a smaller depth of model

layers and constructed our deep learning model.

Studies have shown that early menarche age increases the risk of

luminal-type breast cancer, which may be related to endogenous

estrogen exposure (28). Tumor size is one of the indices to evaluate

the staging of breast cancer and has an important significance for

the selection of surgical methods. And small tumors offer limited

imaging options, which can easily lead to misdiagnosis. The earlier

the age of menarche, the higher the rate of axillary lymph node

metastasis and the worse the prognosis of breast cancer patients

(29). Therefore, the initial aim of this study was to develop a new

deep network model for predicting luminal and non-luminal

subtypes of breast cancer using DCE-MRI images. We also

investigated the diagnostic efficacy of different age groups for

menarche (≤ 14 years and >14 years) and tumor size groups (≤

20 mm and >20 mm).
Materials and methods

Data collection

This is a retrospective study and is approved by the Second

Affiliated Hospital of Dalian Medical University Ethics Committee.

Non-specific invasive breast cancer patients admitted to our

hospital from May 2017 to December 2019 were selected. The

inclusion criteria consisted of: (1) patients with non-specific

invasive breast cancer confirmed by biopsy or surgical pathology
frontiersin.org
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had complete immunohistochemical results and molecular subtypes

were identified. (2) DCE-MRI was performed within a week before

the operation. (3) complete clinical data, including age

and menstrual status. The exclusion criteria consisted of

(1) percutaneous biopsy or neoadjuvant chemotherapy or

radiotherapy before MRI examination or (2) tumor was

inconclusive because of artifacts or no visible region of interest

(ROI) or (3) image quality was poor or (4) molecular typing of

immunohistochemical data of pathologic diagnosis was incomplete.

Ultimately, 160 patients with breast cancer were enrolled in the

study, including 84 with luminal subtypes (luminal A and luminal

B) versus 76 with non-luminal subtypes (HER2-positive and

triple-negative).
MRI technique

Images were obtained with a 3.0-T magnetic resonance imaging

scanner (Discovery 750W, GE). A special coil was used to scan the

breast. Patients were in the prone position with the head tilted forward

and the double breasts naturally suspended in the coil. T1WI, T2WI,

DWI and 3D volume images of the breast (3D VIBRANT) were

performed. The 3D VIBRANT scan parameters are as follows: TR 7.6

ms, TE 3.8 ms, layer thickness 1.2 mm, FOV 320 mm × 320 mm, flip

angle 15°, matrix 288 × 288. The contrast agent was injected into the

antecubital vein through a high-pressure injector (GE Company, USA).

The flow rate of the contrast agent was 2 mL/s and the dose was 0.2

mmol/kg. After injection, 7 consecutive non interval scans were

performed, each scan lasting 1 minute and 7 seconds.
Immunohistochemical examination

The receptors ER, PR, HER2, and Ki-67 were detected by

immunohistochemistry. (1) ER/PR positivity was defined as ≥1%

positive staining of tumor nuclei (2) HER-2 positivity was defined

as Her-2 (3+), (-, and (1+) were defined as HER -2 negativity.

Fluorescence in situ hybridization (FISH) was used to detect HER -2
Frontiers in Oncology 03
fluorescence in situ hybridization (3) Ki-67 showed high expression

(≥14%) and low expression (<14%). Breast cancer is classified into

four subtypes according to receptor status, defined as follows: (1)

Luminal A: ER and/or PR positive, HER -2 negative and KI-67 low

expression (2) Luminal B: ER and/or PR positive, Ki-67-high

expression, Her-2(positive or negative) (3) Her-2 positive: ER, PR

negative, HER -2 positive (4) triple-negative: ER, PR, Her-

2 negative.
Image processing

Region of interest (ROI) outlining the tumor region in MRI

T1WI, T2W1, and DCE (selected third-stage enhanced images after

contrast injection) by 2 senior diagnostic breast MRI physicians

should include all tumor regions, including cystic and

necrotic regions.

As the physician outlines the specific contour of the tumor, we

derive the minimum matrix covering the tumor by extracting the

most marginal points in the four directions of the contour. These four

points were added 10 pixels in their respective directions to crop their

contour areas, and the cropped images were uniformly adjusted to 64

× 64 pixels by bilinear interpolation. And the image is normalized by

transforms. Normalize. The specific process is shown in Figure 1.
Data set partitioning

Breast images from 20% of the cases in the dataset were used as the

test dataset, and 80% were kept as the training dataset while ensuring

that no patient images appeared in both the training and test sets. The

number of each sub-dataset in the dataset is shown in Table 1.
Deep learning model

In this paper, a multi-branch crossover network is proposed to

extract high-level features. Two of the branches fuse the extracted
A B D E FC

FIGURE 1

Data set processing process. (A) is the original image, (B) is the specific outline of the tumor sketched by the physician, (C) is the four edge points in
the specific outline, (D) is the minimum matrix covering the tumor, (E) shows that 10 pixels are added to each direction of the four points to crop
the outline area. and (F) is the cropped image uniformly resized to 64×64 pixels by a bilinear interpolation method.
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features after passing through the cross-attention module, and then

the fused features are fused with the shallow features extracted by

SFEpath to improve the classification performance of MRI images

for two different subtypes. The proposed framework is shown in

Figure 2. From Figure 2, we can see that our proposed network

architecture consists of three main parts: the three-branch

framework, the cross-attention module, and the deep feature

extraction module. The specific model parameters are shown in

Table 2. We will explain these modules in detail in the

following sections.
Three-branch structure

Due to the limited amount of data in the dataset, an overly

complex model is too easy to over-fit. So three light branching paths

are designed. From Figure 3A, SFB refers to the Squeeze-and-
Frontiers in Oncology 04
Excitation module (30) and SFEpath is added to the branching

framework to extract depth features as the input of depth concern,

and part of the original input feature information is directly

transferred to the output features by using the residual

connection. The residual connection can simplify the difficulty of

feature learning, protect the integrity of feature information to a

certain extent, and alleviate the problem of model degradation in

deep networks. It enables the model to better learn the shallow

information such as the texture and shape of the breast image and

makes the features extracted by the model richer.

Since the contrast between tumor and background is low, a

network capable of extracting multiple depth features from different

branches is needed. To obtain more depth features, a multi-branch

network was designed using its two branches (called LTTpath1 and

LTTpath2), inspired by the Inception model. That is, the main

structure of this network uses asymmetric rotating c1×n and n×c1

filters to reduce the parameter size and computational cost, instead
TABLE 1 The number of each sub-dataset in the dataset.

Molecular subtypes cases

Size Age

≤ 20 >20 ≤ 14 >14

Luminal A 20 18 22 16

Luminal B 27 20 30 17

HER2+ 19 28 21 26

Triple-negative 7 21 10 18

Total 73 87 83 77
FIGURE 2

Structure of the model (SFEpath, Shallow feature extraction path; LTTpath, Locating the tumor path; DFEM, Depth Feature extraction module.).
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of the traditional n×n. The two main effects are (1) the downscaling

of the data and the introduction of more nonlinearities and (2) the

improvement of the generalization.
Cross-attention Module

For the model to learn specific differences and relationships

between different subtypes of breast cancer, the interference of

irrelevant regions is suppressed. We propose a cross-attention

mechanism that focuses on the salient features of each breast

cancer subtype. Our proposed cross-attention module consists of

a spatial attention module and a channel attention module, as

shown in Figure 3B, where the spatial attention module and the

channel attention module are single-path modules instead of the
Frontiers in Oncology 05
dual-path module of CBAM because in breast cancer subtype

classification experiments we found that the combination of

single-path with cross-path patterns is better than the

combination of dual-path patterns or dual-path with cross-

path patterns.

To suppress the interference of irrelevant regions, we further

utilize the spatial attention module and the channel attention

module. For channel attention, it suppresses the less informative

channels by learning channel attention weights in the channels as

feature selectors that indicate the importance of each feature

channel, channel attention focuses on “what” is meaningful for a

given input image. Unlike the channel attention module, the spatial

attention module is concerned with “where” the information part is,

and as a complement to the channel attention module, spatial

attention obtains the importance of each spatial location by learning
TABLE 2 Parameter configurations of different modules.

Input layer Input layer dimensions Filter size Channels Output layer

Pre_layer 64 × 64 × 3 3 × 3 16 Three-branch structure

SFEpath

Conv1_1 64 ×64×16 1 × 1 128 Dwconv1_2

Dwconv1_2 64 ×64 ×128 3 × 3 128 SEB1_3

SEB1_3 64 ×64 ×128 —— —— Conv1_4

Conv1_4 64 ×64 ×128 1 × 1 16 DFEM

LTTpath1

Conv2_1 64 ×64×16 1 × 1 8 Dwconv2_2

Dwconv2_2 64 ×64×8 3 ×3 8 Conv2_3

Conv2_3 64 ×64×8 1 × 1 16 Cross_Attention

Cross_Attention 64 ×64×16 —— —— DFEM

LTTpath2

Conv3_1 64 ×64×16 1 × 1 4 Conv3_2

Conv3_2 64 ×64×4 1 × 3 8 Conv3_3

Conv3_3 64 ×64×8 3 × 1 8 Conv3_4

Conv3_4 64 ×64×8 1 × 3 8 Conv3_5

Conv3_5 64 ×64×8 3 × 1 16 Cross_Attention

Cross_Attention 64 ×64×16 —— —— DFEM

DFEM

Maxpool4_1 64 ×64×32 —— —— Conv4_2

Conv4_2 32 ×32×32 1 × 1 128 Dwconv4_3

Dwconv4_3 32 ×32 ×128 3 × 3 128 SEB4_4

SEB4_4 16 ×16 ×128 —— —— Conv4_5

Conv4_5 16 ×16 ×128 1 × 1 64 Maxpool4_6

Maxpool4_6 16 ×16 ×64 —— —— Fc4_7

Fc4_7 8 ×8 ×64 64 × 2 —— output
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https://doi.org/10.3389/fonc.2023.1107850
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sun et al. 10.3389/fonc.2023.1107850
spatial attention weights. They enable the network to identify key

features by their spatial location and thus improve the feature

representation of different subtypes.
Depth feature extraction module

The features learned from the three branches are fused

according to their different characteristics. LTTpath1 and

LTTpath2 complement each other’s information through additive

operations. Since the features extracted from SFEpath are shallow

information such as the texture and shape of the breast image, the

features extracted from SFEpath are used as complementary

information to the fused features of LTTpath1 and LTTpath2.

The fusion is superimposed by a concatenation operation to

reduce the loss of information.

As shown in Figure 3A, the fusion of features from multiple

branches by path4 reduces the size of the feature map by half and

doubles the number of feature maps, maintaining the complexity of the

network layer. The deep features are further extracted by increasing the

number of channels and setting stride to 2 to remove the residual

connected blocks, and finally, the extracted deep features are used for

the classification of breast cancer subtypes.
Parameter setting

We implemented the proposed framework and conducted

experiments using the Pytorch library. The parallel computation

uses a GPU-equipped graphics processing unit (NVIDIA GeForce

GTX 2060) to accelerate the processing of training and testing. The
Frontiers in Oncology 06
batch sizes for training and testing were set to 8 and 1, respectively.

the maximum epoch time was set to 200, and the initialized learning

rate was 0.002, multiplied by 0.95 every 10 epochs. we chose

RMSprop as the optimizer for the training phase. Data overfitting

is prevented by limiting the square size of kernel weights and using

L2 regularization. The whole framework is trained in an end-to-end

manner, and the model is trained with a backpropagation algorithm

that saves the model parameters that perform best on the validation

set. The whole training process takes 1 hour. The cross-entropy

function is chosen as the classification loss function.
Statistical analysis

TP(True Positive):The number of samples judged to be correct

among those judged to be positive.

FP(False Positive):The number of misjudgments in samples

judged positive.

TN(True Negative)The number of correct samples among those

judged negative.

FN(False Negative):The number of judgment errors in samples

judged negative.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall ¼ TP
TP + FN

(3)
FIGURE 3

Three-branch structure and Cross-attention Module. (Conv, Convolutional layer; Dwconv, Depthwise convolutional layer; SEB, Squeeze-and-
Excitation Block).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1107850
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sun et al. 10.3389/fonc.2023.1107850
F1 =
2� precision� recall
precision + recall

(4)

For each subtype of disease, we report five metrics, namely: Acc

(Accuracy), Pre(Precision), Rec(Recall), F1(F1 score), and AUC

(Area under the ROC curve).
Results

Comparison of CAMBNET and
classical CNN

The classification results of different methods according to the

evaluationmetrics are shown in Table 3. we also performedmigration

learning experiments on our proposed CAMBNET model. We

selected 3200 images from the Breakhis database as the training set

and 1010 images as the test set to initially train the model. During the

training process, the training model parameters with the best

classification results were saved, and then the model parameters

were reloaded and further trained on the training set of the target

dataset we collected. At the same time, this paper performs migration

learning while performing real-time data enhancement on each

breast MRI image in training. The main implementation method is

to perform random rotation and flip along the diagonal of the image.

According to Table 3, our model achieves the best results in all

classification metrics, with an Accuracy of 88.44%, Precision of

88.52%, Recall of 89.11%, and F1 of 88.40%. Meanwhile, after

transfer learning and data augmentation, the model can be further

improved with 89.46% for Accuracy,89.83% for Precision, 90.35% for

Recall, and 89.44% for F1. As shown in Figure 4, the CAMBNET

model has the best performance with an AUC value of 96%.

Comparison of CAMBNET with
other methods

Previous work has been done to classify breast cancer subtypes

using existing machine learning methods or building deep learning

models. Tianwen Xie et al (31) used KNN, SVM, and other machine
Frontiers in Oncology 07
learning methods to classify breast cancer subtypes and achieved

good experimental results. Richard Ha et al (27) and Rong Sun et al

(32) built models for breast cancer subtypes for classification. We

compared our method with the specific methods used in the three

papers mentioned above, and the experimental results are shown in

Table 4. As can be seen from Table 4, the accuracy of the traditional

machine learning methods is significantly lower than the

classification accuracy of the deep learning models, while our

model exceeds the previously mentioned model methods in all

metrics, which fully illustrates the accuracy of our model.
Multi-source data testing

We collected and collated 40 images acquired by a 1.5T magnetic

resonance scanner (HDXT, GE, USA) and replaced 40 images of the
TABLE 3 Experimental results of correlation networks on the dataset. Transfer+Aug: transfer learning and Data Augmentation.

Model Acc (%) Pre (%) Rec (%) F1(%)

Densenet121 78.91 83.77 81.21 78.75

Resnet18 75.51 82.09 78.18 75.14

Resnet34 77.55 77.30 77.63 77.37

Vgg16 76.53 82.14 79.01 76.27

VIT 70.78 71.16 71.47 73.77

SENet 82.65 84.96 84.29 82.64

RegNetY_400MF 78.57 83.20 80.82 78.42

CAMBNET 88.44 88.52 89.11 88.40

Transfer+Aug 89.46 89.83 90.35 89.44
fronti
Bold marks show that it is the highest value.
FIGURE 4

Receiver operating characteristic (ROC) curves of correlation
networks in test dataset.
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source data set with these 40 1.5T images, thus collating a multi-source

data set. The CAMB model has also experimented with multi-source

data. The specific experimental results are shown in Table 5, from

which it can be seen that the indicators of the experiments have

decreased. However, the CAMB model still achieves 82.29% accuracy

on the multi-source data set, and the experimental results show that the

CAMBmodel has strong robustness. We analyze that this is due to the

fact that the model uses cross-attention mechanisms, multi-branch

paths, dropout, feature fusion, and other measures to ensure the

robustness of the model.
Effect of age at menarche on molecular
subtype classification

Table 6 shows the effect of the patient’s age at menarche (≤14

and >14 years) on the classification effect of the CAMBNET model

(33). The experimental results showed that the younger the age at

menarche, the better the model classification effect, and the more

significant the classification effect in distinguishing between luminal

and non-luminal types. At the age of menarche >14 years, the

CAMBNET model classified luminal and non-luminal types with

an Accuracy of 82.58%, Precision of 83.06%, Recall of 82.85%, F1 of

82.57%, and AUC of 87.45%. The accuracy of the CAMBNET

model in classifying luminal and non-luminal types was 92.37% for

Accuracy, 92.42% for Precision, 93.33% for Recall, 92.33% for F1,

and 99.95% for AUC for age at menarche ≤14 years. The accuracy

was 69.23% in cases with age at menarche >14 years and 88.44% in

cases with age at menarche ≤14 years.
Impact of tumor size on molecular subtype
classification

As shown in Table 7, we conducted experiments on the

effectiveness of the CAMBNET model in different tumor size

groups (≤2cm and >2cm). In the classification of luminal and
Frontiers in Oncology 08
non-luminal types, the CAMBNET model had better performance

in differentiating luminal and non-luminal types in the >2 cm group

with an AUC of 95.87% and ACC of 88.07%. 89.35% for

Precision,85.81% for Recall, and 86.97% for F1. However, in the

classification experiment between triple-negative and non-triple-

negative types, the CAMBNET model had better discriminatory

performance in the <2 cm group with an AUC of 83.45% and ACC

of 90.29%. 94.79% for Precision, 70.59% for Recall, and 76.42%

for F1.
Visual analysis of CAMBNET

Although the CAMBNET model has achieved high accuracy

in breast cancer subtype classification, the lack of visual

analysis severely limits its application in realistic tasks.

Therefore, we experimentally demonstrate the reliability and

feasibility of this method by performing a visual analysis of the

CAMBNET model.

First, we obtained the visual images of the feature shown in

Figure 5, and the higher brightness in the feature map indicates

higher attention and a higher contribution to the classification

performance. Darker pixel regions such as blue indicate a smaller

proportion of training and a smaller contribution to the

classification performance. As shown in Figure 5, the focused

regions of FEATURE MAP are consistent with the locations of

key lesions that physicians focus on, which demonstrates that the

method can well localize image features with clinical diagnostic

value and proves the effectiveness of the CAMBNET model in

breast cancer subtype classification.

To further demonstrate the effectiveness of the designed multi-

branch attention network, we visualized the learned features with

the CAMBNET model and the ResNet34 (34), DenseNet121 (35),

Vgg16 (36) networks which have better performance in

classification in the classical model by Grad-CAM. Grad-CAM is

a gradient-weighted class combining gradient information with the

feature mapping activation mapping method. Given an input
TABLE 4 Comparison of CAMBNET with other methods.

Model Acc(%) Pre (%) Rec (%) F1(%)

SVM 66.67 69.63 67.57 66.76

KNN 74.15 74.40 74.15 74.05

Richard Ha et al. (27) 82.31 84.22 83.82 82.31

Rong Sun et al. (32) 84.35 85.85 85.72 84.35

CAMBNET 88.44 88.52 89.11 88.40
fronti
Bold marks show that it is the highest value.
TABLE 5 Multi-source data testing.

Dataset Acc(%) Pre (%) Rec (%) F1(%)

multi_sources 82.29 82.80 82.29 82.22

single_source 88.44 88.52 89.11 88.40
Bold marks show that it is the highest value.
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sample, Grad-CAM first calculates the gradient of the target class

for each feature map in the last convolutional layer and performs a

global average pooling of the gradients. The importance weight of

each feature map is obtained by global average pooling. Then, the

weighted activation of the feature maps is calculated based on the

importance weights to obtain a gradient-weighted class activation

map. The gradient-weighted class activation map can be used to

locate the important regions with class discriminative properties in

the input samples. The results are shown in Figure 6, and we can see

that the focus region of our designed multi-branch attention

network is mainly on the tumor itself compared with other

classical networks. Meanwhile, the focus of other models is often

not on the tumor itself but on other non-focus regions. This

indicates that compared with other classical models, the

CAMBNET model can better learn the features of important

regions and focus on the discriminative features between different

subtypes, and finally achieve accurate classification of subtypes.
Frontiers in Oncology 09
Discussion

It has been reported that the histological features based on

DCE-MRI images of the breast are helpful to differentiate the

molecular types of breast cancer. Fan et al. (28) found that the

imaging omics model based on DCE-MRI was good at identifying

the molecular subtypes of breast cancer. Agner et al. (37)

retrospectively analyzed the DCE-MRI images of 76 patients with

breast cancer and analyzed the differences between triple-negative

breast cancer (TNBC) and other molecular subtypes. Sun et al. (37)

retrospectively analyzed the DCE-MRI images of 266 breast cancer

patients and used a convolutional neural network (CNN) to

distinguish breast cancer subtypes (luminal and non-luminal).

The average prediction specificity, accuracy, precision, and area

under the ROC curve were 0.958, 0.852, 0.961, and 0.867,

respectively. Another study (26) also used a convolutional neural

network (CNN) algorithm to predict the molecular subtype of
TABLE 6 Diagnostic performance of CAMBNet for differentiating molecular subtypes based on menarche age.

Dataset Acc(%) Pre (%) Rec (%) F1(%) AUC(%)

Mage_large 82.58 83.06 82.85 82.57 87.45

Mage_small 92.37 92.42 93.33 92.33 99.95

Mage_large_LuminalA 69.23 63.93 62.46 62.92 56.01

Mage_small_LuminalA 88.44 83.45 65.11 69.35 85.68
fro
Mage_large, luminal and non-luminal at age of menarche >14 years;
Mage_small, luminal and non-luminal at age of menarche ≤ 14 years;
Mage_large_LuminalA,luminalA and others at age of menarche >14 years;
Mage_small_LuminalA,luminalA and others at age of menarche ≤14 years.
Bold marks show that it is the highest value.
TABLE 7 Diagnostic performance of CAMBNet for differentiating molecular subtypes based on tumor size.

Dataset Acc(%) Pre (%) Rec (%) F1(%) AUC(%)

size_large 88.07 89.35 85.81 86.97 95.87

size_small 82.73 85.24 82.97 82.48 84.62

size_large_TN 86.62 78.88 62.86 66.24 48.45

size_small_TN 90.29 94.79 70.59 76.42 83.45
size_large, luminal and non-luminal at size of tumor >2cm;
size_small, luminal and non-luminal at size of tumor ≤2cm;
size_large_TN, triple-negative and others at size of tumor >2cm;
size_small_TN, triple-negative and others at size of tumor ≤2cm.
Bold marks show that it is the highest value.
A B D E F GC

FIGURE 5

The visual images of feature. (A) the feature Source images. (B) the first convolutional layer images. (C) SFEpath images. (D) LTTpath1 images.
(E) LTTpath2 images. (F) the three branches fused images. (G) DEFM images.
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breast cancer based on the MRI features of breast cancer and

achieved good diagnostic efficiency. The above study

demonstrates the feasibility of using deep learning to classify

different molecular subtypes of breast cancer. To further improve

the performance of breast cancer subtype classification based on

breast MRI images, we propose a new deep network model to

extract high level feature information and focus on lesion objects.

Experiments conducted on the MRI dataset of 160 clinical breast

tumor patients obtained from the Second Hospital of Dalian

Medical University showed that the recall, accuracy, precision,

and area under the ROC curve of our method were 89.11%,

88.44%, 88.52%, and 96.10% for luminal and non-luminal types.

The above experimental results verify the effectiveness of the model,

and we used transfer learning and data augmentation for the

CAMBNET model to further improve the model’s ability to

classify breast cancer subtypes. Among them, Accuracy of 89.46%,

Precision of 89.83%, Recall of 90.35%, and F1 of 89.44%.

Histopathological analysis of breast cancer has achieved high

accuracy in recent years. Chuang Zhu et al. (38) proposed a

method for histopathological image classification of breast cancer

by combining multiple compact convolutional neural networks

(CNN). Mustafa I. Jaber et al. (39) developed a deep learning

method for subtype classification of tumors using only breast

biopsy tissue sections. Related work achieved high accuracy rates

and we compared these models with our model and showed that the

results achieved by both are comparable. However, MRI has the

advantage of being noninvasive and fast, whereas histopathological

images are invasive and also have slower feedback of results, so our

work still has a relative advantage. And the interpretability of the

machine learning results was achieved through the visual analysis of

the CAMBNET model. It shows that the method is reliable

and feasible.

TNM staging of breast cancer is of great importance for

guiding treatment, evaluating the curative effect, and assessing

prognosis (40). Whether the maximum diameter of the tumor is

more than 2 cm is the most important index for distinguishing T1

from T2. TNBC has the highest invasiveness and the worst
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prognosis. Some studies (41) have found that the diameter of the

primary tumor of TNBC positively correlates with the axillary

lymph node metastasis rate. When the tumor diameter exceeds 2

cm, the ipsilateral axillary lymph node metastasis rate increases by

50% (42, 43). In this study, our model performed best in

distinguishing TNBC from NTNBC in the group with tumor

diameter ≤ 2 cm. The accuracy is 90.29% and the AUC value is

83.45%, which is helpful for the early diagnosis and treatment of

TNBC, improving the prognosis and survival rate of patients. Early

age of menarche is one of the risk factors for breast cancer (44).

The younger the age of menarche, the earlier a woman is exposed

to estrogen. Studies have shown that the earlier the age of

menarche, the worse the degree of differentiation and prognosis

of breast cancer patients, and the higher the rate of axillary lymph

node metastasis (29). Studies have reported that the earlier the age

of menarche, the higher the incidence of non-luminal breast cancer

and the higher the malignancy, and the worse the prognosis of

non-luminal breast cancer compared to luminal breast cancer. For

the classification of luminal and non-luminal breast cancer, our

results show that the ACC value for menarche age ≤ 14 years is

92.37%, precision is 92.42%, recall is 93.33%, F1 is 92.33%, and

AUC is 99.95%. At the same time, we investigated the classification

efficiency of our model in luminal type A and non-luminal type A.

The results showed that the ACC diagnostic efficiency for

menarche age ≤ 14 years was 88.44%, precision 83.45%, recall

65.11%, F1 69.35%, and AUC 85.68%. Our model is more valuable

in classifying luminal and non-luminal types of breast cancer

patients with menarche age ≤ 14 years.

In this study, there are also some limitations, firstly, only the

classification of intraluminal subtypes/non-luminal subtypes was

performed in this paper, because the dataset is not sufficient

relative to the task of four subtypes. Moreover, annotating such

images is laborious and time-consuming, and subsequent work can

be performed for weakly supervised or unsupervised learning.

Meanwhile, the authors have some textual supplementary

information at hand, which can be considered for subsequent

experiments to be applied by distillation learning and other methods.
A B D EC

FIGURE 6

Visualization of CAMB CNN. (A) Source images. (B) CAMBNet images. (C) ResNet34 images. (D) DenseNet121 images. (E) Vgg16 images.
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Conclusion

In summary, the experimental results show that our novel deep

learning algorithm based on multi-branch feature fusion and attention

mechanism has high accuracy in predictingmolecular subtypes of breast

cancer, Our model might be more valuable in classifying luminal from

non-luminal subtypes for patients with age at menarche ≤14 years. For

patients with tumor sizes ≤20 mm, our model could be helpful in more

accurately detecting triple-negative breast cancer to improve patient

prognosis and survival. So our novel deep learning algorithm has greater

potential for future clinical applications. In the near future, we will

collect more data to build a larger and more comprehensive breast

cancer subtype database to better study the problem of breast cancer

subtype classification, aiming to comprehensively assist physicians in

the clinical diagnosis and treatment of breast cancer subtypes.
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