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Purpose: Immune checkpoint blockade (ICB) therapy has transformed the treatment

of triple-negative breast cancer (TNBC) in recent years. However, some TNBC

patients with high programmed death-ligand 1 (PD-L1) expression levels develop

immune checkpoint resistance. Hence, there is an urgent need to characterize the

immunosuppressive tumor microenvironment and identify biomarkers to construct

prognostic models of patient survival outcomes in order to understand biological

mechanisms operating within the tumor microenvironment.

Patients and methods: RNA sequence (RNA-seq) data from 303 TNBC samples

were analyzed using an unsupervised cluster analysis approach to reveal

distinctive cellular gene expression patterns within the TNBC tumor

microenvironment (TME). A panel of T cell exhaustion signatures,

immunosuppressive cell subtypes and clinical features were correlated with

the immunotherapeutic response, as assessed according to gene expression

patterns. The test dataset was then used to confirm the occurrence of immune

depletion status and prognostic features and to formulate clinical treatment

recommendations. Concurrently, a reliable risk prediction model and clinical

treatment strategy were proposed based on TME immunosuppressive signature

differences between TNBC patients with good versus poor survival status and

other clinical prognostic factors.

Results: Significantly enriched TNBC microenvironment T cell depletion

signatures were detected in the analyzed RNA-seq data. A high proportion of

certain immunosuppressive cell subtypes, 9 inhibitory checkpoints and

enhanced anti-inflammatory cytokine expression profiles were noted in 21.4%

of TNBC patients that led to the designation of this group of immunosuppressed

patients as the immune depletion class (IDC). Although IDC group TNBC samples

contained tumor-infiltrating lymphocytes present at high densities, IDC patient

prognosis was poor. Notably, PD-L1 expression was relatively elevated in IDC

patients that indicated their cancers were resistant to ICB treatment. Based on
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these findings, a set of gene expression signatures predicting IDC group PD-L1

resistance was identified then used to develop risk models for use in predicting

clinical therapeutic outcomes.

Conclusion: A novel TNBC immunosuppressive tumor microenvironment

subtype associated with strong PD-L1 expression and possible resistance to

ICB treatment was identified. This comprehensive gene expression pattern may

provide fresh insights into drug resistance mechanisms for use in optimizing

immunotherapeutic approaches for TNBC patients.
KEYWORDS

immunogenomics, TNBC, t cell exhaustion, immunosuppressive cytokines,
tumor microenvironment
Introduction

Triple-negative breast cancer (TNBC) is a term used to describe a

subset of breast cancers (BCs) defined by their lack of expression of

oestrogen receptors, progesterone receptors and human epidermal

growth factor receptors (1, 2). The clinical management of TBNC, a

highly heterogeneous disease, is a great challenge, due to high

incidence rates of visceral TNBC metastases and a lack of

recognized therapeutic targets. As compared with stage 1 TNBC

patients, patients with stage II or III TNBC are at greater risk of

disease recurrence and death, such that at 5 years post-diagnosis, the

event-free survival rate is only about 71% and the overall survival rate

is only about 77% (3).

Current strategies for predicting treatment outcomes and

making treatment decisions are typically based on cancer cell

histologic subtype and clinical parameters (e.g., disease stage,

metastasis and tumor resectability). However, recently developed

molecular profiling methodologies have enabled clinicians to

quantitatively analyze tumors based on genome-wide gene

transcription profiles, protein expression profiles and/or mutation

profiles. In turn, use of these powerful methods has made it possible

to define tumor subtypes more accurately and precisely in order to

achieve improved prediction of therapeutic responses of specific

tumor types to specific treatments. For example, Perou et al. utilized

these methods to obtain gene expression-based cellular signatures

that were used to classify BC cells into five intrinsic molecular
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subtypes: basal-like, normal-like, HER2-enriched, luminal A and

luminal B. Notably, this classification scheme aligned with tumor

subtype differences related to tumor cell origin and differential

progression characteristics. Meanwhile, results obtained by another

group identified three BC subtypes (1q/16q, amplifier and complex)

based on gene copy number alteration (I) patterns (4).

It is well known that cancer initiation, progression and

therapeutic resistance are influenced by genetic and epigenetic

changes that, in turn, are influenced by crosstalk between tumor

cells and the local tumor microenvironment (TME). In fact, TME

immune cell infiltration is associated with improved BC patient

clinical outcomes when infiltration occurs at high levels and thus

can serve as a valuable prognostic marker (5, 6). In particular,

higher CD8+ T cell infiltration levels are strongly associated with

better overall survival (OS) in oestrogen receptor (ER)-negative BC

patients (7, 8), while high-level immune cell infiltration has been

associated with enhanced responses to adjuvant chemotherapy (9).

In recent years, numerous studies have shown that transcriptome

data can be useful for describing the TME (10–15). For example,

results of several studies suggest that high TME expression of

leukocyte-related genes is associated with lower BC recurrence

risk (10, 13, 16, 17). Notably, results of recent meta-studies

reported by Ali et al. and Bense et al. have provided insights into

how specific immune cell types within the TME affect BC prognosis

(10, 18). However, the role that host immunity plays in shaping

clinical outcomes requires further clarification through more

comprehensive analyses.

To date, ICB therapy has been used successfully to treat patients

with melanoma and other cancers (19–22), with three US Food and

Drug Administration (FDA)-approved therapeutic vaccines used

currently in clinical settings (23). However, fewer than 15% of

cancer patients respond to ICB, although increased survival of some

pat ients wi th so l id tumors has been reported af ter

immunotherapeutic treatment (24). Meanwhile, clinical studies of

ICB and vaccine therapies have shown no significant immune

modulation-related effect on TNBC treatment outcomes or

patient survival (25, 26), while promising results have been

obtained in clinical trials of immunomodulators administered
frontiersin.org
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with other treatments. For example, results of one clinical study

demonstrated that administration of anti-programmed cell death

protein 1 (PD-1) monoclonal antibodies prior to tumor resection

enhanced local and systemic antitumor immune responses (27). In

addition, results of a phase II study of glioma vaccines administered

with granulocyte-macrophage colony-stimulating factor,

cyclophosphamide and bevacizumab showed improved patient

survival (28). Moreover, results of related studies have shown that

during tumorigenesis, cytokines increase cellular oncogenic

potential by promoting epithelial-mesenchymal transitioning,

angiogenesis, immunosuppression, metastatic niche development

and therapeutic drug resistance, as well as widespread TME changes

and activation of intracellular signaling pathways. Therefore,

oncologic cytokine studies may provide important insights into

tumor immunology and reveal potential applications for regulatory

cytokine-chemokine therapies in cancer treatment (29).

The TNBC-associated TME, which is highly complex and

heterogeneous, exerts unclear effects on TNBC immunotherapeutic

efficacy. In this study, TME characteristics were identified

using nonnegative matrix factorization (NMF)-based virtual

microdissection analysis, which can rapidly deconvolute gene

expression data from tumor cells, inflammatory cells, stromal cells

and cytokines in large numbers of tumor samples (30). Using this

strategy, we extracted transcriptomic signals associated with expression

of immunosuppression-related genes within the TME by analyzing

RNA sequencing (RNA-seq) data from 303 human TNBC samples.

Results of this analysis were then used to identify and validate TNBC

TME immune cell types with immunosuppressive molecular signatures

that potentially contribute to ICB resistance. These results were then

used to formulate patient prognosis models and clinical treatment plans

based on multiple variables.
Material and methods

Data download and processing

A total of three publicly available datasets derived from The

Cancer Genome Atlas (TCGA), Molecular Taxonomy of Breast

Cancer International Consortium (METABRIC) and Gene

Expression Omnibus (GEO) databases served as sources of data for

study cohorts designated A, B and C, respectively. A survival

prognosis model was developed based on the 303 TNBC patients

of cohort A, of whom some patients were assigned to the early-stage

group (I~II, 83 patients) for training and the remaining patients were

assigned to the late-stage group (IIA~IV, 220 patients) for internal

validation (31). To validate the established model, cohort B gene

expression data (derived from METABRIC) derived from 154

paracancerous samples and 209 BC samples were employed (32).

Thereafter, the survival prognosis model was validated for different

TNBC subtypes by performing virtual microdissection analysis of

cohort C data (accession number GSE16446) (33, 34) followed by

survival analysis performed using Kaplan-Meier estimation analysis.
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Identification of the immune depletion
class using unsupervised clustering analysis

First, bulk RNA-seq-based gene expression profiles of the 691-

patient training cohort were subjected to virtual microanatomical

analysis using NMF in R using one of the most critical NMF

parameters, the decomposition level r, to define the number of

clusters. When r was set to 4, the highest co-occurrence correlation

coefficient was attained and the TCGA training cohort dataset was

efficiently deconstructed (Figure 1A). Based on this result, r was set

to 4. Following the method used in a recently reported study,

immune and stromal enrichment scores were determined using

single-sample gene set enrichment analysis (ssGSEA) (35, 36),

which was bundled in GSVA to enable the identification of

immune-related and stromal-related expression profiles (15).

Once the immune and stromal cell enrichment scores were

combined with the four NMF-identified clusters (numbered 1-4),

we noticed that cluster 1 yielded stronger enrichment scores than

the other clusters. As a result, cluster 1 was considered to be the

“immune stromal cluster” within this context (37).

Second, numbers of certain types of immune cells present

within immune stromal cluster tumors were studied by collecting

data signals representing various immune cell subtypes while

enrichment scores were determined according to ssGSEA-derived

expression profiles. To evaluate the number of individual immune

cells within the immune stromal clusters, enrichment fractions of 28

immune cells were merged with the clusters. Next, absolute fraction

data of 22 infiltrating immune cells that were predicted by the

CIBERSORT algorithm (according to gene expression patterns)

were collected from the TIMER database (http://timer.cistrome.org/

infltration estimation for tcga.csv.gz). Thereafter, leukocyte fraction

data (TCGA all leuk estimate.masked.20170107.tsv) obtained from

Thorsson et al. (https://gdc.cancer.gov/about-data/publications/

panimmune) were used to determine DNA methylation-based

signatures (38). Leukocyte fraction data were then obtained here

based on analysis of images of TCGA tumors (including TNBC

tumors) that can be found in the Supplementary Table (Table S1) of

the Saltz study (39). To confirm lymphocyte enrichment within the

immune stromal clusters, the immune-stromal class data were

compared to that of the remaining clusters.

Finally, multiple inhibitory receptor expression profiles were

analyzed that revealed immune stromal clusters that overexpressed

multiple inhibitory receptors, of which a large proportion of

signatures associated with T cell depletion were found to be

enriched. As a result, the patients within the immune stromal

cluster was designated as the IDC, while the remaining

population was designated as the resting class.
Validation of the late-stage IDC to confirm
immune cell depletion

To confirm the presence of an immune-depleted state in

advanced TNBC patients, the abovementioned methodologies for
frontiersin.org
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evaluating RNA-seq-based bulk gene expression profiles of the 619

early-stage TNBC samples were used to analyze corresponding

profiles for the 210-sample late-stage cohort. Ultimately, four

clusters were identified for the late-stage TNBC cohort (as for the

early-stage TNBC cohort). Of these, cluster 2 yielded higher

immune cell, stroma and TEX-related signature enrichment

scores after signature enrichment scores from late-stage samples

of the early TNBC cohort were incorporated while calculating the
Frontiers in Oncology 04
late-stage cohort signature enrichment score. As a result, cluster 2

was selected to be the IDC of the advanced TNBC group. After

proportions of immunological cells and white blood cells and

expression levels of various inhibitory receptors were compared

between IDC and resting groups, gene set enrichment analysis

(GSEA) was conducted to assess enrichment levels of markers

and pathways then IDC scores were calculated based on ssGSEA

of enrichment scores of 157 deficient immune function-related
D
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FIGURE 1

Identification and molecular characterization of IDC. (A) Heatmap of gene expression clusters and distinct expression patterns of 691 early-stage (III)
TNBC samples from unsupervised NMF. (B) Matrix and immune enrichment scores for clusters of four expression patterns. High and low gene
enrichment scores are depicted in purple and orange, respectively. (C) Enrichment fractions of gene signatures identify immune stroma and other
clusters of immune cells. (D) CIBERSORT-inferred absolute fraction of TME cells compared between the two classes. (E) Box plot showing the
difference in Leukocyte fraction between the two classes. (F) Box plots showing differences in the expression levels of various inhibitory receptors in
rest clusters and in the immune and stromal cluster. (G) Histogram of the percentage of immune cells in each sample. (H) GSEA analysis reveals that
IDC shows significant enrichment of marker gene sets related to immune cell metabolic processes. (I) KEGG pathway functional grouping network
by ClueGO/CluePedia. Colorless and colored nodes represent metagene-specific genes and KEGG pathway terms, respectively. Node colors
represent different functional groups. Node size represents the importance of KEGG pathways. The more important the KEGG pathway, the larger
the highlighted node. All statistical differences between the two categories were compared using the Wilcoxon rank sum test. ns, >0.05; *P< 0.05;
0.01; ***P< 0.001.
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genes obtained during the training phase. The predictive potential

of IDC scores was assessed using receiver operating characteristic

(ROC) analysis.
Correlations between IDC and resting
class PD-L1 and TGF-b expression and
the ICB response

Patient ICB treatment responses were predicted using the

Tumor Immune Dysfunction and Exclusion (TIDE) algorithm.

To investigate IDC patient responses to ICB treatment,

programmed death-ligand 1 (PD-L1) expression was compared

between IDC and resting classes. Higher TIDE prediction scores

were generally associated with worse ICB responses.

According to Mariathasan et al., the cytokine transforming

growth factor-b (TGF-b encoded by TGFB1) inhibits antitumor

immunotherapies (40). By contrast, therapeutic co-administration

of anti-TGF-b blockade-inducing antibody and anti-PD-L1

antibody reduced TGF-b signaling in stromal cells, promoted T

cell infiltration into the tumor center and stimulated strong

antitumor immunity and tumor regression. Taken together these

observations suggest that TGF-b acts by limiting T cell infiltration

of the TME to thereby suppress antitumor immunity. Therefore,

detection of TGF-b in TNBC patient tumors correlates with

resistance to antitumor immunotherapies.
Construction of clinically relevant
prognostic models

The R language LIMMA package was used to identify

differentially expressed genes between immune cell-deficient

TNBC and other TNBC samples and univariate COX regression

analysis was performed (41). Thereafter, least absolute shrinkage

and selection operator (LASSO) regression analysis was conducted

to identify significant genes associated with survival for use in

building a risk prediction model. The formula for calculating the

risk score was as follows:

Risk score =  on
i=1coefi X id (1)

where coefi is the coefficient and X is the normalized count for each

gene. Based on the median risk score, we assigned patients to high-risk

and low-risk survival-based groups. To test the model, follow-up TNBC

data obtained fromTCGA andmetabric databases were used as training

and test datasets, respectively. The reliability of the risk scoring model

was assessed by within-group validation based on survival curves plotted

based on training and test datasets then 1-, 3- and 5-year survival rates

of patients were predicted based on the model. Thereafter, risk scores

and clinical characteristics were evaluated together to obtain clinical

information related to TNBC patient survival and prognosis followed by

the creation of a forest plot of clinical prognostic factors.
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Correlation of drug sensitivity with TNBC
gene expression profile

Drug response and drug-targeting pathway information were

obtained by searching the Cancer Drug Sensitivity Genomics

(GDSC) website (https://www.cancerrxgene.org/). Next, sensitivity

data of two TNBC cell lines to different drugs were obtained then

the pRRophetic package in R language was used to predict drug

sensitivities of different TNBC cell phenotypes as based on gene

expression data (42). These results were then used to generate risk

scores for different drugs as a basis for clinical drug selection.
Reverse transcriptase-PCR Analysis

Human breast cancer paracancerous cell line (MCF-10A) and

human triple-negative breast cancer cell line (MDA-MB-453,

MDA-MB-231) were purchased from Shangcheng North Na

Chuanglian Biotechnology Co., LTD. MCF-10A was combined

with MDA-MB-453 and MDA-MB-231 respectively constructed

control groups to analyze the expression differences of PDCD1 and

TGFB1 in different triple-negative breast cancer cell lines and

normal breast cell lines. Total RNA was extracted using the

Redzol kit from Beijing SBS Gene Technology Co., Ltd., and was

extracted according to the instructions.

The forward primer sequence is TGFB1: F-5’-TTGA

CTTCCGCAAGGACCTC-3’, the reverse primer sequence is

TGFB1: R-5’-ATCCGCAGTCCTCTCTCCAT-3’, and the product

length is 421bp; PDCD1: F-5’-TGACTTCCACATGAGCGTGG-3’,

the reverse primer sequence is PDCD1: R-5’-GCTCCTAT

TGTCCCTCGTGC-3’, and the product length is 294bp. qRT-

PCR was performed using the SYBR® Premix Ex Taq™ II

(Takara, Shiga, Japan) Kit and a StepOnePlus Real-Time PCR

instrument. Briefly, the mixture contained SureScript RTase Mix

(20×) 1 mL, SureScript RT Reaction Buffer (5×) 4.0 mL, Total RNA 1

mg and dd HO (RNase/DNase free) supplemented to 20 mL, then
sealed the cDNA with a transparent sealing film Array, mix well,

spin off for 5s, 5 min at 25°C, 15 min at 42°C, 5 min at 85°C, keep at

4°C, and store the product at -20°C. qRT-PCR reactions were

performed on a LightCycler 96 Real-Time PCR System (Roche

Diagnostics, Indianapolis, IN). The reaction mixture was activated

at 50°C for 2 min, pre-denatured at 95°C for 10 min, and then

subjected to 40 cycles of amplification reactions at 95°C for 15 s and

60°C for 30 s. Finally, LightCycler 96 software (version 1.1.0.1320,

Roche) was used for the collection and analysis of qRT-PCR data.

With b-actin as an internal reference gene, the relative expression of

mRNA was calculated by 2-DDCt method.
Statistical analysis

R (version 4.2.1, http://www.rproject.org) was used for statistical

discrete analysis. The Wilcoxon rank sum test for continuous data

was used to correlate IDC and the remaining categories with tumor-

infiltrating lymphocyte (TIL) percentage, mutation number and
frontiersin.org
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neoantigen number. Overall survival (OS) data were analyzed using

Kaplan-Meier estimates and log-rank testing. To discover variable

combinations, we included all clinicopathological factors in the Cox

model. P-values of ≤0.05 were considered statistically significant.

Pearson’s correlation was used to assess the strengths of two-variable

linear relationships. Maftools, which enables the visualization and

analysis of somatic mutations and calculation of total somatic

mutation numbers (43), was used to determine differences in

numbers of mutations between the IDC and other classes.

Genomic mutation data of all 303 TNBC tumor samples were

obtained from the TCGA database.
Results

Identification and characterization
of a novel TNBC IDC
immunosuppressive signature

NMF analysis was performed on the large number of RNA-seq-

based gene expression profiles that were obtained for 691 TNBC

samples in the training cohort then TEX-associated TME

transcriptome signals were extracted. The training cohort dataset was

clearly divisible into four patient clusters (Figure 1A). TNBC patients in

cluster 1 had high immune and stromal enrichment fractions as

assessed by ssGSEA and batch RNA-seq-based gene expression

profiling, indicating considerable enrichment of immune cell and

stromal feature gene expression signatures. This cluster, hereafter

referred to as the immunological stromal cluster (Figures 1B, C), was

subsequently found to possess a high density of immune cell signatures

(Figure 1D) associated with immune cell subsets such as M2

macrophages, B cells, CD8+ T cells and eosinophils. Furthermore,

the immune stromal cluster possessed a considerably greater

proportion of leukocytes, as estimated from DNA methylation data,

than did the other clusters (Figure 1E). Numbers of TILs detected

during pathological examinations of images of tumors were also

considerably higher in the immune stromal class than in the other

clusters (Figure 1F). After the enrichment of immune cells in the

immune stromal class was confirmed, absolute proportions of immune

cells in the immunological stromal class and remaining clusters were

compared using CIBERSORT analysis of batch RNA-seq

data (Figure 1G).

To investigate TEX signaling function in TNBC, expression

levels of several inhibitory receptors of immune system receptors,

including CTLA-4, PDCD1 (also known as PD-1), BTLA, LAG3,

TIGIT, HAVCR2 (also known as TIM-3), SIGLEC7, IDO1 and

VISTA, were measured. Based on results of inhibitory receptor

expression analyzes and enrichment scores for the TEX signaling

gene set, a novel IDC subpopulation of the immune stromal cluster

was identified that accounted for 21.4% of the population of the

training cohort (Figure 1H). The resting class was defined as the

resting subpopulation of the training cohort.

To define IDC-associated molecular markers, GSEA based on gene

expression profiles of the training cohort was conducted that led to the

identification of six marker gene sets that were enriched in the IDC

molecular signature, with especially high enrichment noted for
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immunocytokine-related pathways and markers. Previously reported

research results indicated that exhausted T cells can undergo apoptosis,

as consistent with results obtained here showing that apoptotic markers

were considerably elevated in the IDC of the early-stage TNBC cohort

as evidence of severe T cell depletion. Results obtained using NMF

analysis of IDC gene expression patterns led to the identification of 273

metagenes (sets of genes with coordinated expression) that after

ClueGO network analysis were grouped into Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway networks that revealed their

biological functions (Figure 1I). The majority of genes within these

metagenes were functionally linked to cytokines and associated

molecules that mediate immunological and inflammatory responses.

These 76 immune function-related genes, which included members of

the immunoglobulin superfamily (CDH9 and CDHR3), interleukin

receptor molecules (IL9, IL19, IL13RA1 and IL12RB2) and cytokines

(CD70 and CD276) were then utilized to validate TNBC patient

immunological exhaustion (Supplementary Tables S2, S3). Taken

together, these results demonstrated that we effectively identified an

IDC gene expression pattern indicating severe T cell depletion within

the TME of some TBNC patients.
Internal validation of the late-stage
TCGA TNBC IDC immunosuppressive
molecular signature

We conducted NMF analysis of bulk RNA-seq-based gene

expression profiles of TCGA late-stage samples to confirm the

presence of reduced immune classes in the TNBC TME, with

results of NMA leading to identification of four clusters

(Figure 2A). When these clusters were combined with ssGSEA-

calculated feature enrichment scores and bulk RNA-seq-based gene

expression profiles, cluster 1 was found to possess higher stromal

and immune enrichment scores than the other clusters (Figure 2D).

Along with other TEX-related cytokine indicators, these features

were considerably enriched (Figures 2B, C). As a result, cluster 1

was designated as the IDC of the TGCA samples, as consistent with

observed co-upregulation within this cluster of numerous inhibitory

receptors (Figure 2E) that were enriched for Gene Ontology (GO)

functional terms leukocyte migration, positive regulation of the

MAPK cascade, cell chemotaxis, positive regulation of cell adhesion,

cellular divalent inorganic cation homeostasis, positive regulation of

cell adhesion, calcium ion homeostasis, cytokine-mediated

signaling pathway, cellular calcium ion homeostasis and positive

regulation of cytokine production (Figures 2D, E). Notably, ROC

curve-based results (Figure 2F) confirmed that the 167 depleted

immune function-related genes may be useful for predicting the

presence of IDC immunosuppressive signatures in TMEs of

individual TNBC patients.
Poor prognosis of TNBC patients with
immunosuppressive IDC signatures

In order to explore the utility of reduced immune function status

for predicting TNBC patient prognosis, we correlated categories with
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clinicopathological factors. Previous studies had linked high-density

TILs with better outcomes, such as improved overall survival (OS) (44,

45). Here, IDCs of both early and advanced TNBC patients possessed

higher proportions of TILs than did IDCs of other patient categories.

However, Kaplan-Meier estimates of early and advanced TNBC OS

rates revealed significantly lower OS rates in patients with TME IDC

immunosuppressive signatures than in TMEs of the resting group (P<

0.0001; Figures 3A, B), while in both early and advanced TNBC,

multivariate survival analysis conducted using Cox regression models

showed that the IDC immunosuppressive signature was an

independent predictor of OS (P< 0.001). (Figures 3E, F). Finally, the

prognostic value of IDC immunosuppressive signatures in TCGA and

GEO cohorts of TNBC patients in all disease stages were studied. As

expected, IDC patients had worse OS than the resting groups

(Figures 3C, D). Taken together, these findings suggest that although

T cells are abundant in IDCs, most of these T cells have lost effector

functions for limiting tumor growth, resulting in a state of

immunosuppression that leads to continued tumor growth and poor

prognosis. Survival data also confirmed that IDC signatures of patients

with late-stage TNBC exhibitedmore pronounced T cell depletion than

those of early-stage TNBC patients.
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The IDC immunosuppressive signature
correlates with immunotherapy resistance

Treatment of cancer patients with therapeutic antibodies targeting

the PD-L1 pathway can elicit long-lasting, robust responses. However,

efficacies of such treatments are frequently reduced due to the

emergence of drug resistance. To study the response of the IDC

group to ICB treatment, we compared PD-L1 expression levels

between IDC and resting patient groups and found that PD-L1

expression levels were higher in the early IDC group than in the

resting group (Figures 4A, B). Next, use of the Tumor Immune

Dysfunction and Rejection (TIDE) algorithm to predict ICB

treatment responses revealed that both early and advanced TNBC

IDCs had higher TIDE prediction scores than did the other categories

(Figures 4C, D), such that a higher TIDE prediction score indicated a

worse ICB response. Importantly, TGFb1 was expressed at a lower level
in resting classes than in IDCs (Figures 4E, F), which is consistent with

results obtained by Mariathasan et al. that indicated the cytokine TGF-

b (encoded by TGFb1) suppresses effects of antitumor immunotherapy

(46). Taken together, these results suggest that the IDC

immunosuppressive signature has a ICB therapy resistance.
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FIGURE 2

Internal validation of IDC in late stage TCGA-TNBC samples. (A, B) Consensus clustering for the late stage TCGA-TNBC. (C) The comparison of the
absolute fractions of TME cells inferred by CIBERSORT between two classes. (D) Kegg pathway enrichment visualization in immune depletion
Classifer Genes. (E) Boxplots shows the different expression levels of multiple inhibitory receptors between two classes. (F) ROC curve evaluated the
predictive capacity of 157 immune depletion classifer genes in late stage TCGA-TNBC samples. (G) Box plots show the differences of leukocyte
fraction between two classes. All statistical differences of two groups were computed by Wilcoxon rank-sum test; *P< 0.05; **P< 0.01; ***P< 0.001.
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Considering that tumors that escape immune editing in cancer

patients often express molecules that suppress the antitumor

immune response, such as PD-L1 (also known as B7-H1),

indoleamine 2,3-dioxygenase (IDO) and others, here expression

levels of these molecules were correlated with TGF-b expression

using Pearson correlation analysis. As expected, expression levels of

these molecules were positively correlated with TGFb1 mRNA

expression levels (Figures 5A–I), thus suggesting that IDC

patients remain in an ICB-unresponsive state, despite higher PD-

L1 expression levels and that anti-PD-L1 therapies. In addition,

these results suggest that in vivo antitumor response molecules play

key roles in this process.
IDC molecular signatures possesses no
significant tumor mutational differences

Due to the fact that genomic mutations occurring in tumors are

strongly associated with immunotherapy outcomes, we explored the
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landscape of commonly mutated genes between TNBC IDC and

resting class molecular signatures. In the TCGA cohort, censorship

mutations were the most common TNBC mutations detected

(Figure 6A), of which most mutations were SNPs (Figure 6B) that

most often contained C>T base substitutions (Figure 6C). The ten

genes with the highest mutation frequencies were TP53, USH2A,

AHNAK, PIK3CA, NOTCH1, MUC16, DNAH5, DNAH11,

AHNAK2 and AKAP9 (Figure 6D), with no significant

differences in individual gene mutations observed between IDC

and resting group signatures (Figure 6E). These results thus suggest

that somatic mutations are not significantly associated with

immunosuppressive TME status.
Construction and validation of the
prognostic model

Ultimately, a total of 211 differentially expressed genes associated

with survival were identified (Figure 7A, Supplementary Table S4).
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FIGURE 3

Prognostic analysis of different stages of IDC and rest types of TNBC. (A, C) Kaplan-Meier estimates of overall survival for IDC and rest classes of
advanced, early, and persistent TNBC. (D) Kaplan-Meier estimates of overall survival for IDC and rest classes of TNBC in the gse16446 dataset.
P-values were calculated using the log-rank test. (E, F) Multivariate and univariate Cox regression analysis (group, tumor stage, and age) for full-
stage TNBC.
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The univariate Cox regression algorithm was used to initially obtain

150 genes related to TNBC patient prognosis then hazard ratios

(HRs) and P values of these genes were calculated (Supplementary

Table S5). Next, we constructed risk models using the LASSO

algorithm that ultimately led to the identification of 45

prognostically relevant genes (Figure 7B). These genes were then

used to construct risk score-based models based on training (n = 303)

and test (n = 211) datasets obtained from TCGA-TNBC andmetabric

TNBC patients, respectively. Results of survival analysis revealed that

higher risk scores in training and test sets corresponded to poorer

survival (P< 0.0001) (Figures 7C–F). Time-dependent ROC curves

were generated and used to assess the sensitivity of the prognostic

model. Results obtained for the areas under ROC curves (AUCs)

revealed 3-, 5- and 10-year AUCs for the training set of 0.768, 0.794

and 0.746, respectively (Figure 7G), and corresponding AUCs for the

test set of 0.599, 0.656 and 0.689, respectively (Figure 7H).

Additionally, multivariate Cox regression analysis was conducted to
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assess whether clinical characteristics, such as age, cancer stage, TNM

stage and risk scores were independent factors related to TNBC

patient prognosis (Supplementary Figure S2). We found that age,

tumor stage and risk score were independent prognostic factors for

both training and test sets of TNBC patients. Notably, more high-risk

patient molecular signatures contained IDC signatures (Figure 7I),

suggesting that immune system failure may be responsible for poor

survival of high-risk patients.
IDC immunosuppressive signatures can
be useful for predicting the
chemotherapeutic response

The R package “pRRophetic” was used evaluate high-risk and

low risk patient IDC, and resting class groups for chemotherapeutic

responses and resistance. Figure 8 shows drug sensitivity results for
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FIGURE 4

Prediction of resistance to ICB therapy. (A, B) Different expressions of PD-L1 expression levels in different stages of IDC patients. (C, D) Different expression
of TIDE predictive score for each stage of ICB treatment. (E, F) Different expression of TGFb1 in IDC and rest classes.*: *P< 0.05; ***P< 0.001.
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FIGURE 5

Expression correlation of TGFb1 and immune checkpoint-related genes in TNBC patient samples. (A) CTLA4, (B) PDCD1, (C) LAG3, (D) BTLA,
(E) TIGIT, (F) HAVCR2, (G) IDO1, (H) SIGLEC7, (I) VISTA.
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FIGURE 6

Association of IDC with somatic mutations. (A, B) Summary of mutation information for TNBC samples in the TCGA database. (C) Summary of
variant Classification within TNBC. (D) Top 10 triple negative breast cancers mutated genes. (E) The landscape of most frequently mutated genes
between the IDC and the rest class in TNBC.
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three types of triadic breast cancer cell lines to eight anti-cancer

therapy drugs (sorafenib, gefitinib, bleomycin, bosutinib, etoposide,

lenalidomide, camptothecin, methotrexate). Statistical analysis

showed that, except bleomycin, the IC50 level of resting grade

patients was higher than that of IDC patients. Sensitive

(Figures 8A–H). In addition, for the risk group Sorafenib,

the low-risk group had a higher score, while for Bosutinib

and Camptothecin, the low-risk group had a lower score

(Figures 8I–P).
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TNBC gene expression level verification via
quantitative reverse transcription PCR
Expression levels of selected genes were determined using qRT-

PCR to confirm their reliability. As shown in Figures 9A, B, the

results for all mRNA transcripts showed that they were expressed at

significantly higher levels in the two TNBC tumor cell lines (MDA-

MB-231, MDA-MB-453) than in the adjacent normal cell lines.
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FIGURE 7

Construction and validation of the risk score. (A) Volcano plot of differentially expressed genes between IDC and rest class samples, blue indicates
down-regulated expression and red indicates up-regulated expression. (B) Lasso regression analysis and multivariate stepwise Cox regression
analysis for identification of the immune risk signature. (C, E) Kaplan-Meier curves of training set (p<.001, log-rank test) and test set (p<.001, survival
rate comparison). (D, F) Association between patient survival and increased risk score. (G, H) Time-dependent receiver operating characteristic
(ROC) of training and test sets. (I) Proportion of IDC and rest class in high and low risk patients.
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FIGURE 8

(A–H) The violin plot shows that drug sensitivity prediction score(Sorafenib, Gefitinib, Bleomycin, Bosutinib, Etoposide, Lenalidomide, Camptothecin,
Methotrexate) are distributed differently among groups. (I–P) The violin plot shows that drug sensitivity prediction score(Sorafenib, Gefitinib,
Bleomycin, Bosutinib, Etoposide, Lenalidomide, Camptothecin, Methotrexate) are distributed differently among risk groups; ns: no significance;
*: P < 0.05; ***: P < 0.001.
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FIGURE 9

The mRNA expression of TGFB1 (A) and PDCD1 (B) in a TNBC cell lines and the adjacent cell lines. ***P< 0.001.
Frontiers in Oncology frontiersin.org12

https://doi.org/10.3389/fonc.2023.1108472
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ding et al. 10.3389/fonc.2023.1108472
Discussion

The rise of immunotherapy in recent years has revolutionized

TNBC treatment by significantly improving overall patient survival.

Nevertheless, high PD-L1 expression levels detected in more than half

of TNBC patients indicate that their tumors are resistant to immune

checkpoint inhibitors (47), while side effects of these inhibitors are

common. Although our understanding of mechanisms underlying ICB

resistance is extremely limited, data obtained to date suggest that an

immunosuppressive TME comprised of tumor cells, immune cells and

other stromal components may be involved in ICB resistance (48).

Consequently, identification of ICB-resistant TNBC patients and

optimization of immunotherapeutic protocols will require

characterization of immunosuppressive TMEs at the molecular level.

In this investigation, NMF was utilized to deconvolve gene

expression patterns of TME TEX, immune cells and stromal

elements as derived from TNBC datasets. Our results led to the

successful discovery of a new immunosuppressive TNBC category

comprising 21.4% of TNBC patients. In contrast to IDCs observed in

head and neck squamous cell and liver cancers (49, 50), TNBC IDCs

possessed greater immunological and stromal enrichment scores,

indicating the presence of numerous immune cell and stromal

components. As expected, IDC classes exhibited particular

characteristics, such as significant immune cell infiltration, co-

upregulation of several inhibitory receptors, increased expression of

immunosuppressive cytokines and elevated PD-L1 expression. Among

TME-infiltrating immune cells, tumor-associated M2 macrophages

and T cells have been reported to act as immunosuppressive cells that

play important roles in immune evasion and reduction of ICB

therapeutic efficacy (51, 52). Meanwhile, IDCs have been found to

be widely distributed across different tumor stages, but may differ in

levels of T cell depletion between early (stage I-II) and advanced (stage

III-IV) TNBC samples. In fact, results of a previous study showed that

severely depleted T cells may undergo apoptosis (53), as consistent

with results of this study showing that apoptotic marker gene sets were

enriched in late-stage IDC but not in early-stage IDC. Thus, the late-

stage TNBC IDC immunosuppressive signatures are associated with

higher levels of T cell exhaustion as compared to those of the early-

stage TNBC IDCs.

Results of a previous study suggested that significant tumor

mutational and neoantigen burdens correlated with the ICB

therapeutic response (54). Surprisingly, mutational burden did not

correlate with IDC or substantial lymphocytic infiltration in our

study. In addition, TNBC tumor genetic variations (mutation and

neoantigen burdens) between IDC and resting classes were similar to

corresponding burdens observed for other malignancies, such as head

and neck squamous cell and hepatocellular carcinomas (49, 50), thus

suggesting that tumor-intrinsic mutations may not contribute to the

immunosuppressive TEM phenotype. Moreover, resilience of IDCs was

successfully validated from various viewpoints, although this result must

be validated in TNBC patients treated with ICB. Furthermore, our

results underscore the fact that a greater understanding of molecular
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properties of immunosuppressive TMEs is essential before successful

immunotherapeutic treatments can be developed to reverse TEX and

treat TNBC. In summary, here we defined IDC immunosuppressive

signatures that permitted us to construct prediction models that may

improve predictions of TNBC patient survival and assist clinicians in

selecting appropriate immunotherapeutic treatments for individual

TNBC patients.

Mariathasan’s research results have shown that therapeutic

antibodies that block PD-1 and PD-L1 pathways can induce

robust and durable responses in patients with various cancers

(40). However, efficacies of these treatments are reduced when a

fibroblast TGF-b signaling signature is detected, which is especially

common in patients with tumors in which CD8+ T cells are

excluded from the tumor parenchyma but are found in fibroblast-

rich, collagen-rich peritumoral stroma. For such patients, we found

that administration of a combination therapy consisting of TGF-b
blockade and anti-PD-L1 antibody reduced TGF-b signaling in

stromal cells, promoted T cell infiltration into the tumor center and

triggered robust antitumor immunity and tumor regression. Taken

together, these results indicate that TGF-b shapes the TME by

limiting T cell infiltration to suppress antitumor immunity, a

conclusion that was further supported by additional results

obtained here showing up-regulated co-expression of TGFB1 and

PDCD1 in TNBC cell lines.

As final considerations, more clinical data on TNBC patient

responses are needed to validate our findings, while further

explorations of potential applications of IDC immunosuppressive

signatures are needed toward improving selection of cancer

immunotherapy regimens and improving efficacies of these

treatments. Furthermore, research studies exploring effects of

targeted treatments on patient outcomes in clinical practice are

needed that should include more comprehensive characterization of

IDCs and their effects on TNBC patient therapeutic outcomes.
Conclusion

In conclusion, we identified an immunosuppressive class,

accounting for approximately 21.4% of TNBC patients, that

exhibited potential resistance to ICB therapy and the unique

immunosuppressive molecular signature of TME. Our findings

provide new insights into understanding the molecular mechanisms

of resistance to ICB therapy and tailoring appropriate immunotherapy

strategies for patients with different molecular signatures.
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