
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Marco A. Velasco-Velazquez,
National Autonomous University of Mexico,
Mexico

REVIEWED BY

Maolan Li,
Shanghai Jiao Tong University, China
Paola Dama,
University of Sussex, United Kingdom

*CORRESPONDENCE

Zhaoxia Wang

wangzhaoxia@njmu.edu.cn

†These authors have contributed
equally to this work and share
first authorship

SPECIALTY SECTION

This article was submitted to
Cancer Molecular Targets
and Therapeutics,
a section of the journal
Frontiers in Oncology

RECEIVED 26 November 2022
ACCEPTED 10 March 2023

PUBLISHED 28 March 2023

CITATION

Zhang N, Lei T, Xu T, Zou X and Wang Z
(2023) Long noncoding RNA SNHG15: A
promising target in human cancers.
Front. Oncol. 13:1108564.
doi: 10.3389/fonc.2023.1108564

COPYRIGHT

© 2023 Zhang, Lei, Xu, Zou and Wang. This
is an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 28 March 2023

DOI 10.3389/fonc.2023.1108564
Long noncoding RNA
SNHG15: A promising
target in human cancers

Niu Zhang1†, Tianyao Lei1†, Tianwei Xu2†, Xiaoteng Zou1†

and Zhaoxia Wang1*

1Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing,
Jiangsu, China, 2Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical
University, Nanjing, Jiangsu, China
As oncogenes or tumor suppressor genes, lncRNAs played an important role in

tumorigenesis and the progression of human cancers. The lncRNA SNHG15 has

recently been revealed to be dysregulated in malignant tumors, suggesting the

aberrant expression of which contributes to clinical features and regulates

various oncogenic processes. We have selected extensive literature focused

on SNHG15 from electronic databases, including studies relevant to its clinical

significance and the critical events in cancer-related processes such as cell

proliferation, apoptosis, autophagy, metastasis, and drug resistance. This review

summarized the current understanding of SNHG15 in cancer, mainly focusing on

the pathological features, known biological functions, and underlying molecular

mechanisms. Furthermore, SNHG15 has been well-documented to be an

effective diagnostic and prognostic marker for tumors, offering novel

therapeutic interventions in specific subsets of cancer cells.

KEYWORDS

cancer, lncRNA, NSCLC, cancer resistance, target therapy
Abbreviations: piRNA, piwi-interacting RNAs; SNHG, small nucleolar RNA host gene; RCC, renal cell

carcinoma; PC, pancreatic cancer; LC, lung carcinoma; GC, gastric cancer; CRC, colorectal cancer; HCC,

hepatocellular carcinoma; BC, breast carcinoma; CC, cervical cancer; OC, ovarian cancer; OS, osteosarcoma;

PTC, papillary thyroid cancer; ceRNA, competitively endogenous RNA; 3’-UTR, 3’-untranslated region;

DLR, dual-luciferase reporter; ZEB2, zinc finger E-box binding homeobox 2; E2F3, E2F transcription factor

CDK, cyclin-dependent kinases; ECM, extracellular matrix; PD-1, programmed death 1; PBMC, peripheral

blood mononuclear cells; CIT, cancer immunotherapy; VEGF, vascular endothelial growth factor; DDP,

cisplatin; GBM, Glioblastoma multiforme; TMZ, temozolomide; OS, overall survival; DFS, disease-free

survival; PDAC, pancreatic ductal adenocarcinoma; RFS, recurrence-free survival; ChIP, Chromatin

immunoprecipitation; LUAD, lung adenocarcinoma; ccRCC, clear cell renal cell carcinoma; m6A, N6-

Methyladenosine; MTC, m6A methyltransferase complex; MREs, miRNA response elements; RBP, RNA

binding proteins; ASOs, antisense oligonucleotides; siRNAs, small interfering RNAs; shRNAs, short

hairpin RNA.
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1 Introduction

Cancer was a major public health problem worldwide, with the

burden of cancer continuing to rise (1–3). The 5-year survival rate

and mortality rate of patients with advanced cancer were still poor.

Therefore, it was imperative to explore potential regulatory

mechanisms to identify novel biomarkers and develop effective

therapeutic targets (4–6).

Cancer was an intricate multistep disease characterized by

genomic instability that altered cellular homeostasis and promotes

uncontrolled cell growth (7, 8). Several genomic mutations in

cancer reside in regions that encode lncRNAs instead of proteins,

which implicated lncRNAs in the onset and progression of cancer

(9, 10).

LncRNAs were transcripts longer than 200 nucleotides in length

that have no protein-coding potential, a cut-off that distinguished

lncRNAs from smaller noncoding RNAs such as tRNA, miRNA,

and Piwi-interacting RNAs (piRNA) (11–13). LncRNAs were

considered to be important regulators of tissue physiology and

disease processes including cancer (14). We considered them new

cancer diagnostic and therapeutic gold mine in the future (15).

In recent years, the small nucleolar RNA host gene (SNHG)

family of lncRNAs has garnered attention to play a role as

oncogenes in various cancers (16–20). SNHG15, a member of the

SNHG family of noncoding RNAs, had a length of over 860 kb in

human chromosome 7p13 and was highly abundant and conserved

among mammals (21). Based on existing findings about the

relationship between the half-life of each mRNA and its

physiological function, the studies raised the possibility that the

stability of lncRNAs may reflect their underlying function. LncRNA

SNHG15 was screened for a short half-life of non-coding transcripts

that might be involved in cell proliferation (22). SNHG15 was

initially proposed as a surrogate indicator of cellular stress due to its

ability to sensitize human cells to cell death in response to various

stresses (22, 23). As a novel molecule in the field of tumor biology, it

was first reported to be highly expressed in gastric cancer and is

well-known as a prognostic marker for liver cancer (24, 25).

Moreover, it has been proven to be positively correlated with the

malignant process and poor prognosis of renal cell carcinoma

(RCC) (26), pancreatic cancer (PC) (27), bladder cancer (28),

leukemia (29), etc. Human tumors have been evaluated

concerning SNHG15 expression on a range of tumorigenic

characteristics, including cell proliferation, apoptosis, invasion,

and metastasis (30). In addition, abnormal expression of SNHG15

displayed a close correlation with tumor size, TNM stage, lymph

node metastasis, and prognosis of tumor patients (31). Acquired

drug resistance frequently led to solid tumor relapse and distant

metastasis, and was considered to be the major reason for the failure

of chemotherapy (32). Accordingly, understanding the molecular

mechanisms of drug resistance was critical to allow the

development of efficient therapeutic strategies with sustained anti-

tumor effects (33). SNHG15 has been linked to chemoresistance

such as gefitinib resistance in lung adenocarcinoma (34). As

discussed above, SNHG15 seemed to play a crucial role in many
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types of malignancies. In this review, we summarized the recent

progress made in the study of SNHG15 in tumors.
2 Expression of SNHG15 in cancer

The expression of SNHG15 was typically increased in multiple

tumors, including lung carcinoma (LC), esophageal cancer, gastric

cancer (GC), colorectal cancer (CRC), hepatocellular carcinoma

(HCC), PC, kidney cancer, prostate cancer, breast carcinoma (BC),

cervical and ovarian cancers (CC, OC), osteosarcoma (OS), oral

cancer, glioma, and bladder cancer (Table 1). Interestingly,

SNHG15 has an opposite expression in thyroid cancer, according

to some researchers. Wu et al. stated that SNHG15 was highly

expressed in papillary thyroid cancer (PTC) (66). However, in two

papers published by Liu and his colleagues (67, 68), SNHG15 was

reduced in thyroid cancer samples and acted as a tumor suppressor

gene. The diversity of these studies could be partially related to

tumor heterogeneity, different tumor origins, and cellular

backgrounds, as well as limited numbers of specimens.
3 Biological significance in the
hallmarks of cancer

During malignancy development, tumor cells acquired

properties of stress-related conditions that enabled them to

survive and adapted to the tumor microenvironment. These

features were known as hallmarks of cancer, which were critical

to their ability to form malignant tumors (69–71). Over the past few

years, SNHG15 has been identified for its fundamental role in

regulating oncogenes and tumor suppressors, as well as the

underlying cancer characteristics (Figure 1; Table 2). Interestingly,

not for common molecular sponge actions, Liu et al. found that

miR-510-5p promoted thyroid cancer cell proliferation, migration,

and invasion by suppressing SNHG15 (67, 68). Due to the fact that

SNHG15 has only been reported as a tumor suppressor in thyroid

cancer, the following functional studies concentrated on its

involvement in cancer promotion.
3.1 Proliferation

Tumors were typically formed and progressed due to

unrestricted tumor cell proliferation resulting from either

oncogene activation or tumor suppressor gene inactivation (72).

High expression of SNHG15 could up-regulate ZNF217 by

adsorption of miR-211-3p, and inhibit miR-486 to promote

CDK14 expression and ultimately stimulate the proliferation of

NSCLC cells (36–38). In vivo, the xenograft model indicated that

SNHG15 silencing dramatically inhibited NSCLC cell growth (38).

In thyroid papillary carcinoma, exogenous overexpression of

SNHG15 significantly blocked cell proliferation. SNHG15 served

as a competitively endogenous RNA (ceRNA) in modulating the
frontiersin.org
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TABLE 1 Expression of SNHG15 in various cancers.

Cancer type Expression
in tissue Sample size Expression in

cancer cells Mentioned Cancer cell lines Relative normal
cell lines Ref.

Lung cancer Up 55 Up H1703、H1799、 A549 BEAS-2B (35)

Up 24 Up H358、H1299、H23、A549 HBEC3 (36)

Up 49 Up PC9、SPC-A1、A549、H1703、SK-MES-1 – (37)

Up 35 Up A549、H460、SK-MES-1、Calu-3 NHBE (38)

– – Up A549/GR、H1975/GR – (34)

Hepatocellular
carcinoma

Up 58 Up BEL-7402、HepG2、SMMC-7721、Hep3B L-02 (39)

Up 33 Up HuH-1、HuH-7 L-O2 (40)

Up 58 Up SMMC‐7721、Hep3B、HepG2、Huh‐7 Lo2 (41)

Up 152 Up – – (25)

Colorectal
cancer

Up 113 Up HCT116、SW620、LoVo、SW480 – (42)

Up 108 – – – (43)

– – Up SW1116、HCT116、SW480、SW620 – (44)

Up 36 Up
DLD1、HCT 116、HT-29、 LoVo、LS513、
SW620、T84、RKO、SW480、Caco-2

HDFa (45)

Gastric cancer Up 30 Up AGS、MNK-45、SNU-1 GES-1 (46)

Up 106 Up SGC7901、BGC823、MGC803、AGS、MKN45 GES-1 (24)

Up 9 Up HGC-27、MKN45 GES-1 (47)

Pancreatic
cancer

Up 48 Up AsPC-1、BxPC-3 HPDE6 (48)

Up 60 Up BxPC-3、PANC-1 HPDE6 (27)

Prostate cancer – – Up LNCaP、DU145、PC3 RWPE (49)

Renal cell
carcinoma

Up 62 – – – (26)

Up 96 Up ACHN, OSRC-2, 786-O, 769-P and CAKI-1 HK-2 (50)

Breast cancer Up 35 Up BT-474、MDA-MB-468、SKBR-3、MCF-7 MCF-10A (51)

Up 42 Up MCF-7/DDP、 MDA-MB-231/DDP MCF-10A (52)

Up 58 Up MCF-7、BT-20、ZR-75-1、MDA-MB-231 MCF-10A (53)

Up 30 Up MDA-MB-231、MCF7、SK-BR3、T-47D MCF-10A (54)

Osteosarcoma Up – Up U2OS/DXR、MG63/DXR HFOB (55)

Up 30 Up MG63、U2OS、SaoS2、HOS HFOB1.19 (56)

Up 35 Up 143B、U2OS、HOS、MG63、 SaOS2 HFOB1.19 (57)

– – Up 143B、U2OS – (58)

Oral squamous
cell carcinoma

– – Up SCC-15、SCC-9、SCC-25、HSC-2 NOK (59)

Glioma Up 40 Up TMZ-R、TMZ-S HMC3 (60)

Up – – glioma-induced hCMECs, hCMECs in ACM (61)

Ovarian cancer Up 20 Up
CoC1、Angine、A2780、CAOV3、
SKOV3、OVCA433

IOSE80 (62)

Up 20 Up SKOV3 IOSE80 (63)

Nasopharyngeal
carcinoma

Up 50 Up SUNE1、CNE1、CNE2、 HONE1 NP69 (64)

(Continued)
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YAP1-Hippo pathway through binding with miR-200a-3p, among

which YAP1 was a well-known oncogene (66). Moreover, SNHG15

has been well-studied in digestive system diseases. Chen et al.

disclosed that SNHG15 manifested its oncogenic properties in the

progression of GC by impairing miR-506-5p (46). A putative

binding site for miR-506-5p was identified in the SNHG15 3’-

untranslated region (3’-UTR) and further validated by the dual-

luciferase reporter (DLR) assay. Through interaction with AIF,

SNHG15, a bifunctional MYC-regulated lncRNA, induced the

growth of LoVo and SW620 tumor cells in CRC (45). SNHG15

expression was significantly increased in liver cancer tissues and cell

lines, whereas its downregulation inhibited in vitro tumor cell

proliferation (39–41). By sponging miR-141-3p, SNHG15 could

facilitate zinc finger E-box binding homeobox 2 (ZEB2) and E2F

transcription factor 3 (E2F3) expression, thus mediating

tumorigenesis (41). Several subsequent studies suggested that

SNHG15 was also involved in the regulation of HCC cell

proliferation through the miR-18b-5p/LMO4 axis and miR-490-

3p/HDAC2 axis (39, 40).
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The present results provided compelling evidence that SNHG15

functioned as an active regulator of cell cycle G1/S transition to

promote cancer cell growth in vitro and in vivo. In pancreatic cancer,

the knockdown of SNHG15 resulted in G0/G1 phase block, thereby

inhibiting cell proliferation in vitro, similar to the roles of SNHG15 in

ovarian cancer (48, 63). Mechanically, SNHG15 recruited EZH2 to

suppress P15 and KLF2 expression and promoted pancreatic cancer

proliferation (48). P15, one of the universal cyclin-dependent kinases

(CDK) inhibitor proteins, has been revealed related to blocking cell

cycle progression at the G0/G1 checkpoint (73). Molecular pathway

analysis indicated a potential route for SNHG15 to promote ovarian

cancer proliferation was by inhibiting tumor suppressor, miR-370-3p

which leads to activation of CDK6 (63). CDK6 was a component of

the core cell cycle complex that phosphorylates the corresponding

proteins to drive cell proliferation (74).

Although the pathways or interactions by which SNHG15

promoted malignant cell proliferation are not consistent, it did

appear to regulate cell proliferation through the function of ceRNA

in numerous cancer types and its influence on cell cycle progression,
TABLE 1 Continued

Cancer type Expression
in tissue Sample size Expression in

cancer cells Mentioned Cancer cell lines Relative normal
cell lines Ref.

Cervical cancer Up 28 Up SiHa、HeLa、Caski、C-33A、MS751 HEKn (65)

Bladder cancer Up 30 Up 5637、UMUC3、J82、T24 SV-Huc-1 (28)

Thyroid cancer – – Up BHP5-16、BCPAP、K1、BHP2-7 Nthy-ori-3-1 (66)

Down 50 Down TPC1、FTC133、BCPAP、8505C Nthy-ori-3-1 (67, 68)
–, not available.
FIGURE 1

Oncogenic roles of lncRNA SNHG15 in a variety of diseases. SNHG15 has been identified for its fundamental role in regulating proliferation,
apoptosis, autophagy, metastasis, immuno-escape, and chemoresistance.
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which might represent a therapeutic vulnerability that warrants

further investigation.
3.2 Apoptosis

Apoptosis, an evolutionarily conserved form of programmed cell

death, played a massive role in the maintenance of tissue homeostasis

by controlling cellular deletion to balance cell proliferation (75, 76).

Knockdown of SNHG15 significantly promoted the apoptosis of

osteosarcoma cells, mainly due to a resulting increase in expression of
Frontiers in Oncology 05
apoptosis-related protein Bax, cleaved caspase-3, and downregulation of

anti-apoptotic Bcl-2. Mechanistically, SNHG15 functioned as a ceRNA

to sponge miR-346 and negatively regulate its expression in OS (56).

Suppression of SNHG15 increased the proportion of cells in the

G0/G1 phase and apoptotic rate, which suggests that cell death

eventually occurred through cell cycle arrest and subsequent

apoptosis of cancer cells (38, 39, 51, 64). In breast cancer, SNHG15

induced caspase-dependent apoptosis in vitro and in vivo through the

upregulation of Bax and Bcl-2 via the miR-411-5p/VASP axis (51).

Silencing SNHG15 reduced the expression of CDK14 in A549 and

H460 lung cancer cells, with CDK14 being the gene involved in
TABLE 2 In vitro functional characterization of SNHG15 in cancer.

Cancer type Effect on
proliferation

Effect on
apoptosis/
autophagy

Effect on
invasion/
metastasis

Effect on
immuno-
escape

Effect on
angiogenesis

Effect on
chemore-
sistance

Relative Cancer
cell lines Ref.

Lung cancer promote inhibit promote – – promote

A549/GR、H1975/
GR、H358、
H460、H1799、
A549

(34–38)

Hepatocellular
carcinoma

promote inhibit promote – – –
SMMC‐7721、
HuH-1

(39–41)

Colorectal
cancer

promote inhibit promote – – promote
HCT 116、LoVo、
SW620、SW480、

(42–45)

Gastric cancer promote inhibit promote promote – –

BGC823、
MGC803、AGS、
HGC-27、

(24, 46, 47)

Pancreatic
cancer

promote inhibit promote – – –
AsPC-1、BxPC-3、
PANC-1

(27, 48)

Prostate cancer promote – promote – – – LNCaP、PC3 (49)

Renal cell
carcinoma

promote promote promote – – – ACHN、786-O (50)

Breast cancer promote inhibit promote – – promote

SKBR-3、MCF-7、
MCF-7/DDP、
MDA-MB-231/
DDP、MCF-7、BT-
20、MDA-MB-231

(51–54)

Osteosarcoma promote
inhibit/
promote

promote – – promote

U2OS/DXR、
MG63/DXR、
SaoS2、HOS、
U2OS、MG63、
143B

(55–58)

Oral squamous
cell carcinoma

promote inhibit promote – – – SCC-15、SCC-9 (59)

Glioma promote – promote – promote –
glioma-induced
hCMECs,

(61)

Ovarian cancer promote inhibit promote – – – SKOV3、OVCA433 (62, 63)

Nasopharyngeal
carcinoma

promote inhibit – – – – SUNE1、CNE1 (64)

Cervical cancer promote inhibit promote – – promote SiHa、HeLa (65)

Bladder cancer promote – promote – – – UMUC3、T24 (28)

Thyroid cancer promote inhibit promote – – BCPAP、K1 (66)

inhibit – inhibit
TPC1、FTC133、
8505C

(67, 68)
–, not available.
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regulating cell cycle progression (38, 77). Further in another study,

SNHG15 was capable of upregulating the expression of the caspase-3

and PARP, elevating the ratio of Bax/Bcl-2, suggesting the

involvement of intrinsic mitochondrial apoptotic pathway (37).

Based on functional analyses of multiple tumor types, SNHG15

interacted with multiple molecular mechanisms and signaling

pathways to impair apoptosis. We anticipate that targeting apoptotic

pathways that remain operative in specific types of cancer cells and

restoring apoptotic defense mechanisms, which would result in

substantial therapeutic benefits in the promising future.
3.3 Autophagy

In recent years, mounting studies have indicated that aberrant

expression of lncRNA is related to cell autophagy in diverse cancers

(78, 79). Autophagy was a catabolic process by which subcellular

membranes undergo dynamic morphological changes that result in

the degradation of cellular proteins and cytoplasmic organelles (80).

Notably, SNHG15-driven autophagy through negative regulation

of miR-141, according to a study performed by Liu et al., appeared to

contribute significantly to osteosarcoma development (57). Markedly,

miR-141 repression alleviated the reduction of levels of Atg5, LC3-II,

and the ratio of LC3-II/LC3-I and the rise in levels of p62 by SNHG15

knockdown in U2OS cells. Both ATG5 and LC3 were associated with

autophagosome formation, while ubiquitin-binding protein P62 was

an autophagy substrate, and degradation of P62 implies enhanced

levels of autophagy (81, 82).

In addition to contributing to the origin of cancer, the ability to

escape cell death also played a fundamental role in therapy

resistance, relapse, and metastasis (83). Generally, SNHG15

facilitated the survival of malignant cells by promoting autophagy

and was a promising target for anti-cancer treatments in patients

against sensitive malignant cells.
3.4 Metastasis

Metastasis, a hallmark of cancer, was a complicated multistep

process involving cell adhesion, invasion, and migration (84). It has

been documented that SNHG15 modulates tumor metastasis

primarily by regulating EMT, a pro-metastasis process that

enabled cells to migrate more efficiently and invade the

underlying mesenchyme (85).

Transcription of SNHG15 was regulated by MYC oncogene,

and overexpression of SNHG15 promoted the invasion of colon

cancer by interacting with AIF (45). In another separate research,

SNHG15 maintained the stability of Slug in tumor cells by

impeding its ubiquitination and degradation via interaction with

the zinc finger domain of Slug (44). Since Slug was a key regulator of

EMT, SNHG15 as a stabilizer of Slug was expected to serve an

essential role in the regulation of EMT (44, 86). After the silencing

of SNHG15, the expressions of E-cadherin and b-catenin were

memorably increased, while the N-cadherin and Vimentin were

decreased, suggesting that SNHG15 was also involved in the

development of OSCC (59), bladder cancer (28), BC (54), and
Frontiers in Oncology 06
OC (63). Based on bioinformatics data, SNHG15 upregulation has

been identified from tissue samples of CRC with liver metastasis,

indicating that high expression of SNHG15 is significantly

associated with liver metastasis of CRC (43).

As matrix metalloproteinases, MMPs have been intensively

investigated in cancer invasion and metastasis due to their

universal function of degrading the protein components in the

extracellular matrix (ECM) (87, 88). Western blot assay exhibited

that SNHG15 interference significantly decreased the expression of

migration and invasion-related proteins VEGF, MMP-9, and

MMP-14, further supporting the emphasis on SNHG15 in BC

(51). For in vitro studies, SNHG15 knockdown resulted in

reduced migration of GC (24, 46) and NSCLC (35, 37)cells.

Subsequent experiments concerning that cells with SNHG15-

depleted had lower expression of MMP2, and MMP9, indicating

the role of MMPs in SNHG15-induced enhancement of migration

and invasion (24, 37, 46). In addition to conventional cell-level

analysis, tumor metastasis and invasion-related proteins were

detected in nude mouse tumorigenesis tissues, and the results

showed the expression of MMP2, MMP9, Sail1, and Vimentin

was lower in tumor tissues derived from SNHG15-deficient BC

cells, while the expression of E-cadherin was high. Kong et al.

explored the molecular mechanism of SNHG15 in breast cancer,

revealing that SNHG15 acted as a miR-211-3p sponge in

carcinogenesis. In line with this, tail vein injection of stable

SNHG15-depleted BC cells in nude mice resulted in reduced

tumor cell colonization in the lung compared to the control

group (53).

Transcription factors are closely involved in EMT, which is a

fundamental phenotypic transition (89). In the nucleus, the NF-kB
complex binds to sequence-specific gene promoters and modifies

the expression of several target genes, including those encoding for

transcriptional modulators involved in EMT (Slug, Snail, Twist),

thus promoting migration and invasion (90). The expression of NF-

kB related proteins detected by Western blot analysis showed that

the expression levels of Snail1, Slug, and ZEB1 in RCC cells

transfected with SNHG15 siRNA were decreased significantly

compared with that in the control group (50). In general, studies

of SNHG15 modulating NF-kB and NF-kB-mediated EMT in

particular, have opened up avenues for the potential targeted

oncogenic NF-kB signaling therapy in metastatic cancers.
3.5 Immuno-escape

Solid tumors have somehow managed to avoid the elimination

of various weapons of the immune system or have been able to limit

the amplification of immune lethality, thereby evading eradication

(91). The various means by which cancer cells bypass the immune

system include immune checkpoint inhibitions that accrue myriads

of immunosuppressive molecules consisting of programmed death

1 (PD-1) or its ligand PD-L1 (92, 93).

Of note, SNHG15 was positively correlated with PD-L1, and

overexpression of SNHG15 significantly reduced the apoptosis rate

of HGC-27 cells after incubated with peripheral blood mononuclear

cells (PBMC) for 24 h when compared to NC, suggesting that
frontiersin.org
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SNHG15 promoted the immune escape of gastric cells to PBMC by

regulating the expression of PD-L1. Further analysis confirmed that

upregulated SNHG15 inhibited the expression of miR-141, an

inhibitor of PD-L1, leading to increased expression of PD-L1,

which resulted in resistance of gastric cancer cells to immune

response. This study suggested a novel lncRNA-mediated

mechanism for gastric cancer cells to evade the immune response,

and SNHG15/miR-141/PD-L1 has the potential to be a new target

for gastric cancer therapy (47).

Cancer immunotherapy (CIT), primarily represented by PD-1/

PD-L1 inhibitors, has become a fashionable treatment approach

and made substantial breakthroughs in the treatment of multi-solid

tumors (94–96). Under the control of tumor microenvironment

complexity and plasticity, lncRNAs enabled tumor evasion from

immune surveillance and uncontrolled development of metastasis

and drug resistance (97). Targeting SNHG15 with specific

inhibitors provided a strategy for studying and improving the

efficacy of immunotherapy.
3.6 Inducing/accessing the vasculature

Tumor angiogenesis is a pivotal process in cancer progression,

with glioblastoma generally considered to be one of the most

vascularized tumors in humans (98). It has been shown that

lncRNAs are involved in the regulation of tumor vascular

endothelial cell function (99).

SNHG15 was highly expressed in glioma vascular endothelial

cells and knockdown of the ncRNA inhibited proliferation,

migration, and tube formation in vitro. Survival analysis approved

that SNHG15 was a potential prognostic factor for patients with

glioma and negatively affected the overall survival of patients with

primary glioma (61). Tumor-derived expression of vascular

endothelial growth factor (VEGF) was considered a leading

candidate in tumor expansion and vascular function (100).

Cdc42, a small GTPase that regulates cytoskeletal dynamics, cell

shape, and many other cellular processes, was shown to improve

VEGF-driven angiogenesis as well (101). Mechanistically,

SNHG15 elevated VEGFA and Cdc42 expression by sponging

miR-451 at the post‐transcriptional level, facilitating the

angiogenesis of glioma. Based on this study, miR-451 silencing

occurred via SNHG15, which has binding elements for miR-451 at

its 3′‐UTR, leading to aberrant expression of VEGFA and Cdc42.

Despite a significant decrease of luciferase activity in the wild-type

VEGFA and Cdc42 upon overexpression of miR-51, there was no

effect on the mutant type. In a nutshell, lncRNA SNHG15 promoted

the growth of glioma microvascular endothelial cells primarily by

positively regulating the miR-451/VEGFA/Cdc42 axis, thereby

pointing to possible diagnostics and therapeutics based on the

axis (61).

In light of the hypervascular nature of glioblastoma, it is

promising that antiangiogenic treatment agents could be

identified by exploring the regulatory factors of tumor-suppressor

genes (102). As a whole, this finding reported by Ma et al. revealed a

plausible mechanism responsible for tumor angiogenesis, a complex

process with clear relevance to tumor progression and metastasis,
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thus supporting the notion that SNHG15 may be a novel target for

clinical treatment for glioma patients.
3.7 Chemoresistance

Therapeutic resistance was a major challenge in cancer

treatment; however, this could be improved by modulating key

cellular signaling pathways that conferred drug resistance to

increase the treatment sensitivity of tumors (103). Since SNHG15

was closely related to many cellular signaling processes, its

expression could be regulated to improve tumor sensitivity.

Cisplatin was a commonly used drug in neoadjuvant

chemotherapy and adjuvant chemotherapy for tumors, however,

drug resistance posed a major challenge to the clinical application of

cisplatin in cancer therapy (104, 105). SNHG15 was overexpressed

in cisplatin (DDP) resistant breast cancer cells and tissues,

enhancing DDP resistance of breast cancer cells by sponging

miR-381 (52). In cervical cancer, both in vitro and in vivo studies

have shown that SOX12-induced SNHG15 promotes cervical

cancer tumorigenesis and resistance to cisplatin via the miR-

4735-3p/HIF1a pathway (65). Likewise, SNHG15 suppressed

cisplatin-induced apoptosis and ROS accumulation through the

miR-335-3p/ZNF32 axis and was involved in p53-mediated

cisplatin resistance in OS cells (58). Interestingly, SNHG15 might

also target the miR-381-3p/GFRA1 axis to reduce apoptosis by

inducing autophagy, leading to chemotherapy resistance to

doxorubicin (55). Several findings above may provide new

insights into the discovery of strategies for OS treatment. In

studies investigating the resistance of glioblastoma to

temozolomide (TMZ), overexpression of SNHG15 was associated

with poor patient survival, and knockdown of SNHG15 effectively

inhibited the tumorigenic properties of TMZ-R cells via the

regulation of miR-627/CDK6 pathway, increasing TMZ-R cell

sensitivity to TMZ as well as decreasing TMZ-R’s capacity to

generate M2 GAM and glioma stem cells. In conclusion, the

present study suggested that SNHG15 may serve as a prognostic

marker for TMZ resistance, and Palbociclib, a CDK6 inhibitor,

could be used as an adjuvant for overcoming TMZ resistance and

shifting microglial cells towards an M1 polarization (60). In

addition, knockdown of SNHG15 in gefitinib-resistant A549/GR

and H1975/GR cells resulted in sponging miR-451 to up-regulate

MDR-1 expression, thus modulating EGFR-TKI acquired resistance

in lung adenocarcinoma (34). In studies targeting CRC, inhibition

of SNHG15 sensitized LoVo and HCT116 cells to 5-FU, which was

the basal chemotherapeutic agent for CRC treatment. Elevated

levels of SNHG15 were correlated with the ability of CRC cells to

cope with cytotoxic stress induced by 5-FU, which might be

mediated in part by its interaction with AIF (45).

Overall, SNHG15 was up-regulated in drug-resistant cancer

tissues and cell lines (34, 45, 52, 55, 58, 60, 65). Several findings

above may provide new insights into the discovery of strategies for

treatment. Overexpressed SNHG15 could promote the occurrence

of drug resistance in tumors and reduce the sensitivity of cancer

cells to chemotherapy drugs, suggesting its potential as a crucial

prognostic factor to predict tumor drug resistance.
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4 Clinical significance in cancer

Overexpression of SNHG15 suggested poor prognosis, which

was dramatically related to larger tumor size, lymph node invasion,

higher histologic grade, advanced TMN stage, inferior overall

survival (OS), and disease-free survival (DFS). Multiple studies

have declared that the up-regulation of SNHG15 has significant

clinical significance and was expected to serve as a promising

biomarker for early cancer diagnosis and prognosis. Besides,

down-regulation of SNHG15 could inhibit tumor cell

proliferation and metastasis, reduce drug resistance and increase

apoptosis, indicating a potential molecular target for future

tumor therapy.
4.1 SNHG15 serves as a diagnostic
biomarker in cancer

The early and accurate diagnosis was undoubtedly crucial to

prolong the lifespan of cancer patients, yet current methods do not

fully meet the demand for early diagnosis (106, 107). Numerous

studies revealed that serum lncRNA could serve as an effective

biomarker for cancer detection (108, 109).

Han et al. collected serum specimens from patients with

NSCLC, patients with benign pulmonary lesions, and healthy

volunteers, respectively, and ROC analysis indicated that serum

exosomal lncRNA SNHG15 might well distinguish all stage NSCLC,

early-stage (I/II) patients or advanced stage (III/IV) patients from

normal controls (110). Further, in combination with CEA, SNHG15

displayed higher accuracy in the early diagnosis of NSCLC. In
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pancreatic ductal adenocarcinoma (PDAC), the serum level of

SNHG15 was significantly higher in patients than in healthy

controls (111). With an AUC of 0.727, ROC curve analysis

illustrated that serum SNHG15 level might serve as a biomarker

for screening PDAC patients from controls.

Despite the considerable interest in the differential expression of

SNHG15 for multiple cancers, SNHG15 was less likely to help

distinguish between specific origins of tumors. These findings

emphasized the need for SNHG15 in combination with other

specific biomarkers that could further enhance the diagnostic

value of different cancers.
4.2 SNHG15 serves as a prognostic marker
in cancer

Despite the progression of innovative treatment technologies

such as targeted therapy and immunotherapy, the prognosis of

cancer remains dismal (112, 113). Profiling potential biomarkers for

cancer prognosis and elucidating their functional roles and

molecular mechanisms will greatly impact the precision treatment

of patients.

It was shown that the aberrant expression of SNHG15 was

closely associated with tumor prognosis (Table 3). High expression

of SNHG15 in cancer tissue samples exerted an extremely

promising potential to predict the adverse prognosis of cancer

patients (25, 29, 43, 111, 114, 115). According to Zhang et al.,

SNHG15 expression was associated with histological grade, TNM

stage, and venous invasion in HCC. An analysis of K-M data

revealed that patients with high expression levels of LncRNA
TABLE 3 Involvement of SNHG15 in cancer prognosis.

Cancer type Prognostic
indicator Associated clinical features Ref.

Lung cancer OS, DFS tumor size, TNM stage, lymph node metastasis (35, 37, 38)

Hepatocellular
carcinoma

Five-year survival
rate

TNM stage, lymph node metastasis, differentiation degree, vascular invasion, invasive depth (39, 40)

Colorectal cancer OS tumor stage, tumor depth, lymph‐node metastasis, liver metastasis, TNM stage (43–45)

Gastric cancer OS, DFS invasion depth, TNM stage, lymphatic metastasis, regional lymph node metastasis (24)

Pancreatic cancer – tumor size, TNM stage, lymph node metastasis (27, 48)

Renal cell carcinoma OS, RFS tumor stage, pathological stage, histological grade, metastasis (26, 50)

Breast cancer OS tumor size, lymph node metastasis, pathological stage (52, 53)

Glioma OS – (60, 61)

Ovarian cancer PFS – (63)

Nasopharyngeal
carcinoma

OS clinical stage (64)

Bladder cancer – tumor size, tumor stage (28)

Thyroid cancer OS gender, tumor size, TNM stage, lymph node metastasis (66)

DFS
age, pathology classification, clinical stage, tumor size, lymph node metastasis, distant
metastasis

(67)
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SNHG15 had poorer overall survival rates. In a brief, high

expression of SNHG15 was an independent predictor of poor

prognosis in patients with HCC (25). However, in thyroid cancer,

the DFS time of patients with lower SNHG15 expression levels was

significantly shorter than that of patients with strong levels (67).

Moreover, several meta-analyses explored the potential associations

between SNHG15 and prognostic attributes and clinicopathological

parameters. Several literature findings revealed that SNHG15

overexpression increased the risk of short OS, DFS, and

recurrence-free survival (RFS), but without significant

heterogeneity (31, 116–118). Furthermore, SNHG15 expression

was positively correlated with TNM stage, histological grade,

lymphatic metastasis, and distant metastasis. Subgroup analysis

confirmed that the high expression of SNHG15 was associated

with a significant decrease in OS in patients with digestive cancer,

but not LC (116). The study by Zhang et al. suggested that SNHG15

can be a particularly powerful molecular biomarker with prognostic

potential in gliomas compared with other known related neoplastic

diseases (31). Furthermore, whether there was an association

between SNHG15 and tumor volume size remains controversial

due to the different criteria for inclusion in the analysis.

The upregulation of lncRNA SNHG15 was significantly

associated with poorer prognosis and clinical features, suggesting

that SNHG15 may be a novel prognostic factor in various cancers.

However, the current deficiency was that most of the subjects

included were from China, with small case numbers of certain

cancer types and the sample size was still limited. Thus, subsequent

prospective studies with high-quality and large-sample sizes were

warranted to further confirm the prognostic role of SNHG15

in cancer.
4.3 SNHG15 serves as a promising target
for cancer therapy

While decades of intensive research into cancer have been

conducted, no effective strategy existed to drastically cut the rates

of cancer recurrence and mortality (119–121). More interesting was

that the SNHG15 expression appears to be differentially modulated

in different cancer types and correlates with tumorigenesis, tumor

aggressiveness, and stage of cancer, which makes it a candidate for

cancer therapies.
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The downregulation of SNHG15 and its associated miRNA

network overexpression inhibited tumor progression, suggesting

SNHG15 as a promising therapeutic target. SNHG15 mediated

several events in CRC pathogenesis (42, 44). As well, overexpression

of SNHG15 led to an increase in resistance of CRC cells through

strong binding to the transcription factor MYC (45). Several in vitro

studies indicated that SNHG15 silencing could significantly inhibit the

proliferation, migration, and invasion of HCC and RCC cells, induce

cell cycle arrest in G1/G0 phase and promote cell apoptosis (39, 122).

Furthermore, suppression of SNHG15 inhibited breast xenograft

tumor growth in the nude mouse model and reduced tumor weight,

exhibiting a strong anti-tumor effect.

Despite these major advances, the oncogenic mechanisms of

SNHG15 remain obscure. There was still a long way to go before its

application in clinical treatment, including exploration and

elucidation of the precise mechanism of action underlying the

anti-tumor effect of SNHG15.
5 Regulatory networks of SNHG15

SNHG15 exerted oncogenic or tumor-suppressive effects in

cancer through multiple molecular mechanisms. A better

understanding of the regulatory network of SNHG15 in human

tumors might provide neoteric insights regarding tumor

pathogenesis and lncRNA-based diagnosis and treatment of

human malignancies.
5.1 Upstream regulators of SNHG15

Accumulating evidence manifested that genetic alterations and

key transcription factors contributed to lncRNA dysregulation in

human cancers (123, 124). To our surprise, some upstream

transcriptional regulators of SNHG15 have been preliminarily

explored in recent years (Table 4).

Prior work declared that two resident E-box motifs are binding

platforms for transcription factor MYC on the SNHG15. Chromatin

immunoprecipitation (ChIP)-seq data from ENCODE confirmed

that MYC is bound to these boxes in different cancerous cell lines.

The depletion of MYC in the LoVo cell line resulted in a significant

decrease in the level of SNHG15, stating that MYC can activate the
TABLE 4 Upstream regulators of SNHG15 in cancers.

Cancer type Associated upstream regulators Relevance Ref.

Lung cancer ZEB1 positive (34)

Colorectal cancer MYC positive (45)

Cervical cancer SOX12 positive (65)

Multiple myeloma m6A positive (125)

Renal cell carcinoma cg00953154, cg03440944, and cg16459265 negative (26)

Glioma p53 negative (126)

Osteosarcoma p53 negative (58)
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transcription of SNHG15 in CRC cells (45). Notably, as predicted by

the JASPAR database, ZEB1 could bind to the promoter region of

SNHG15 to transcriptionally accelerate its expression in gefitinib-

resistant lung adenocarcinoma (LUAD) cells (34). Silencing of the

P53 gene in human osteosarcoma U2OS cells significantly increased

SNHG15 expression compared to control (58). Consistently,

fundamental experiments confirmed that the binding of P53

protein to the SNHG15 promoter was diminished in P53

knockdown cells. In ovarian cancer, tumor cells that were knocked

down for SOX12 showed reductions in SNHG15 expression and vice

versa. Luciferase reporter gene analysis corroborated the interaction

between SOX12 and SNHG15 promoter. Taken together, SOX12 was

involved in the transcription of SNHG15 overexpression (65).

Ultimately in clear cell renal cell carcinoma (ccRCC), DNA

hypomethylation might play a notable role in elevating SNHG15

transcription by substantially modulating its expression level. In the

human medulloblastoma cell line DAOY, SNHG15 was modulated

by EphrinA5-induced signal transduction, with EphrinA5

stimulation significantly reduced SNHG15 expression which might

be relevant for the regulation of tumorigenic processes in the context

of glioma (126).

The field of epitranscriptome analysis is becoming increasingly

popular among scientists (127). It has been found that RNAs

possess more than 170 types of chemical modifications required

for their proper function in pre-mRNA splicing, nuclear exporting,

transcript stability, and translation initiation (128, 129). N6-

Methyladenosine (m6A), the most abundant internal chemical

modification of eukaryotic mRNAs, was catalyzed by the m6A

methyltransferase complex (MTC) and removed by FTO and

ALKBH5 (130). The authors demonstrated that overexpression of

lncRNA SNHG15 in myeloma cells rescued the cell proliferation

inhibition, cell migration inhibition, and accelerated apoptosis

caused by ALKBH5 knockdown (125). Based on renal samples

from a cohort, the correlation between the SNHG15 expression and

the methylation status of CpG sites was analyzed by gene

microarray (26). Using the methylation data, the methylation

levels of 3 sites (cg00953154, cg03440944, and cg16459265) were

negatively associated with SNHG15 expression respectively,

followed by validation in clinical samples.

Compared with the abundant research on downstream

mechanisms, the upstream exploration of SNHG15 was still far

from sufficient or complete. With the growing number of lncRNAs

annotated in genomes by high-throughput sequencing technologies,

the list of transcripts with unknown upstream transcriptional

regulatory mechanisms was increasing, which provides the

possibility for further exploration. Shortly, the cascades of

transcriptional regulators upstream of SNHG15 were promising

to be determined by fully mining the database and conducting co-

expression network studies.
5.2 SNHG15 interacts with proteins

Several studies have highlighted that lncRNAs were able to

regulate the expression of target genes by interacting with RNA-

binding proteins (131, 132).
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SNHG15 could function as protein decoys to recruit proteins in

transcriptional gene regulation, either coordinately or in a complex.

Ma et al. elucidated that SNHG15-mediated oncogenic effects are

partly due to epigenetic inhibition of P15 and KLF2 expression (48).

Experimental assays validated that SNHG15 recruited EZH2 to P15

and KLF2 promoters and inhibited transcriptions of these genes via

modifying H3K27me3 in PC cells. In short, SNHG15 suppressed

P15 and KLF2 expression to promote PC proliferation through

EZH2-mediated H3K27me3.

In colorectal cancer, diverse experimental methods have

confirmed that SNHG15 interacted with the Slug zinc finger

domain and affected Slug protein levels in a post-transcriptional

dependent manner (44). Certainly, these findings manifested a novel

mechanism underlying the control of Slug stability, where SNHG15

interacted with and blocked Slug degradation along the ubiquitin-

proteasome system, ultimately accelerating colon cancer progression.

AIF is a bifunctional protein that exhibits distinct subcellular

localizations consistent with its known roles in cellular stress or

apoptosis program (133, 134). After translation in the cytosol, AIF

was transported to the mitochondria, where it has a strong impact

on various cellular stress and survival pathways (135). Assays have

confirmed that SNHG15 interacts with AIF based on protein

translation, and then participates in the stress response of

colorectal cancer cells to 5-FU. Given the full length of the AIF

protein interacting with SNNH15, and the subcellular localization

of the lncRNA, SNHG15 might interact with AIF in the cytosol,

coupling it to the correct mitochondrial translocation and

ultimately increasing the sensitivity of the cell to 5-FU (45).

AGO2 is an indicator protein of lncRNA acting as a sponge,

which can form a ternary complex of ncRNA-miRNA-AGO2

protein with adsorbed miRNA (136). In hepatocellular carcinoma,

RIP experiments confirmed that SNHG15 and miR-141-3p were

preferentially enriched in AgO2-containing micronucleus proteins,

while this suggests that SNHG15 and miR-141-3p interact in an

AgO2-dependent manner (41). In a short, SNHG15 might serve as a

scaffold for RNA binding proteins (RBP) to form RNA-protein

complexes that ultimately affect protein translation and post-

translational modifications.

Currently, available knowledge already reveals an intricate

network of lncRNA-protein interactions whose deregulation is

frequently associated with pathology. The interaction network was

anticipated to expand, providing invaluable clues about lncRNA

cellular mechanisms and their diseases-associated variations.
5.3 SNHG15 regulates various genes

In addition, there are some molecules reported to be mediated

by SNHG15, including MMP2 and MMP9. Experimental results

appeared that mRNA or protein expression of MMP2 and MMP9

were decreased when SNHG15 was blocked compared with the

control groups respectively. In light of these data, MMP2/MMP9

were positively regulated by SNHG15 at both transcription and

translation levels. In brief, ectopic expression of SNHG15

contributed to the proliferation and invasion of gastric cancer

cells in part through the regulation of MMP2 and MMP9 (24).
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5.4 SNHG15 serves as ceRNA

Theoretically, any type of RNA with miRNA response elements

(MREs), including lncRNAs, could perform the function of ceRNA

to degrade miRNAs and compete for the mRNA binding (137, 138).

CeRNA was an important biological pathway that regulated RNA

gene expression by interacting with the target of the mRNA 3’-UTR,

resulting in adenylation, alterations in mRNA stability, and

translation inhibition (139, 140). For instance, the upregulation of

SNHG15 in prostate cancer tissues resulted in a rapid progression of

the disease by increasing the expression of FKBP1A viamiR-338-3p

absorption. The luciferase activity of the wild-type SNHG15

reporter gene was appreciably reduced after transient co-

transfection with miR-338-3p mimics but had no effect on the

mutant. The miR-338-3p was capable of interacting directly with

the non-coding region of FKBP1A, evoking a significant down-

regulation of FKBP1A. Simply put, SNHG15 was involved in the

regulation of the miR-338-3p/FKBP1A axis, thus encouraging the

malignancy and tumorigenesis of prostate cancer (49). This review

mainly summarized the lncRNA-miRNA-mRNA regulatory

network formed by SNHG15 acting as a ceRNA in the whole

process of sequential carcinogenesis (Figure 2).
5.5 SNHG15 regulates multiple
signaling pathways

We explored the literature on the signaling pathways involved

in tumor development for SNHG15 to identify future serve as an
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early diagnostic biomarker or as a target for gene therapy or other

curative treatments. Current studies from different groups

suggested that SNHG15 exerted tumor-promoting effects by

regulating YAP-Hippo, AKT-mTOR, and NF-kB signaling

pathways (Figure 3).
5.5.1 YAP-Hippo pathway

The Hippo pathway is an evolutionarily conserved regulator of

tissue growth and cell fate, and YAP1 is thought to be a major

terminal effector of the pathway (141, 142). Not surprisingly,

dysregulation of the Hippo pathway could induce tumors in

model organisms and has been implicated in a broad range of

human cancers. A recent study conducted by Wu et al. has

confirmed the oncogenic regulatory axis of SNHG15/miR-200a-

3P/YAP1 pathway in PTC progression (66). Wu and his colleagues

pointed out that decreased SNHG15 expression effectively inhibited

the briskness of the YAP1 signaling pathway and EMT process

during PTC promotion. Moreover, MST1 and LATS1, the core

factors of the Hippo pathway, are negatively regulated by SNHG15

at both the mRNA level and protein level in PTC cells. Given the

frequent dysregulation of the Hippo pathway in cancer, targeting

this way represented a very promising strategy for cancer treatment.

The essential oncoprotein YAP, which was the ultimate common

conduit of the Hippo pathway, was the most appealing therapeutic

target. Considering the pro-tumor role of SNHG15/miR-200A-3p/

YAP1/Hippo axis, combined targeting of the YAP1/Hippo signaling

pathway might offer a promising treatment direction for PTC.
FIGURE 2

lncRNA SNHG15 function through ceRNA mechanism. SNHG15 could sponge miRNAs or serve as ceRNA by occupying the shared binding
sequences of miRNAs, thus sequestering miRNAs and changing the expression of downstream target genes.
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5.5.2 AKT-mTOR pathway
The dysregulation of the PI3K/AKT/mTOR signaling pathway

occurs most frequently in cancer patients and plays a critical role in

driving tumor initiation and progression, as well as therapy response

(143). Consistent with the changes of EMT markers in vitro study,

the relative migrated and invaded cell numbers in the sh-SNHG15

group were significantly decreased compared to the NC group in

ovarian cancer (62). Zhang et al. declared that SNHG15 participated

in the biological process of ovarian cancer by directly targeting and

inhibiting the miR-18a expression and thus regulating the AKT/

mTOR signaling pathway. Western blot analysis on the protein levels

of key molecules within signaling pathways showed that the

expression of p-AKT and p-mTOR significantly increased in cells

transfected with the SNHG15 vector. In a nutshell, this finding

elucidated a plausible mechanism responsible for the constitutive

activation of AKT-mTOR signaling during tumor promotion of OC,

supporting the notion that SNHG15 might be a novel target for

clinical treatment for cancer patients.

5.5.3 NF-kB pathway
Since a eukaryotic transcription factor, NF-kB was involved in

adaptive and innate immunity, inflammatory responses, cell

proliferation, apoptosis, tumor growth, and differentiation (144).

Aberrant activation of the NF-kB signaling cascade was recurrent in

the initiation and progression of numerous human cancers,

including kidney cancer (89). Based on the bioinformatics analysis,

NF-kB might specifically bind to SNHG15, and Western blotting

results substantiated that decreased SNHG15 expression effectively

inhibited the active NF-kB signaling pathway and EMT processes in

kidney carcinogenesis and led to a significant reduction in the

protein expression levels of the EMT-related transcription factors
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Snail1, Slug, and ZEB1 (50). Previous studies have indicated that

TNF-a, as an activator of NF-kB, was able to promote the

intracellular membrane transduction process (90). Meanwhile, the

migration and invasion ability of kidney cancer was enhanced by

TNF-a stimulation, whereas the knockdown of SNHG15 attenuated

this effect (50). These studies have identified that SNHG15 facilitated

RCC proliferation, invasion, and migration through the NF-kB
signaling pathway and by inducing the EMT process (50, 89, 90).

An improved understanding of the molecular pathway implicated in

the pathogenesis and progression of RCC has laid the foundation for

the further diagnostic and therapeutic study of the disease.
6 Conclusion

Extensive evidence has highlighted that aberrant expression of

human gene expression regulators such as lncRNAs plays a crucial

role in tumorigenesis and progression (145, 146). In recent years,

considerable progress has been made in elucidating the role of

SNHG15 in various physiological and pathological processes.

Nevertheless, SNHG15 was determined to be positively tied with

unfavorable clinical parameters, resistance to therapy, and poor

prognosis, revealing its potential as a promising biomarker for

cancer diagnosis and treatment. For the relevant lncRNA SNHG15,

pathway analysis of its immensely co-expressed protein-coding genes

displayed a potential over-representation of cancer-related duties (50,

62, 66). Illumination of the molecular pathways and the interacting

networks involved in SNHG15-mediated carcinogenesis will raise the

understanding of its roles in the pathogenesis of multiple diseases and

pave the way for in-depth knowledge of SNHG15, giving rise to

clinical applications in the near future.
FIGURE 3

SNHG15 regulates multiple signaling pathways. SNHG15 exerted tumor-promoting effects by regulating YAP-Hippo and AKT-mTOR pathways.
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7 Future perspectives

Substantial empirical studies have demonstrated that tumor-

derived exosome SNHG15 could carry multiple forms of tumor-

associated information, which might be an untapped potential

source of biomarkers for diagnostic or prognostic applications

toward diverse cancers (25, 29, 111). In the future, the

combination of SNHG15 and existing tumor markers is expected

to greatly improve the accuracy of early diagnosis.

Cancer-related therapies targeting ncRNAs, including antisense

oligonucleotides (ASOs), small interfering RNAs (siRNAs), short

hairpin RNAs (shRNAs), and CRISPR-Cas9-based gene therapy

have generated considerable interest in clinical management, with

several above therapies showing promise in pre-clinical studies

(147). The downregulation of SNHG15 inhibited tumor

progression, suggesting SNHG15 could hold the promise of being

a novel target for ncRNA-based pan-cancer therapies.

Since the conclusions are based on limited research so far, we

still have a long way to go when it comes to understanding whether

all tumors expressing high levels of SNHG15 are ideal candidates

for diagnosis and treatment as a whole. Meanwhile, most of the

findings documented here were derived from studies performed

with established tissues and cancer cell lines. To fully explore the

extent to which patients can benefit from SNHG15 monitoring and

targeted treatment strategies, further stringent clinical validation

was required before being deployed on patients with cancer.
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