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Junction of the redox dynamic,
orchestra of signaling, and
altered metabolism in regulation
of T- cell lymphoma
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Biochemistry and Molecular Biology Laboratory, Centre for Advanced Study in Zoology, Institute of
Science, Banaras Hindu University, Varanasi, India
T-cell lymphoma is a hematologic neoplasm derived from the lymphoid lineage. It

belongs to a diverse group of malignant disorders, mostly affecting the young

populationworldwide, that vary with respect tomolecular features as well as genetic

and clinical complexities. Cancer cells rewire the cellular metabolism, persuading it

to meet new demands of growth and proliferation. Furthermore, the metabolic

alterations and heterogeneity are aberrantly driven in cancer by a combination of

genetic and non-genetic factors, including the tumor microenvironment. New

insight into cancer metabolism highlights the importance of nutrient supply to

tumor development and therapeutic responses. Importantly, oxidative stress due to

an imbalance in the redox status of reactive species via exogenous and/or

endogenous factors is closely related to multiple aspects of cancer. This alters the

signaling pathways governed through the multiple intracellular signal transduction

and transcription factors, leading to tumor progression. These oncogenic signaling

molecules are regulated through different redox sensors, including nuclear factor-

erythroid 2 related factor 2 (Nrf2), phase-II antioxidant enzyme, and NQO1 (NADPH

quinone oxidoreductase (1). The existing understanding of the molecular

mechanisms of T-cell lymphoma regulation through the cross-talk of redox

sensors under the influence of metabolic vulnerability is not well explored. This

review highlights the role of the redox dynamics, orchestra of signaling, and genetic

regulation involved in T-cell lymphoma progression in addition to the challenges to

their etiology, treatment, and clinical response in light of recent updates.

KEYWORDS

T-cell lymphoma, redox status, cancer metabolism, Nrf2, NF-kB, signaling pathways
Introduction

Genetic mutations, which are fuel for cancer, have been linked to different human

malignancies. Every day, hundreds of cells undergo mutation in the human body, but they

do not all go through tumor formation. However, under adverse conditions, adaptive

changes may cause cells to behave abnormally, changing survival, growth, and division
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patterns, which potentially disturbs cellular and social control (1).

The multiple rewirings of the cell’s metabolic, genetic, and signaling

pathways resulting in a very disruptive destiny for the cell’s social

environment. Lymphoid cells, a critical component of the immune

system, have been identified as emerging players associated with the

progression of multiple forms of cancer, including lymphoma.

Lymphoma is a malignant disease consisting of a large

heterogeneous group of lymphocytic cells that reside within the

lymph nodes, spleen, thymus, bone marrow, and other parts of the

body. Broadly, it is classified into Hodgkin’s and non-Hodgkin’s

lymphoma (2). Hodgkin’s lymphoma is named after Dr. Thomas

Hodgkin who discovered this disease in 1832. Hodgkin’s lymphoma

is classified on the basis of the presence of a specific type of cell

called a ‘Reed-Sternberg cell’, which is absent in its parallel subtype

non-Hodgkin’s lymphoma (2). According to the ‘5th edition of

WHO classification of lymphocyte neoplasm 2022’, tumor

heterogeneity represents around 115 different types of lymphoid

descendants (3). Non-Hodgkin’s lymphoma is classified as

abnormal clonal proliferation of T cells and B cells that lack

Reed-Sternberg cells, where the majority of them (80–90%) arise

from B-type lymphocytes and the rest (10–20%) originate from T

lymphocyte or natural killer cells (4). Lymphocytes have a definite

life span; however, under certain circumstances they start dividing,

causing them to aggregate in lymph nodes, which results in swelling

of the lymphatic system. Various immune-suppressed pathologies,

including HIV, receiving high doses of chemotherapy, organ

transplantation, stem cell therapy, and even infection with

Epstein bar virus and Helicobactor pylori bacteria, may cause a

predisposition to non-Hodgkin’s lymphoma (5). This review

focused on types and subtypes of lymphoma, specifically T-cell

Lymphoma, and their dynamic regulation under the influence of

redox status, metabolic tuning, and signaling pathways.
T-cell lymphoma

The human body responds to foreign invaders with the help of

lymphoid cells and the lymphoid system, including all cells of adaptive

and innate immunity. T-cell lymphoma is hematologic neoplasm

derived from the lymphoid lineage, which normally governs immune

responses. Abnormality in this immune regulation has been reported in

post-thymic or activated T lymphocytes. As per the report of the

American Cancer Society, T-cell lymphoma accounts for about 10% of

all lymphoma. WHO classified T-cell lymphoma into 39 types and 11

different categories (3). Different types of T-cell Lymphoma are listed in

Table 1. Based on the involvement of bone marrow, it can be

recognized as either lymphoma and/or acute lymphoblastic leukemia.

It starts at the thymus site of T-cell maturation and develops into a

tumor at the mediastinum and can spread to almost any part of the

body, including the liver, bone marrow, gastrointestinal tract, spleen,

skin, and brain (6).

Epithelial–mesenchymal transition (EMT) is initiated in a malignant

T-cell lymphoma, which allows epithelial cells to be converted into

mesenchymal cells and moves them into distinct locations through a

process known as metastasis. Chemotherapy is the most preferred

treatment option, being preferable over radiation and surgery.
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However, a plethora of side effects, including chemotherapy-induced

peripheral neuropathy (CIPN) and immunosuppression, can be seen in

many parts of the body, including the brain, where it may display lifelong

persistence (7–9). The antioxidant defense system is crucial in

maintaining cellular homeostasis. An imbalanced redox status due to

high metabolic demand and the microenvironment of T-cells could be

targeted for treatment.
Redox status and antioxidant
defense system

Healthy cells routinely encounter immense amount of stress due

to environmental (xenobiotic exposure, microbial exposure, etc.) and

cellular (metabolic, immune function, etc.) responses in form of

reactive oxygen species (ROS). These ROS are collectively defined

under two subtypes, free radical species, including superoxide anions

(O2
•−), hydroxyl radicals (HO•), peroxyl (RO2•), and alkoxyl (RO•),

and non-radical species, such as hydrogen peroxide (H2O2) (10).

Accumulation of ROS cumulatively builds up in the cell in the form

of oxidative stress. Oxidative stresses are imbalances between

oxidants and antioxidants, leading to modification of biochemical

properties of biomolecules in cells, which is balanced by an

intracellular antioxidant defense system (11). Modulation of redox

states contributed to multistage carcinogenesis either by a direct

mechanism involving damage of DNA or indirectly by modulating

cellular signal transduction (12, 13). ROS affect the function of

multiple cellular proteins either by stabilizing them or modifying

them in such a way that they can easily interact with their activator

for their downstream target where they cause prolonged or

constitutive activation of growth factors, cytokines, etc. NF-kB is a

potent target of ROS that activates multiple transcription factors

associated with cell cycle progression and survival (12). Elevated

oxidative stress has been reported in many types of cancer cells where

the redox changes have significant consequences. The application of

antioxidants on T-cell lymphoma for therapeutic response has been

extensively studied.
Models for T-cell lymphoma study

For future drug development and etiological investigation there

is a need for a suitable model that can mimic maximum possible

properties of problems from the preclinical to clinical grade. A wide

range of preclinical models are being studied in research ranging

from primary cultures, cell lines, xenografting, and patient derived

xenografting (PDX) to more advanced organoid cultures including

the patient-derived organoid (PDO). Due to the diversity and/or

heterogeneity found in T-cell malignancy a wide variety of in vivo as

well as in vitro models have been established (13, 14). Various

animal models used in T-cell lymphoma are listed in Table 2. Our

elucidation of T cells in this review is mainly dominated by a

transplantable T-cell lymphoma model also known as Dalton’s

lymphoma. It has shown maximum association with a range of

clinical markers of T-cell lymphoma. A wide range of markers,

including regulation of CD3+, massive depletion of immature
frontiersin.org
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TABLE 1 T-cell Lymphoma types.

SN T-cell lymphoma Subtypes

1

Tumor-like lesions with T-cell predominance

Kikuchi-Fujimoto disease

Indolent T-lymphoblastic proliferation

Autoimmune lympho-proliferative syndrome

2

Precursor T-cell neoplasm T-lymphoblastic leukemia/lymphoma

Early T-precursor lymphoblastic leukemia/lymphoma

3 Mature T-cell and NK-cell neoplasm

a
Mature T-cell and NK-cell leukemia

T-prolymphocytic leukemia

Tlarge granular lymphocytic leukemia

NK-large granular lymphocytic leukemia

Adult T-cell leukemia/lymphoma

Sezary syndrome

Aggressive NK-cell leukemia

b
Primary cutaneous T-cell lymphoma

Primary cutaneous CD4-positive small or medium T-cell lympho-proliferative disorder

Primary cutaneous acral CD8-positive lympho-proliferative disorder

Mycosis fungoides

Primary cutaneous CD30-positive T-cell lympho-proliferative disorder: Lymphomatoid papulosis

Primary cutaneous CD30-positive T-cell lympho-proliferative disorder: Primary cutaneous
anaplastic large cell lymphoma

Subcutaneous panniculitis-like T-cell lymphoma

Primary cutaneous gamma/delta T-cell lymphoma

Primary cutaneous CD8-positive aggressive epidermotropic cytotoxic T-cell lymphoma

Primary cutaneous peripheral T-cell lymphoma

c Intestinal T-cell and NK-cell lymphoid proliferations
and lymphoma

Indolent T-cell lymphoma of the gastrointestinal tract

Indolent NK-cell lymphoproliferative disorder of the gastrointestinal tract

Enteropathy associated T-cell lymphoma

Monomorphic epitheliotropic intestinal T-cell lymphoma

Intestinal T-cell lymphoma

d Hepatosplenic T-cell lymphoma Hepatosplenic T-cell lymphoma

e Anaplastic large cell lymphoma

ALK-positive anaplastic large cell lymphoma

ALK-negative anaplastic large cell lymphoma

Breast implant-associated anaplastic large cell lymphoma

Nodal T-follicular helper (TFH) cell lymphoma

f Peripheral T-cell lymphoma Peripheral T-cell lymphoma

g EBV-positive NK/T-cell lymphoma EBV-positive nodal T- and NK-cell lymphoma

h
EBV positive T-cell and NK-cell lymphoma

Severe mosquito bite allergy

Extranodal NK/T-cell lymphoma

Hydroavacciniforme lympho-proliferative disorder

Systemic chronic active EBV disease

Systemic EBV-positive T-cell lymphoma of childhood
F
rontier
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“a-h” represents subdivision of mature T-cell and NK-cell leukemia.
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CD4+, CD8+ and mature CD4+, CD8-, and CD8- along with

impaired regulation of immunoregulatory cytokines such as IFN-

ϒ, IL-10 and IL-2 for T-cell lymphoma, are listed in Table 3.
Regulation of T-cell lymphoma by ROS

ROS governs multiple cellular responses and are collectively

referred to as “redox messengers” (10). These messengers further

initiate a cascade of events in a small cytoplasmic pool to regulate
Frontiers in Oncology 04
different cellular functional proteins. Here, we describe some of

such signaling events that contribute to progression of T-cell

lymphoma in response to these messengers while highlighting

signaling molecules involved in it.
Nrf2-NQO1 signaling

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a leucine

zipper transcription factor with 7-Neh (Nrf2 ECH homology)
TABLE 3 T-cell lymphomas and their associated markers.

SN T-cell neoplasm Associated marker References

1 T-prolymphocytic leukemia Positive for CD3 and CD7 but negative for CD5 and CD30 (35–37)

2 T-large granular lympho-proliferative Positive for CD3, CD7, and CD8 but negative for CD4, CD5, and CD30 (38–40)

3 Cutaneous ALCL (anaplastic large cell lymphoma) Positive for CD3 and CD30 but negative for CD8 (40–42)

4 Hepatosplenic T-cell lymphoma Positive for CD3 and CD7 but negative for CD4, CD5, CD8, and CD30 (38, 43, 44)

5 Angioimmunoblastic T-cell lymphoma Positive for CD3 and CD5 but negative for CD7 and CD30 (38, 45)

6 Enteropathy associated T-cell lymphoma Positive for CD3, CD5, and CD7 (46, 47)

7 Adult T-cell leukemia/lymphoma Positive for CD3 and CD5 but not for CD7 (48, 49)
TABLE 2 T-cell lymphoma model.

SN Type Model Mechanism Effect Reference

1 Angioimmunoblastic
T-cell lymphoma

Roquin mouse
model

A missense (M199R) San Roque mutation in the roquin
gene

Increase of THF cell (15)

Tet2 gene trap mice
model

A gene-trap vector inserted into the Tet2 section intron THF- like phenotype (16)

G17V RHOA mouse
model

By stabilizing G17V RHOA gene expression either
retroviral transduction, knockout

Increases THF cell population (17–19)

PDX Models of
angioimmunoblastic
T-cell lymphoma

Inoculation of cells from lymph node of AITL to NOG
mice

AITL-like disease (20)

2 Anaplastic large T-cell
lymphoma

NPM1-ALK
transgenic models

By transplanting bone marrow cells transduced with a
retroviral vector carrying NPM1-ALK cDNA into
lethally irradiated mice and using transgenic
approaches

Result in development of
plasmacytoma, histiocytic
malignancy, and large cell
lymphoma from B-lineage

(21–26)

PDX Models of
anaplastic large-cell
lymphomas

Inoculation of CD30+ALCL cell from patient to SCID
mice

ALCL, ALK+ disease (27)

3 Human
T-cell lymphotropic
virus type 1 adult T-
cell leukemia/
lymphoma

Mice expressing
HTLV-1 viral
proteins

Use of transgenics mice expressing Tax under the
control of viral promoters HTLV1

Development of mesenchymal
tumor in nose, ear, foot, and tail

(28)

PDX Models of
adult T-cell
leukemia/lymphoma

Xenograft of patient derived cell to SCID and NOD/
SCID mice

lymphocytic infiltration in spleen,
liver, lung, and other organs

(29)

4 Cutaneous T-cell
lymphoma

IL‐15 transgenic
model

Transgenic mice model having increased IL-15
expression in CD4+T-cell

Fatal leukemia in skin (30, 31)

JAK3A572V mutant
model

Retroviral induction of JAK3A572V mutant cDNA into
5-flurouracil-treated murine bone marrow cells

CD8+ leukemic condition in the
skin

(32, 33)

5 Enteropathy-
associated T-cell
lymphoma

Setd2cKOmicewere
generated with Lck-
Cre transgenic mice

Through transgenic and knockout processes Increased no of ϒd+T-cell in
intraepithelial region

(34)
f
rontiersin.org

https://doi.org/10.3389/fonc.2023.1108729
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Singh and Maurya 10.3389/fonc.2023.1108729
domains, each with a different function. Nrf2 is found in every cell

type with basal level of activation and its level is regulated by 26s

proteasomal degradation mediated by E3 ubiquitin ligase (Keap1-

Cul3-Rbx) (50). There are around 200 genes with ARE (antioxidant

response element) sequences which are regulated by Nrf2 (51, 52).

Cells are armored with intricate defense system to counter

oxidative stress through the Keap1-Nrf2-ARE pathway (53). The

Nrf2 protein is reported to be upregulated during oxidative stress,

and knockout of Nrf2 results in severe deficiency in the

coordination of the gene regulatory program with increased

susceptibility to oxidative damage (54). Nrf2 is reported to be a

double-edged sword with a dual role in controlling cancer (55). The

role of Nrf2 in cancer is a little paradoxical, however, in T-cell

lymphoma it is delimited to its traditional pathway where any

deterioration in this pathway leads to carcinogenesis and

restabilizing it results in the enhancement of lymphoma. Multiple

drivers have been reported to activate or stabilize the expression of

Nrf2. PKC (Protein kinase C) is one such sensor that stabilizes the

translocation of Nrf2 from the cytosol to nucleus by

phosphorylating it at the ser-40 position and facilitating its

release from its cytosolic anchor Keap1 (56). Nrf2 protects the

cell from oxidative damage by preventing cellular damage and

halting cell cycle progression. Overexpression of PKC promotes

tumor progression (57). Other accessory proteins such as ERK2 and

GSK3b have also been reported to regulate Nrf2 activity (58–66).

Genomic response by antioxidant signaling inducers suggest

NAD(P)H:quinone oxidoreductase 1 (NQO1) and glutathione S-

transferase (GST) are the two main target genes activated through

Nrf2 in T-cell lymphoma (67, 68). NQO1 is a phase two antioxidant

enzymes; it catalyzes the reduction of several environmental

electrophonic contaminants and endogenous compounds,
Frontiers in Oncology 05
including quinones and nitro compounds (69). NQO1 under

the regulation of Nrf2 plays a dual role in protection

against carcinogenesis. Nrf2-dependent induction of NQO1

downregulated lipopolysaccharide (LPS)-induced expression of

inflammatory cytokines, thereby impairing the inflammatory

responses (70). It has also reported to induce apoptosis through

p53. p53 is a tumor suppressor protein transcribed in response to

cellular alteration like DNA damage and accumulates inside the cell

to limit cell proliferation by initiating cell cycle arrest and apoptosis

(71). Glutathione s-transferase (GST) is the second important target

of the antioxidant-induced downstream response of Nrf2, which

regulates metabolic detoxification of various electrophilic

xenobiotic by forming a complex with them. Several isoforms of

GST are reported to be expressed in a tissue-specific manner (72).

The GST null phenotype is associated with an increased rate of

cancer development (73). Nrf2 activation and its role in tumor

suppression is depicted in Figure 1. Curcumin, an antioxidant, has

shown anti-carcinogenic properties by elevating GSTa, GSTµ, and
GSTp activity (74).
NF-kB signaling

NF-kB represents a group of proteins that are very sensitive to

any changes in the cellular redox profile and has a key role in cancer

progression (75, 76). Normally, it remains sequestered in the

cytoplasm along with inhibitory subunit Ikb. ROS have been

reported as both activators and inhibitory stimuli for NF-kB
depending on the type of modification and site of action (77–80).

NF-kB regulates multiple proteins, including COX2, VEGE-A,

TNF-a, and IL-6. The COX2 protein has been described as one
A

B C

FIGURE 1

Nrf2 activation and the role of antioxidants in tumor suppression (A) Typical representation of the Nrf2 domain that regulate specific ARE genes;
(B) Antioxidant stabilizes Nrf-2 by interfering in its proteasomal degradation pathway, resulting in enhanced binding of Nrf-2 with its promoter
sequence, which causes upregulation of antioxidant scavengers NQO1 and GST and (C) Nrf-2 promotes the expression of the antioxidant
scavengers, namely NQO1 and GST, where GST is a thiol compound regulating redox status and NQO1 promotes detoxification and expression
of p53, which under stress regulates cell cycle and apoptosis. ↑, up-regulation; ↓, down-regulation.
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of the major players linking inflammation to cancer through

different signaling pathways (81, 82). Vascular endothelial growth

factor-A (VEGF-A), another positive downstream of NF-kB,
promotes angiogenesis by activating its receptor VEGF-R1 in

endothelial cells of micro vessels in lymphoma (83). A schematic

representation of the regulation of T-cell lymphoma by NF-kB is

depicted in Figure 2. NF-kB has also been found to regulate

inflammatory cytokines in a positive feedback mechanism such as

TNF-a and IL-6 in T-cell malignant transformation (84).
PI3K-AKT signaling

PI3K signaling acts as master regulator in controlling cell

survival, proliferation, and growth. It catalyzes the conversion

of phosphatidyl inositol (4, 5)-bisphosphate (PIP2) to

phosphatidylinositol (3–5) - triphosphate (PIP3), and this PIP3

initiates the localization of AKT to membrane and its subsequent

activation by PDK1.ROS accumulation leads to phosphorylation of

PI3K on tyrosine residues of a regulatory subunit (p85a) and

thereby results in disassembly of it from its catalytic counterpart

p110a (85–87). The p110a triggers rapid transformation of PIP2 to

PIP3. AKT activation resulting in cell transformation and

generation of cancer phenotypes (88). AKT promotes cell survival

by inhibiting proapoptotic protein BAD by phosphorylating it and

preventing its interaction with BCL-xl (85, 89–91). Regulation of T-

cell lymphoma by the PI3k-AKT signaling pathway is depicted

in Figure 3.
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FIGURE 2

Schematic representation of regulation of T-cell lymphoma by NF-
kB. NF-kB activation involves a phosphorylation cascade leading to
degradation of its inhibitor IKb. ROS regulate NF-kB through
multiple cellular agents, namely SOD↓, catalase↓, Ikk↑, TNFa, and IL-
6↑ (where ↑& ↓represent upregulation and downregulation
respectively). Activated NF-kB leads to upregulation of COX-2 and
VEGF-A and downregulates p53, promoting angiogenesis and
inflammation which ultimately lead to lymphoma.
FIGURE 3

Regulation of T-cell lymphoma by PI3k-AKT pathway. Accumulation of ROS leads to the phosphorylation of PI3K resulting in disassembly of its
regulatory subunit (p85a) and catalytic subunit (p110a). The catalytic subunit now phosphorylates PIP2 into PIP3. PIP3 serve as a docking site for
AKT, where PDK1 activates AKT by phosphorylation. AKT phosphorylates IKK and BAD, leading to NF-kB activation and thus to cell survival,
angiogenesis, and metastasis. Symbol "✔" represents just a separate process. Arrow represents the sequential progression of signaling.
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Conclusion and future perspective

From increasing experimental evidence, the role of ROS in

tumorigenesis and its progression by regulating and/or altering the

cellular environment has become apparent, stabilizing it as a potent

hallmark of cancer. Although we have discussed some of the

pathway, their complete regulation machinery is unknown and

needs more scientific exploration. Changes in cellular redox are

stabilized to contribute toward cancer pathogenesis but specific

redox levels and their origin are still matters of research. Associated

signaling pathways could reveal the hurdle of tumor progression by

providing a target for drug development and help us better

understand the etiology of cancer progression.
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