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Background: Glioblastoma (GBM) is adults’ most common and fatally malignant

brain tumor. The heterogeneity is the leading cause of treatment failure. However,

the relationship between cellular heterogeneity, tumor microenvironment, and

GBM progression is still elusive.

Methods: Integrated analysis of single-cell RNA sequencing (scRNA-seq) and

spatial transcriptome sequencing (stRNA-seq) of GBM were conducted to

analyze the spatial tumor microenvironment. We investigated the

subpopulation heterogeneity of malignant cells through gene set enrichment

analyses, cell communications analyses, and pseudotime analyses. Significantly

changed genes of the pseudotime analysis were screened to create a tumor

progress-related gene risk score (TPRGRS) using Cox regression algorithms in

the bulkRNA-sequencing(bulkRNA-seq) dataset. We combined the TPRGRS and

clinical characteristics to predict the prognosis of patients with GBM.

Furthermore, functional analysis was applied to uncover the underlying

mechanisms of the TPRGRS.

Results: GBM cells were accurately charted to their spatial locations and

uncovered their spatial colocalization. The malignant cells were divided into

five clusters with transcriptional and functional heterogeneity, including

unclassified malignant cells and astrocyte-like, mesenchymal-like,

oligodendrocytes-progenitor-like, and neural-progenitor-like malignant cells.

Cell-cell communications analysis in scRNA-seq and stRNA-seq identified

ligand-receptor pairs of the CXCL, EGF, FGF, and MIF signaling pathways as

bridges implying that tumor microenvironment may cause malignant cells’

transcriptomic adaptability and disease progression. Pseudotime analysis

showed the differentiation trajectory of GBM cells from proneural to

mesenchymal transition and identified genes or pathways that affect cell

differentiation. TPRGRS could successfully divide patients with GBM in three
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datasets into high- and low-risk groups, which was proved to be a prognostic

factor independent of routine clinicopathological characteristics. Functional

analysis revealed the TPRGRS associated with growth factor binding, cytokine

activity, signaling receptor activator activity functions, and oncogenic pathways.

Further analysis revealed the association of the TPRGRS with gene mutations and

immunity in GBM. Finally, the external datasets and qRT-PCR verified high

expressions of the TPRGRS mRNAs in GBM cells.

Conclusion: Our study provides novel insights into heterogeneity in GBM based

on scRNA-seq and stRNA-seq data. Moreover, our study proposed a malignant

cell transition-based TPRGRS through integrated analysis of bulkRNA-seq and

scRNA-seq data, combined with the routine clinicopathological evaluation of

tumors, which may provide more personalized drug regimens for GBM patients.
KEYWORDS

glioblastoma, tumor microenvironment, ScRNA-seq, spatial transcriptomics, heterogeneity,
immune infiltration, tumor progress-related gene risk score
Introduction

Glioblastoma (GBM), a type IV glioma classified by the World

Health Organization, is a highly aggressive brain tumor (1, 2).

Among all malignant brain and other central nervous system (CNS)

tumors, GBM accounts for 49% of all age groups (3). The incidence

of GBM increases with age, with rates highest in individuals

between 75 and 84 years of age (3). In North American countries,

the combined incidence of malignant brain and other CNS tumors

in all age groups has decreased by about 0.8% per year due to

increased medical access and public awareness (3–5). Although the

last decade of immunotherapy has brought hope to cancer patients,

the subpopulation of patients expected to show a response has not

been identified. Until recently, there has been a consistent lack of

improvement in the 5-year survival rate of elderly patients (3–5).

This is due to our poor understanding of the brain’s neuroimmune

system and the presence of the blood-brain barrier, making

standard therapeutic strategies and immunotherapy less effective

in GBM (6, 7). In addition, the complex microenvironment of GBM

is one factor that impedes the antitumor treatment and causes

tumor recurrence (8). TME comprises tumor cells, stromal cells,

signaling molecules, immune cells, and the surrounding

extracellular matrix (ECM) (9). It has been reported that GBM is

mainly composed of four subtypes of malignant cells, including

astrocyte-like (AC-like), mesenchymal-like (MES-like),

oligodendrocytes-progenitor-like (OPC-like) and neural-

progenitor-like (NPC-like) subtypes (10, 11). Therefore, the

heterogeneity of GBM will bring difficulties to clinical treatment.

There is an urgent need for predictive biomarker to help us

clinically identify subpopulations of GBM patients expected to

show response.

The analyses for single-cell RNA sequencing (scRNA-seq) have

been widely applied to identify diverse cell types and expand the

understanding of their role in brain tumors (12, 13). Furthermore,
02
some studies constructed a risk model of ferroptosis-related genes

through scRNA-seq data to predict the overall survival and

progression-free survival of GBM patients (14). Risk models are

also derived based on the signature of genes involved in

angiogenesis, autophagy, apoptosis, and necrosis in glioblastoma

(15, 16). These models may guide effective treatment strategies for

patients. However, scRNA-seq inherently loses its cellular spatial

information during the tissue dissociation step, and conclusions

from a single database are not convincing.

In contrast, spatial transcriptome sequencing (stRNA-seq) is

limited to measuring spots with mixtures of cells and cannot

identify diverse cell types in a single-cell resolution (17). The

current studies revealed spatial TME in GBM through integrated

analysis of scRNA-seq and stRNA-seq data. The heterogeneity of

GBM was explored in scRNA-seq data and stRNA-seq data.

Differentiation trajectory analysis of the proneural–mesenchymal

transition in GBM and cell-cell communications analysis in the

tumor microenvironment indicated that GBM cells, together with

the tumor microenvironment, promote malignant cell

transcriptomic adaptability and disease progression. Furthermore,

we constructed TPRGRS to predict the prognosis of GBM through

integrated analysis of bulkRNA-seq data and scRNA-seq data,

which may help clinicians provide more personalized treatment.
Materials and methods

Dataset collection and preprocessing

The scRNA-seq dataset (GBM_GSE131928_10X) was

downloaded from the TISCH (http://tisch.comp-genomics.org/).

The stRNA-seq dataset (Human Glioblastoma: Whole

Transcriptome Analysis) was downloaded from the 10xGenomics

datasets (https://www.10xgenomics.com/). We downloaded
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bulkRNA-seq profiling information in Transcripts Per Million

(TPM) format of 168 GBM patients, as well as the corresponding

clinical data from the TCGA database, normalized RNA expression

data, and complete clinical data of 147 GBM patients from the

CGGA database (18), and RNA expression data and corresponding

clinical information of 94 GBM patients from the REMBRANDT

database (19). The batch effect of bulkRNA-seq data was adjusted

through the “sva” R package.
Single-cell sequencing and spatial
transcriptomics data processing

We used the R package Seurat (v4.1.0) to process single-cell

transcriptomics and spatial transcriptomics data [11]. We first used

the “Read10X_h5” function to read the cell matrix profile downloaded

from the TISCH website. Then, the function “CreateSeuratObject”

was applied to convert the matrix into a Seurat object. We excluded

those cells with fewer than 500 genes, more than 4,000 genes, or

more than 15% mitochondria content. We log-normalized the Seurat

object and identified highly variable features using the

“FindVariableFeatures” function with the parameters selection

(method = vst, and nfeatures = 2000. We subsequently scaled the

seurat object and performed linear dimensional reduction using the

RunPCA function with the variable features of the seurat object. We

visualized the distribution of each principal component using the

“ElbowPlot” function and used the first 15 principal components for

clustering. We performed K-nearest neighbors clustering for

the seurat object with the parameter dims = 1:15 through

“FindNeighbors” function. We performed FindClusters function

with the parameter resolution =0.5, and Uniform Manifold

Approximation and Projection (UMAP) clustering using the

RunUMAP function with the parameter dims = 1:15.We then

identified the cell type of each cell cluster according to the cell

information of TISCH. For spatial transcriptomics of GBM, we

applied the function “SCTransform” to normalize the data of spatial

transcriptomics. We used functions “RunPCA”, “FindNeighbors” and

“FindClusters” to reduce the dimensionality and cluster similar

spatial spots.
Spatial map of cell types in glioblastoma

Different spots of stRNAseq were preliminarily annotated based

on the CELLTREK toolkit (version 0.0.94), which provided a more

flexible and direct way to investigate spatial transcriptomics at a

single-cell resolution (20). CELLTREK directly maps cells back to

spots in GBM spatial transcriptomics by co-embedding the

processed GBM single-cell transcriptomics and spatial

transcriptomics. First, we co-embed stRNA-seq and scRNA-seq

datasets using “train”. After embedding, we chart cell types of

scRNA-seq data to their spatial locations through the function

“celltrek” (Supplementary Figure S1). Then, we visualized the

CellTrek results and directly investigated the stRNA-seq data with

spatial topography. Then we used the function “SColoc” to perform

colocalization analysis and visualize the colocalization result.
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Subclustering of the malignant cell clusters

The procedure of subclustering the malignant cell cluster was

the same as that of the pan-cell dataset. CellTrek was applied to

identify malignant cell clusters in stRNA-seq data.
Functional enrichment analysis of
malignant cells in GBM

To investigate differences in transcriptome and function

between cell types in scRNA-seq and stRNA-seq data, we used

the function “FindAllMarkers” of Seurat to find differentially

expressed genes (DEGs) of cell types in the GBM, DEGs of each

cell type were used for visualization. Then, Gene Set Enrichment

Analysis (GSEA) of DEGs was performed to determine the

enrichment score of oncogenic hallmark pathways in malignant

cells (p. value< 0.05). Differentially expressed genes were also

applied in different malignant subtypes (21). Gene Set Variation

Analysis (GSVA) was employed to analyze the enrichment results of

different malignant cell subtypes. The oncogenic hallmark pathways

genesets(h.all.v7.1.symbols) were downloaded from the MSigDB

database (22, 23).
Cell-cell communication in the TME

For the inference and analysis of cell-cell communication

between subtypes of malignant cells and non-malignant cells in

the TME, CellChat (version 1.1.3) was used to infer the cell-cell

interactome by assessing the gene expression of ligand-receptor

pairs across cell types in RNA-seq and stRNA-seq (24). The

function of “AggregateNet” in CellChat is to aggregate cell-cell

communication network involved in nine cell types of GBM,

including subtypes of malignant cells (AC-like, MES-like, NPC-

like, OPC-like, and unclassified GBM malignant cell), CD8 Tex,

M1, Monocyte and Oligodendrocytes. Signaling pathways in cell-

cell communication networks were calculated and visualized by the

function of “netVisual_aggregate”. Cellchat computed centrality

scores and identified major signaling roles of cell types in the

TME using the function “netAnalysis_computeCentrality”.
Pseudotime analysis of malignant cells

We analyzed the trajectory of malignant cells in the scRNA-seq,

and pseudotime developmental trajectories were constructed by

Monocle2 (version 2.22.0) (25). Then, the hub genes in each

subtype of malignant cells were recognized using the function

“differential Gene Test” in the monocle2 package. The hub genes

were filtered out based on q.values (q< 0.01) to order genes of the

developmental trajectory. The “DDRTree” method was used to

reduce the dimension of single cells. Single cells were ordered into a

trajectory with branch points, multiple branches and nodes were

observed throughout the developmental trajectory, and cells on the

same branch were considered to have the same state. Pseudotime-
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related genes were determined using the function of

“differentialGeneTest” in the Monocle2 package. The plot genes

in pseudotime function to discover transitional changes in gene

expression levels along the pseudotime. Different malignant cell

subtypes with pseudotime values in scRNA-seq data were mapped

to stRNA-seq data through CellTrek. To identify the order in which

functional events are acquired or lost during the transition of

malignant cells, we used GeneSwitches (version 0.1.0) to process

scRNA-seq data together with pseudotime trajectories to order

pathways along the pseudotime (26). GeneSwitches filtered genes

for pathway analysis throughout pseudotime using the “filter

switchgenes”. The function of “find switch pathways” were used

to find significantly changed pathways with pseudotime trajectories.
Generation of the tumor progress-related
gene risk score model

To establish the tumor prognosis-related signature, we

employed the TCGA dataset as the training set, while the CGGA

and REMBRANDT datasets were the validation sets. Univariate

Cox analysis was performed to screen for critical genes from the

identified malignant cells and pseudotime-related genes associated

with the OS of patients with GBM. Random survival forest (RSF)

analysis was then conducted using the “Random Forest SRC” R

package to narrow the prognostic gene panel further. In RSF

analysis, variables were ranked by minimal depth, of which a

smaller value indicated greater predictiveness. Next, Multivariate

Cox regression analysis was used to establish the optimal tumor

prognosis-related signature based on respective coefficients (b) and
gene expression levels. This formula calculates each patient’s tumor

progress-related gene risk score (TPRGRS). Subsequently, we

divided the patients into low- and high-risk groups based on the

median TPRGRS. The Kaplan-Meier approach was applied to

determine the prognostic difference between the two groups. We

further evaluate the correlations between the TPRGRS and clinical

features, including age, gender, primary-recurrent-secondary (PRS)

type, radiation therapy, chemotherapy, Isocitrate Dehydrogenase

(NADP (+)) (IDH) mutation, the short arm of chromosome 1 (1p)

and the long arm of chromosome 19 (19q) (1p19q) status, O-6-

Methylguanine-DNA Methyltransferase phosphorylation

(MGMTp) methylation. Univariate and Multivariate Cox analyses

were utilized to assess the prognostic significance of TPRGRS.

Meanwhile, we collected the CGGA and REMBRANDT datasets

to verify TPRGRS’s predictive efficacy.
Functional enrichment analysis of
bulkRNA-seq

To investigate the underlying mechanism regarding TPRGRS,

differentially expressed genes were obtained between the low- and

high-risk groups. First, we performed Gene Ontology (GO)

enrichment using the “clusterProfiler” R package (27). GO terms

with p< 0.05 were visualized by the “circlize” R package. GSVA was
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employed to determine the differences between the two groups on

the oncogenic hallmark pathways (22, 23). GSEA was performed

between the two groups for the same hallmark pathways with the

“GSEA” R package (FDR< 0.25, and p.adjust< 0.05) (21). Kaplan-

Meier method was employed to determine the prognostic

significance of oncogenic hallmark pathways.
Somatic mutation analysis

The somatic mutations of GBM patients were extracted from

the TCGA database. The “maftools” R package explored the specific

somatic mutation variations in different TPRGRS groups (28). Next,

we investigated the mutually co-occurring or exclusive mutations,

tumor-causing genes, and enrichment of known oncogenic

pathways between the two cohorts.
Immune landscape analysis and
drug prediction

We compared the low- and high-risk groups’ immune cell

abundance based on TIMER, CIBERSORT, CIBERSORT-ABS,

QUANTISEQ, MCPCOUNTRE, XCELL, and EPIC (29–34). We

use the single sample Gene Set Enrichment Analysis (ssGSEA) to

compare the low- and high-risk groups’ immune function. Using

Spearmen’s correlation test, we explored the expression of immune

cell inhibitory receptors and ligands in the low- and high-risk

groups. Meanwhile, we searched for chemotherapy drugs from

the CGP database. We investigated the chemotherapy response of

the two groups, and the “pRRophetic” R package predicted the IC50

values of chemotherapeutic drugs for each patient (35).
Validation of the TPRGRS

The GEPIA database (http://gepia.cancer-pku.cn/) consists of

bulkRNA-seq samples derived from the TCGA, and GTEx database

was used to verify the gene expression level of TPRGRS (36). P<0.05

was considered to be statistically significant. We applied

Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

to validate the gene expression level of TPRGRS in tumor and

normal cells. Two glioblastoma cell lines (U251 and U87) and one

normal human astrocytes cell line (NHA) were purchased from

Procell (Wuhan, China). Total RNA was extracted using AG

RNAex Pro reagent (Accurate Biology) from U251, U87, and

NHA. The Evo M-MLV RT Mix Tracking kit (Accurate Biology)

was used for reverse transcriptase reaction, and SYBR-Green

(Accurate Biology) was used for detection. The mRNA expression

level of ARMC10, AUTS2, EN1, EREG, ERP29, HOXA2, HOXA5,

HOXA7, HSPA5, LAP3, MDK, MTRF1L, NBEAL1, SLC6A6, and

SLC37A3 was normalized by GAPDH. The primers of the fifteen

genes were listed in Supplementary Table S1. Fold differences were

calculated for each group using normalized CT values.
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Results

Integrated analysis of single-cell
transcriptomics and spatial transcriptomics
of GBM

Figure 1 presents the flowchart of our investigation. Based on

the GBM scRNA-seq dataset (GBM_GSE131928_10x) collected by

TISCH, we identified cell types by Seurat and used UMAP to

visualize the dataset. The GBM scRNA-seq samples consisted of
Frontiers in Oncology 05
five cell types, including exhausted CD8 T cells (CD8 Tex),

classically activated M1 macrophages (M1), Monocyte,

Oligodendrocytes, and malignant cells (Figure 2A). We integrated

the scRNA-seq and stRNA-seq data to construct the spatial map of

these cells via CELLTREK (Supplementary Figures S2A,B). The

spatial transcriptome showed the relative frequency of cells varies

between glioblastoma samples, and malignant cells accounted for

the highest proportion of cells in glioblastoma (Figure 2B;

Supplementary Figure S2C). The proportion of M1 in the GBM

was higher than in other non-malignant cells. Besides, Monocyte,
FIGURE 1

This study’s design and flowchart. *P < 0.05, ** P < 0.01, *** P < 0.001.
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Oligodendrocytes, and CD8Tex were less distributed in scRNA-seq

or stRNA-seq samples. To summarize the cell spatial colocalizations

in GBM, we applied the SColoc to the CellTrek result; M1 was

identified as the hub and connected to the Monocyte, CD8Tex, and

malignant cells (Supplementary Figure S2D).

Differentially expressed genes analysis of scRNA-seq analysis and

stRNA-seq analysis is also employed (Figure 2C; Supplementary Figure

S2E). The GSEA of malignant cells identified several common

pathways across scRNA-seq. Strna-seq samples, such as UV response

dn, Epithelial-mesenchymal transition (EMT), and MYC targets in

Malignant cells, and pathways like Coagulation, Complement,

Inflammatory response, Interferon alpha/gamma response, Interferon
Frontiers in Oncology 06
response, KRAS signaling up, IL2 STAT5, IL6 JAK STAT3 signaling,

TNFA signaling via NFKB, Allograft rejection are activated in non-

malignant cells (Figure 2D; Supplementary Figure S2F). These findings

revealed research on glioblastoma in single-cell resolution is critical for

the development of precision medicine.
Intra-tissue heterogeneity of
malignant cells

We further analyzed the heterogeneity of malignant cells in

glioblastoma. For the scRNA-seq data, we identified five clusters of
B

C

DA

FIGURE 2

Single-cell RNA sequencing analysis of GBM. (A) The UMAP clustering map shows malignant cells, CD8 Tex, M1, Monocyte, and Oligodendrocytes
representing the GBM cell types. (B) The proportion of malignant cells, CD8 Tex, M1, Monocyte, and Oligodendrocytes in GBM. (C) Differential gene
expression analysis showing up- and downregulated genes across malignant cells, CD8 Tex, M1, Monocyte, and Oligodendrocytes. (Adjusted p-
value: red for< 0.01, black for ≥ 0.01). (D) Bubble chart showing enrichment results of malignant cells based on GSEA analysis. (Normalized
Enrichment Score: red for ≥ 0, blue for<0).
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malignant cells, including unclassified malignant cells and four

subtypes of malignant cells: AC-like, MES-like, NPC-like, and

OPC-like (Figures 3A, B). Then, we further revealed spatial

patterns of subtypes of malignant cells (Supplementary Figure

S3A, B). The density of MES-like Malignant cells was higher than

other subtypes of malignant cells, suggesting that MES-like

Malignant may be more aggressive than other subtypes in

glioblastoma (Figure 3B; Supplementary Figure S3C). The cell

spatial colocalizations of subtypes of malignant cells formed a

linear graph. OPC-like Malignant cells were identified as the hub

and connected to the other malignant cell subtypes except for MES-

like Malignant cells (Supplementary Figure S3D).

Notably, these subtypes of malignant cells displayed

transcriptional heterogeneity (Figure 3C; Supplementary Figure

S3E). The GSVA indicated that unclassified malignant cells and
Frontiers in Oncology 07
four subtypes of malignant cells were enriched in different

hallmarks in scRNA-seq data. Compared with other subtypes of

malignant cells, Heme metabolism, E2F targets, G2M checkpoint,

Pancreas beta cells, and Spermatogenesis were enriched in

unclassified Malignant. TGF beta signaling and UV response dn

were enriched in AC-like Malignant while coagulation,

Inflammatory response, and Xenobiotic metabolism was enriched

in MES-like Malignant. Notch signaling, Hedgehog signaling, Wnt

beta-catenin signaling, KRAS signaling dn, and MYC targets v2

were enriched in OPC-like Malignant. PANCREAS beta cells,

Spermatogenesis, and KRAS signaling dn were enriched in OPC-

like Malignant. The results of GSVA analysis of stRNA-seq further

revealed the heterogeneity of malignant cell subtypes (Figure 3D;

Supplementary Figure S3F). Therefore, these subtypes of malignant

cells may cause drug resistance in clinical treatment.
B

C

DA

FIGURE 3

Intra-tissue heterogeneity of malignant cells in scRNA-seq. (A) The UMAP clustering map shows AC-like, MES-like, NPC-like, OPC-like, unclassified
GBM malignant cells (B)The composition ratio of subtypes of malignant cells (AC-like, MES-like, NPC-like, OPC-like, and unclassified GBM malignant
cells) in GBM patients. (C) Differential gene expression analysis showing up- and downregulated genes across subtypes of malignant cells (AC-like
Malignant, MES-like Malignant, NPC-like Malignant, OPC-like Malignant, and unclassified GBM malignant cells). (Adjusted p-value: red for< 0.01,
black for ≥ 0.01). (D) Various oncogenic hallmarks were enriched in AC-like Malignant, MES-like Malignant, NPC-like Malignant, OPC-like Malignant,
and unclassified GBM malignant cells based on GSVA analysis.
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Intercellular communications in the TME

The spatial colocalization between different cell types reveals

close contact between malignant and non-malignant cells in TME.

Therefore, we investigated cell-cell communications in the TME

through CellChat based on scRNA-seq analysis and identified

several interactions in stRNA-seq analysis. In our work, CD8 Tex

can receive the signal fromMES-like Malignant, M1, and Monocyte

through the CXCL signaling pathway (CXCL16-CXCR6, Figure 4A;

Supplementary S4A). Monocytes can transmit signals to AC-like

Malignant, OPC-like Malignant, and Malignant through the EGF

signaling pathway (HBEGF-EGFR, Figure 4B; Supplementary

Figure S4B). AC-like Malignant cells can communicate with

Oligodendrocytes through the FGF signaling pathway (FGF1-

FGFR2, Figure 4C; Supplementary Figure S4C). Furthermore,

Malignant and four subtypes of Malignant cells: AC-like

Malignant, MES-like Malignant, NPC-like Malignant, OPC-like

Malignant communicate with CD8 Tex, M1, and Monocyte via

MIF signaling pathway (MIF-(CD74+CXCR4), Figure 4D;

Supplementary Figure S4D).

In summary, GBM cells communicate with Oligodendrocytes,

CD8 Tex, M1, and Monocyte by comparing with the scRNA-seq

sample and stRNA-seq sample may explain the immune

landscape difference.
Pseudotime analysis of malignant
cells in GBM

During the malignant transition of the tumor, malignant cells

differentiate into different subtypes of cell populations due to their

plasticity and the tumor environment (10, 11). To further explore

the developmental trajectory of malignant cells, we performed the

pseudotime analysis via Monocle2. The analysis suggested that the

potential cell differentiation trajectories of the malignant cells:

OPC-like and NPC-like Malignant cells are enriched at the root

of the developmental trajectory, with MES-like Malignant cells at

the terminus of the developmental trajectory (Figure 5A). Critically,

we inferred the trajectories of malignant cells and mapped their

pseudotime in stRNA-seq, and we observed a continuous spatial

trajectory of the stRNA-seq spots (Supplementary Figure S5A, B).

We also identified differentially expressed genes of malignant

cell subtypes that changed gene expression levels along the

pseudotime. Significantly changed genes are shown as a heatmap

in scRNA-seq (Figure 5B). To investigate pathways alterations

during this transition, we used GeneSwitches to order pathways

along the pseudotime-line. The altered biological processes showed

that pathways along the pseudotime-line related to neuron

development (such as neurogenesis, neuron differentiation,

central nervous system development, head development, etc.)

were downregulated at an early stage. Inflammation-related

biological processes (such as inflammatory response, immune

response, regulation of immune response, etc.) are upregulated

later (Figure 5C). The top changed hallmarks along the

pseudotime trajectory showed that hallmarks like G2M
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checkpoint and E2F targets downregulated at the early stage,

while hallmarks such as Cholesterol homeostasis, EMT,

Apoptosis, Hypoxia, TNFA signaling via NFKB, KRAS signaling

upregulated later, Coagulation, Allograft rejection, Interferon

alpha/gamma response, Inflammatory response, and IL6 JAK

STAT3 signaling, which upregulated at the later stage

(Figure 5D). Kaplan-Meier analysis of showed 5 of them such as

Apoptosis, Coagulation, Hypoxia, EMT and IL6 JAK STAT3

signaling were associate with poor prognosis in GBM

(Supplementary Figure S6) These results revealed the

developmental trajectory of the malignant cells in GBM, and the

transition of malignant cells may conduct variety clinical outcome.
Establish tumor progress-related gene
risk score

As an essential component of the tumor microenvironment, the

dynamics of malignant cells at the molecular and cellular levels

significantly affect tumor development and metastasis. It is

intriguing to identify the genes associated with the prognosis of

patients with GBM from genes related to malignant cell

differentiation. We performed univariable Cox analysis in the

TCGA-GBM to screen for genes significantly associated with OS.

Next, the RSF analysis and Multivariate Cox regression analysis

were applied to screen 15 of them to construct the tumor progress-

related gene risk score (TPRGRS), namely MDK, NBEAL1,

HOXA2, HOXA7, MTRF1L, EREG, EN1, HOXA5, SLC37A3,

LAP3, ERP29, AUTS2, HSPA5, SLC6A6 and ARMC10

(Figures 6A, B). In the TCGA-GBM dataset, we constructed a risk

score model including Expi and bi: Risk score  =o15
i=1(Expi ∗ bi)

(Supplementary Table S2). GBM patients from TCGA-GBM

(training dataset) , CGGA (validation dataset 1) , and

REMBRANDT (validation dataset 2) were split into a high-risk

group. A low-risk group based on the median value of the risk score,

respectively (Figure 7A). The OS of the low-risk group was

significantly longer than that of the high-risk group (Figure 7B).

In addition, the ROC curve illustrated that TPRGRS was a

remarkable prognostic predictor. For the TCGA-GBM training

dataset, we analyzed this prognostic model’s 1-year, 3-year, and

5-year OS using ROC curves and obtained AUCs of 0.746, 0.825,

and 0.824, respectively. Furthermore, ROC curve analysis on the

CGGA and REMBRANDT validation datasets shows that TPRGRS

had a favorable predictive performance (CGGA: AUC = 0.652 for 1-

year, 0.647 for 3-year, 0.662 for 5-year survival; REMBRANDT:

AUC = 0.612 for 1-year, 0.701 for 3-year, 0.763 for 5-year

survival) (Figure 7C).
Independent prognostic value of TPRGRS

Univariate analyses revealed that the clinical variables and risk

scores were closely related to OS. Multivariate Cox analysis of the

TCGA, CGGA and REMBRANDT datasets observed that risk score

was an independent prognostic factor. (Figures 8A–C).
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Furthermore, the proportions of multiple clinical features in the

high- and low-risk groups revealed that the IDH and 1p19q

mutation status of GBM were significantly associated with risk

score (Figure 8D). These results demonstrate that TPRGRS was a

reliable signature associated with gene mutations and the prognosis

of patients with GBM.
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Functional analysis and drug prediction of
high-risk groups

GO enrichment analysis of the DEGs between the low- and high-

risk group elucidates that TPRGRS is mainly involved in growth

factor binding, cytokine activity, and signaling receptor activator
B

C D

A

FIGURE 4

Cell-cell interaction networks of scRNA-seq. (A) CD8 Tex communicates with AC-like Malignant, MES-like Malignant, M1, and Monocyte through
CXCL signaling. (B) AC-like Malignant, NPC-like Malignant, OPC-like Malignant, and unclassified malignant cells communicate with M1 and
Monocytes through EGF signaling. (C) AC-like Malignant, NPC-like Malignant cells communicate with Oligodendrocytes through FGF signaling.
(D)CD8 Tex, AC-like Malignant, MES-like Malignant cells, M1, and Monocyte interact through MIF signaling.
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BA

FIGURE 6

Screening of prognosis-associated genes. (A) Correlations between error rate and classification trees. (B) The relative importance of prognosis-
associated genes.
B

C D

A

FIGURE 5

Pseudotime analysis of malignant cells in GBM scRNA-seq. (A) Pseudotime is shown in single-cell trajectories of subtypes of GBM malignant cells
that monocle2 inferred. Pseudotime is shown in a gradient from dark blue to light blue, indicating the onset of pseudotime. (B)The Pseudotime
heatmap shows gene expression dynamics of significantly labeled genes. Genes (rows) are clustered into two modules, and cells (columns) are
sorted according to pseudotime. (C) Ridge plots show changes in biological processes along the pseudotime. (D)Ridge plots show changes in
hallmarks along the pseudotime.
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activity (Figure 9A; Supplementary Table S3). GSVA and GSEA

analyses indicated that TPRGRS were associated with oncogenic

hallmarks such as Angiogenesis, Complement, Glycolysis, EMT,

Apoptosis, Hypoxia, TNFA signaling via NFKB, KRAS signaling

up, Coagulation, Allograft rejection, Interferon alpha/gamma

response, Inflammatory response, IL2 STAT5 and IL6 JAK STAT3

signaling (Figures 9B, C). Gene mutations between the high-risk

patients and the low-risk patients showed that the top five genes with

the highest mutation frequency in the high-risk group were PTEN,

TTN, TP53, EGFR, and SPTA1, while the top five genes in the low-

risk group were TP53, PTEN, EGFR, TTN, and MUC16
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(Figures 10A, B). In addition, we analyzed the coincident and

exclusive associations of the top 25 mutated genes from the high-

(Figure 10C) and low- (Figure 10D) risk groups. Then, we explored

the immune landscape of the low- and high-risk groups. The

heatmap demonstrated that the abundances of CD4+ T cells,

CD8+ T cells, neutrophils, and macrophages were markedly

enriched in the high-risk group when compared to the low-risk

group (Figure 11A). According to ssGSEA, immune functions, such

as inflammation and HLA function, IFN response, markedly

enriched in the high-risk group (Figure 11B). Immunosuppressive

receptors (CTLA-4, LAG3, and TIGIT) and Immunosuppressive
B

C

A

FIGURE 7

Validation of the TPRGRS model and performance analysis. (A) The overview of each patient’s survival status, risk rating distributions, and the
expression of 15 TPRGRS genes in the TCGA dataset and two validation datasets (CGGA and REMBRANDT). (B) In three datasets, Kaplan-Meier
survival curves revealed a shorter OS of the high-risk group than that of the low-risk group. (C) ROC curve analysis of the risk scores in three
datasets, respectively.
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ligands (TNFSF14 and LGALS9) were significantly increased in the

high-risk group (37–42) (Figure 11C). Further analysis predicted

potential sensitive drugs for the high-risk group. AKT inhibitor VIII,

ATRA, Bleomycin, and CCT007093 were identified as high-risk

group-sensitive drugs (Figure 11D).
External datasets and qRT-PCR validation

We validated the expression level of target genes from GEPIA.

The results showed ARMC10, AUTS2, EN1, ERP29, HOXA2,

HOXA5, HOXA7, HSPA5, LAP3, MDK, MTRF1L, NBEAL1, and

SLC37A3 were significantly overexpressed in GBM compared with

normal tissue (Supplementary Figure S7A). Moreover, qRT-PCR

showed the expression of U251, U87, and NHA. The results showed

that ARMC10, EREG, HOXA2, HOXA5, HSPA5, LAP3, MTRF1L,

NBEAL1, and SLC37A3 were significantly upregulated in U251 and

U87 cells compared with NHA cells (Supplementary Figure S7B).
Discussion

The heterogeneity of glioblastoma is the main cause of

treatment failure (43). Despite the heterogeneity in GBM patients,
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patients are treated according to clinical features and certain

pathways, such as the P53 pathway (44). Moreover, therapeutic

intervention may promote tumor progression by providing selective

pressure to expand resistant subpopulations. Treatment of acquired

drug-resistant tumors had to deal with heterogeneity. In the current

study, we further analyzed GBM spatial and cellular heterogeneity

by integrating analysis of scRNA-seq and stRNA-seq.

The immunocytes infiltration ratio between scRNA-seq and

stRNA-seq GBM samples revealed that GBM samples are

lymphocyte-depleted subtypes. In our study, functionally

exhausted CD8T cells with a low infiltration ratio in the TME

indicated T-cell dysfunction in the glioblastoma microenvironment.

Recent studies have reported that M1 could recruit and modify the

activation of endogenous macrophages and NK cells to regulate the

immune microenvironment (45). The spatial colocalization of

stRNA-seq data confirmed the close contact between M1 and

malignant cells. These findings suggest that M1-based

immunotherapy has excellent potential in GBM.

At the single-cell level, the GSEA of malignant cells revealed

some biological characteristics, which included UV response dn,

EMT, and MYC targets. Then, we identified unclassified malignant

cells and four subtypes of malignant cells (MES-like, AC-like, OPC-

like, and NPC-like) in scRNA-seq and stRNA-seq. Previous studies

described proneural subtypes (OPC-like Malignant and NPC-like
B
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FIGURE 8

Independent prognostic value of TPRGRS. Analysis of the Univariate and Multivariate Cox regression analysis revealed risk score was strongly
associated with OS in the TCGA training dataset (A), the CGGA validation dataset (B), and the REMBRANDT validation dataset (C). Clinical traits
analysis between the TPRGRS low-and high-risk groups (D). Pair-wise Fisher’s Exact test p-values (*P< 0.01, ·P< 0.05).
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Malignant) relating to a more favorable outcome, while MES-like

Malignant related to poor survival (46). In the current study, MES-

like Malignant was identified as a prominent type in scRNA-seq or

stRNA-seq GBM samples. The spatial distribution of MES-like

Malignant showed more aggression than other malignant

subtypes. Our work further explored the heterogeneity of their

spatial component in stRNA-seq analysis. Spatial colocalization

analysis of malignant subtypes uncovered the connection of the

subtypes in spatial pattern, and OPC-like Malignant was identified

hub that connects other malignant cells. Notably, these malignant

cell subtypes revealed transcriptional heterogeneity. The functional

enrichment results varied significantly among the malignant

subtypes. Some famous oncogenic hallmarks, such as P53

signaling and Apoptosis pathways, are not enriched in malignant

cells, implying that the heterogeneity of malignant cells is an

obstacle to drug or immunotherapy treatments.

Additionally, spatial colocalization confirmed the close contact

between these malignant and non-malignant cells. Thus, cell

interactions between GBM cells and immunocytes are crucial for

further research in GBM immune landscape. Then, cell chat was

applied to predict cell-cell communications between malignant and

non-malignant cells to explore their potential mechanism in
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scRNA-seq. We further identified these ligand-receptor pairs of

pathways in stRNA-seq. Their roles in mediating GBM cell

progression have been proved, but their connection with

immunocytes is elusive. Recent studies demonstrated that

CXCL16 signaling is a target to modulate macrophage phenotype

to restrain inflammation and limit glioma progression (47).

Oligodendrocytes can express the FGF1 induce stemness and

chemo-radio resistance in GBM cells (48). HBEGF is expressed in

monocytes that can stimulate EGFR on malignant cells to promote

tumor progression and metastasis (49). MIF and its receptors CD74

and CXCR4 were identified as potential targets for GBM treatment

(50). In conclusion, GBM cells and the tumor microenvironment

create a milieu that ultimately promotes tumor cell transcriptomic

adaptability and disease progression.

Malignant cells differentiate into different subpopulations due

to their plasticity and the tumor environment (10, 11). The

transition of GBM cells from proneural to mesenchymal was

associated with treatment resistance in GBM relapse (51, 52).

Thus, we applied pseudotime analysis to construct the potential

developmental trajectory of malignant cells and spatial mapping of

the pseudotime values in the tissue section, heterogeneity in the

proneural–mesenchymal transition. The gene expression level
B

C

A

FIGURE 9

Functional analysis of the gene expression profile between the TPRGRS low- and high-risk groups. (A) GO enrichments analysis of upregulated
genes in high-risk group in the TCGA dataset. (B) GSVA analysis showed enrichment scores of hallmark pathways in the high-risk group. (C) GSEA
analysis reveals results for fifteen hallmark pathways associated with TPRGRS.
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varies during pseudotime, partially due to the transcriptomic

adaptability of the transition of GBM cells from proneural to

mesenchymal. Altered biological processes and oncogenic

hallmarks during this transition revealed that MES-like Malignant

showed more aggression than other subtypes. Critically, we also

noticed pathways such as Angiogenesis, Hypoxia, EMT, and IL6

JAK STAT3 signaling changed during this transition, which was

associated with poor prognoses in GBM. These results indicate the

transition of GBM cells caused a variety of clinical outcomes.

Thus, it is essential to identify genes involving malignant cell

differentiation and the prognosis of GBM. Currently, there are

many algorithms to construct genetic risk models, such as the least

absolute shrinkage and selection operator (LASSO) or Random

Forest. Their models can predict the survival situation (53–56).

Unlike other algorithms, Random Forest enables relatively easy

estimations of variable importance and minimizing overfitting (57,

58). Therefore, this study is based on Random Forest to build a

genetic risk model for patients with GBM.

Previous studies constructed gene signatures for GBM to predict

the prognosis of GBM patients. Wang et al. established a prognostic

model for four autophagy-related genes (59). Li et al. constructed a
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prognostic model for three pyroptosis-related genes and hypoxia

phenotype-related gene signatures, respectively (60). Most of them

were constructed based on bulkRNA-seq, which ignores heterogeneity

in GBM samples. Genes of these signatures expressed related to the

malignant cell are unknown in the present study, and we identified

genes associated with malignant cell differentiation according to

pseudotime analysis. Next, we applied Cox regression, random

forest, and Kaplan-Meier analyses to screen prognosis-associated

mRNAs further. Finally, 15 genes were selected to construct

TPRGRS to predict the prognosis for GBM. TPRGRS is an

independent prognostic factor compared with other clinical features,

which is associated with the overall survival status of the TCGA GBM

dataset. Prognosis analysis validated the predictive performance of

TPRGRS in two external datasets (CGGA and REMBRANDT).Unlike

PRS type and other clinical factors of GBM that are not correlated with

TPRGRS, abnormalities in GBM such as mutations in IDH and 1p19q

which contribute to the heterogenety of tumor were significantly

associated with TPRGRS (61, 62).

In our study, genes of TPRGRS were identified to be associated

with prognosis in GBM, namely MDK, NBEAL1, HOXA2, HOXA7,

MTRF1L, EREG, EN1, HOXA5, SLC37A3, LAP3, ERP29, AUTS2,
B
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FIGURE 10

Landscape of somatic mutations in the TPRGRS low- and high-risk groups. (A, B) Waterfall plots displaying the somatic gene mutations of the high-(A)
and low-(B) risk groups. Each column represents an individual patient. (C, D) The coincident and exclusive associations across mutated genes in high-(C)
and low-(D) risk groups. The color or symbol of each cell represents the statistical significance of each pair of genes’ exclusivity or co-occurrence.
Green represents mutual co-occurrence, and brown represents exclusive mutation. Pair-wise Fisher’s Exact test p-values (*P< 0.01, ·P< 0.05).
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HSPA5, SLC6A6, and ARMC10. Some of them have already been

reported. MDK can promote GBM cell proliferation, angiogenesis,

anti-apoptotic activity, and induce multidrug resistance (63).

NBEAL1 was identified as upregulated in glioma (64). Hox genes

(HOXA2, HOXA5, and HOXA7) can regulate several hallmarks of

cancer in malignant glial tumors (65). EREG promotes tumor

progression via EREG/EGFR pathway (66). In addition, AUTS2,

EN1, and HSPA5 are involved in regulating nervous system

maturation (67–69). LAP3 could promote migration and invasion

of glioma cells (70). ERP29 was identified as a prognostic marker

and suppressor in tumors (71). SLC6A6 contributes to the 5-

aminolevulinic acid (ALA)-induced accumulation in the signal

transmission process of the nervous system (72). ARMC10 plays

a role in cell growth and survival via regulations of mitochondrial

dynamics (73). Additionally, some novel molecules identified as

novel prognostic markers were first proposed in this work,

including SLC37A3 and MTRF1L, which can be served as

predictors for GBM patient prognosis.

GO analysis revealed genes of TPRGRS were related to growth

factor binding, cytokine activity, and signaling receptor activator
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activity functions. GSVA and GSEA analysis further confirmed

TPRGRS were significantly associated with oncogenic hallmarks

such as Angiogenesis, Glycolysis, EMT, Hypoxia, Inflammatory

response, etc. Besides, gene mutation analysis in GBM was essential

for chemotherapy and immunotherapy. We found that most of the

mutations in TPRGRS-related signature genes were PTEN, and its

mutation enhanced the invasiveness of GBM (74). Furthermore, the

analysis of immune cell infiltration showed that the infiltration of

immune cells and immune functions in the high-risk group were

relatively active compared to those in the low-risk group. Notably,

the infiltration of macrophages and CD8+ T cells was significantly

higher in the high-risk group than in the low-risk group. These cells

could contradict an antitumor effect via CXCL16-CXCR6 signaling

(47, 75). On this basis, the expression of immunosuppressive

receptors (CTLA4, LAG3, and TIGIT) and immunosuppressive

ligands (LGALS9 and TNFSF14) were identified as higher in the

high-risk group. These molecules are associated with inefficient

control of cancers and promote immune tolerance in GBM (76).

Understanding the molecular mechanism of immune checkpoints

could also contribute to immunotherapeutic interventions.
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FIGURE 11

Immune landscape and drug prediction of high-risk groups. (A) The heatmap showing immune responses infiltration in the low- and high-risk
groups. (B) ssGSEA showing higher enrichment scores of immunocytes-associated functions in the high-risk group. (C) A heatmap showing the
differential expression of immune checkpoints in low- and high-risk groups. (D) The distribution of IC50 of four compounds of the TPRGRS low- and
high-risk groups (*P< 0.05, ** P< 0.01, *** P < 0.001).
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TPRGRS may provide new insights for predicting the immune

landscape in GBM patients.

In addition, potential targeted drugs for high-risk score samples

are predicted through the CGP database: AKT inhibitor VIII,

ATRA, Bleomycin, and CCT007093. AKT inhibitor VIII is a

selective inhibitor of Akt1, Akt2, and Akt3, significantly

enhancing the antiproliferative capacity of fluprednidenes (77).

ATRA, with extensive antiproliferative and pro-differentiation

activity capabilities, can inhibit the malignant growth of various

tumor cells and enhance the therapeutic effect of radiotherapy (78).

Bleomycin and CCT007093 are also commonly used for cancer

treatments that can inhibit tumor progression (79). Thus, the

predictive performance of TPRGRS was confirmed as a predictor

for GBM treatment chemotherapy, and choosing drugs based on

TPRGRS may contribute to the precision medicine of GBM.

However, several limitations ought to be pointed out in our

research. First, we collected the scRNA-seq and stRNA-seq data

from different patients. Thus, it is limited to identifying cells of

stRNA-seq data. Second, the TPRGRS was constructed based on

retrospective analysis and lacked some clinical information. Third,

the current study needs further experiments in vivo or in vitro to

investigate the specific mechanism of genes of TPRGRS.

In conclusion, we provide new insights into GBM through

integrated analysis of scRNA-seq and stRNA-seq data. Our results

revealed the spatial TME and heterogeneity in malignant cells.

Heterogeneity during the proneural–mesenchymal transition of

GBM was analyzed by constructing the differentiation trajectory of

subtypes of malignant cells as well. We constructed a prognostic model

based on integrated analysis of bulkRNA-seq and scRNA-seq data,

which can predict the overall survival of GBM patients. The TPRGRS,

in combination with routine clinicopathological evaluation of tumors,

may provide more personalized drug regimens for GBM patients.
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