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Brain metastases are a significant source of morbidity and mortality in patients with

non-small cell lung cancer. Historically, surgery and radiation therapy have been

essential to maintaining disease control within the central nervous system due to

poorly penetrant conventional chemotherapy. With the advent of targeted therapy

against actionable driver mutations, there is potential to control limited and

asymptomatic intracranial disease and delay local therapy until progression. In

this review paper, intracranial response rates and clinical outcomes to biological

and immune therapies are summarized from the literature and appraised to assist

clinical decision making and identify areas for further research. Future clinical trials

ought to prioritize patient-centered quality of life and neurocognitive measures as

major outcomes and specifically stratify patients based on mutational marker

status, disease burden, and symptom acuity.
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Introduction

Lung cancer is the leading cause of cancer-related deaths and the second most common

cancer in men and women in the United States (1). Unfortunately, brain metastases (BM)

remain a salient problem with nearly 20% of all BM occurring in patients with lung cancers

(2). The vast majority of lung cancer cases comprise of non-small cell lung cancers (NSCLC)

(3). Advances in systemic therapy have improved median survival of the most favorable

metastatic NSCLC with BM to more than four years (4). Recent updates to the validated

diagnosis-specific graded prognostic assessment (DS-GPA) for lung adenocarcinoma have

included EGFR, ALK, and PD-L1 status to the scoring criteria (5, 6). These impressive results
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have brought about a rethinking of BM management and the

integration of systemic therapy with current local therapy options.

Classically, local therapy including surgical resection, whole brain

radiation therapy (WBRT), and stereotactic radiosurgery (SRS) has

been integral to controlling CNS disease due to the morbidity of BM,

poor CNS penetration by conventional chemotherapy, and the nearly

ubiquitous exclusion of metastatic CNS involvement in clinical trials

(7, 8). Seminal papers by Patchell et al. demonstrated an overall

survival and quality of life benefit to surgical resection of a single BM

(9). and reduction of CNS recurrence and neurologic death with

adjuvant WBRT (10). However, WBRT has been associated with

impaired cognition and quality of life. Memantine and hippocampal

avoidance have emerged as strategies to mitigate these toxicities (11–

13). Additionally, SRS has gained favor as definitive and adjuvant

therapy in lieu of surgical resection and WBRT due to reduced

neurocognitive sequelae (14–17).

Although CNS penetration by newer systemic therapy options

has been reported and clinical efficacy is an area of active study,

their integration into the current paradigm of BM management

continues to evolve for different clinical scenarios. Guidelines

jointly published by ASCO-SNO-ASTRO presently recommend

local therapy for symptomatic brain metastases (18). However, after

multidisciplinary review, deferral may be offered to patients with

asymptomatic brain metastases with either EGFR-mutant NSCLC

receiving osimertinib or icotinib, or ALK rearranged NSCLC

receiving alectinib, brigatinib, or ceritinib (18).

In this review, we aim to describe the intracranial activity of

systemic therapies, outcomes of clinical trials using combinations of

systemic and local therapy, and identify areas for future study to guide

clinical practice. It is possible that radiation therapy (RT) and surgery

may be omitted if systemic therapy sufficiently controls limited and

asymptomatic intracranial disease. Radiation and systemic therapy

may prove synergistic to enhance control of targeted lesions. The need

for WBRT may be obviated if systemic therapy eliminates

microscopic intracranial disease, allowing for combinatorial SRS

and systemic therapy options.
Epidermal growth factor
receptor inhibitors

Epidermal growth factor receptor (EGFR) is a receptor tyrosine

kinase whose activation increases cell survival and proliferation (19).

EGFR is mutated in 10-15% of all NSCLC cases, and 90% of all EGFR

mutations comprise of exon 19 deletion and exon 21 L858R point

mutations (20). Epidemiologically, EGFR mutations are more

prevalent in Asian compared to Caucasian populations and are

associated with non-smoking patient history (21). This is in

contrast to smoking-associated NSCLC in which EGFR mutations

are rare. Interestingly, the risk of BM seems to be 2-3 times higher in

EGFR-mutated lung cancers compared to wildtype, and one third of

these patients will develop intracranial progression sometime during

their disease course, underscoring high neurotropism of these EGFR-

mutant tumors (22–24).

EGFR tyrosine kinase inhibitors (EGFR TKIs) were initially

explored in the chemo-refractory setting (25). but it was quickly
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realized that the presence of mutations was predictive of clinical

response (26). First generation EGFR TKIs, which reversibly bind to

the tyrosine kinase domain of EGFR, include gefinitib, erlotinib, and

icotinib. Analysis of plasma and cerebrospinal fluid (CSF)

concentrations of gefinitib and erlotinib show sufficient CNS

penetration to elicit clinical responses (27). Overall, intracranial

objective response rates (icORR) of BM in patients with EGFR-

mutated NSCLC for erlotinib and gefitinib largely range from 60%-

80%, and disease control rates are higher at 80-100% (Table 1) (28–

35). Median progression-free survival (PFS) ranged from 6 months to

15 months. The majority of data is drawn from retrospective series,

with one of the larger series by Zhang et al. of 43 patients with EGFR-

mutated NSCLC with BM treated with erlotinib or gefitinib

demonstrating an icORR of 57% and intracranial disease control

rate (icDCR) of 91% (38). In the phase III FLAURA trial, use of

erlotinib and gefinitib within the control arm showed similar results

with an icORR of 68% and icDCR of 89% (43). Investigations into

pulse-dose erlotinib to overcome TKI resistance and increase CNS

penetration report icORR of 67%-74% and icDCR of 78-100%, but in

the setting of patients with TKI pretreatment, median time to CNS

progression was short at 2.7 months (30–32). Icotinib is another first-

generation TKI that is approved in China for advanced EGFR-

mutated NSCLC. Icotinib was found to have similar intracranial

efficacy to gefitinib (37). In a phase III trial (BRAIN) comparing

icotinib versus WBRT, icotinib had an icORR of 65%, icDCR of 85%,

and a median intracranial PFS of 10 months, outcomes superior to

WBRT alone (44).

Afatinib is a second generation, irreversible EGFR-TKI inhibitor

that binds to multiple family members including EGFR, HER2,and

HER4 (45). A prospective trial conducted by Tamiya et al. confirmed

its CNS penetration (46). In the treatment-naïve setting, response

rates from retrospective data appear excellent. Wei et al. reported

icORR and icDCR of 81.1% and 95.9%, respectively, in a cohort of 74

patients with EGFR-mutated NSCLC, while Li et al. similarly note

icORR and icDCR of 85.7% and 89.3%, respectively, in 28 patients

(41, 42). In the setting of prior TKI treatment, however, response rates

appear significantly lower as shown by Hoffknecht et al. with icORR

of 35% and icDCR of 66% in 31 patients previously treated with a first

generation TKI (40).

Osimertinib is a third generation, irreversible EGFR-TKI approved

for the first-line treatment of EGFR-mutant metastatic NSCLC. A

subgroup analysis of the FLAURA trial (FLAURA), which

demonstrated superiority of osimertinib over first generation EGFR-

TKIs in advanced EGFR-mutated NSCLC, examined outcomes of 128

patients with CNS lesions. Among the 41 patients with measurable

CNS lesions, excellent icORR and icDCR of 91% and 95% respectively

were found, which notably surpassed outcomes for gefitinib and

erlotinib as mentioned above (43). In a pooled analysis of the phase I

AURA and phase II AURA2 trials that examined osimertinib in

patients with the EGFR T790M acquired resistance mutation

following prior treatment with EGFR-TKIs, icORR was 54%, not as

high in the treatment naïve setting, but icDCR was impressive at 92%

(47). Median PFS was not reached with a follow-up time of 11 months.

Consistent with the high rates of CNS response rates, molecular

imaging with 11C-labelled osimertinib in a phase I study (ODIN-

BM) showed excellent blood-brain-barrier penetration (48).
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Due to the high CNS efficacy of several EGFR-TKI, particularly

the newer generation TKIs, delaying immediate radiation for BMmay

be warranted for select patients with asymptomatic or low burden of

BM. In a retrospective series of 17 patients with EGFR mutant

NSCLC, Porta et al. found that among the 8 patients who received

erlotinib without WBRT had a satisfactory icORR of 75% compared

to the icORR of 88% for the patients receiving erlotinib plus WBRT

(29). In a cohort of 41 patients receiving gefinitib without prior RT,

Iuchi et al. noted 48.8% ultimately received salvage RT with a median

time to RT of 17.9 months (36). Additionally, Park et al. found that

erlotinib or gefinitib provided a local therapy-free survival of 12.6

months in a prospective phase II study of 28 patients (39). A multi-

institutional retrospective study by Thomas et al. evaluating both

EGFR and ALK TKIs with or without RT for BM included 95 patients
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with EGFR+ NSCLC and found no difference in time to intracranial

progression to time to treatment failure (49). These data suggest that

for select patients with BM, treatment with brain-penetrant EGFR-

TKI may be considered.

The BRAIN trial was a phase III randomized study comparing

icotinib versus WBRT for patients with at least 3 brain lesions and

naïve to EGFR-TKIs and RT (44). This trial demonstrated the

superiority of icotinib over WBRT, with median intracranial PFS of

10 months versus 4.8 months, respectively, although it did not

translate into improvements in overall survival or neurologic

symptomology. Interestingly, a retrospective multi-institutional

prospective cohort study of 351 patients found that delaying

radiation decreased overall survival rates (50). Upfront EGFR-TKI

followed by SRS at the time of intracranial progression had a median
TABLE 1 CNS-related Clinical Outcomes in EGFR-mutated NSCLC with Brain Metastases.

Study Population N Intervention icORR icDCR mPFS
(mo)

mTTP
(mo)

mDOR
(mo)

(28) EGFR mutated NSCLC with BM 9 Erlotinib NA 80% NA NA NA

(29) EGFR mutated NSCLC with BM 17 Erlotinib 82.40% NA NA 11.7 NA

(30) EGFR mutated NSCLC with BM with prior TKI 9 Pulse dose
erlotinib

67% 78% NA 2.7 NA

(31) EGFR mutated NSCLC with BM, TKI-naive 11 Pulse dose
erlotinib

NA 100% NR NA NA

(32) EGFR mutated NSCLC with BM, TKI-naive 19 Pulse dose
erlotinib

74% 84% 9.7 NA NA

(33) EGFR mutated NSCLC with BM 4 erlotinib 50% NA NA NA NA

(34) EGFR mutated NSCLC with BM previously on gefitinib 6 erlotinib 50% 100% NA NA NA

(35) EGFR mutated NSCLC with BM 15 Gefitinib 60% NA 8.7 NA NA

(36) EGFR mutated NSCLC with BM 41 Gefinitib 87.80% NA 14.5 NA NA

(37) EGFR mutated NSCLC with BM 22 Gefinitib 59% 81.8 10.6 NA NA

(21, 38) EGFR mutated NSCLC with BM 43 erlotinib or
gefitinib

57% 91% 9.3 NA NA

(39) EGFR mutated NSCLC with BM 28 erlotinib or
gefitinib

83% 93% 6.6 NA NA

FLAURA EGFR mutated NSCLC with BM, treatment-naïve 19 erlotinib or
gefitinib

68% 89% NA NA NA

(37) EGFR mutated NSCLC with BM 22 Icotinib 67% 59.1 8.4 NA NA

BRAIN EGFR mutated NSCLC with BM, treatment-naïve 85 Icotinib 65% 85% 10 NA NA

(40) EGFR mutated NSCLC with BM, s/p first gen TKI 31 afatinib 35% 66% NA NA NA

(41) EGFR mutated NSCLC with BM, treatment-naïve 74 afatinib 81.10% 95.90% NA NA NA

(42) EGFR mutated NSCLC with BM, treatment-naïve 28 afatinib 85.70% 89.30% NA NA NA

FLAURA EGFR mutated NSCLC with BM, treatment-naïve 41 osimertinib 91% 95% NR NA NA

Pooled AURA/
AURA2

EGFR mutated NSCLC with BM, T790M-positive and
previously treated with EGFR-TKI

50 osimertinib 54% 92% NR NA NA

AURA3 EGFR mutated NSCLC with BM, T790M-positive and
previously treated with EGFR-TKI

46 osimertinib 70% NA 11.7 NA NA

OCEAN EGFR mutated NSCLC with BM, treatment-naïve 39 osimertinib 70% NA 7.1 NA NA
fro
NSCLC, non-small cell lung cancer; BM, brain metastases; icORR, intracranial overall response rate; icDCR, intracranial disease control rate; mo, month; TKI, tyrosine kinase inhibitor; mTTP, median
time to progression; mPFS, median progression free survival; mDOR, median duration of response; NR, not reached; RT, radiation therapy; NA, not applicable.
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overall survival of 25 months compared to 46 months with upfront

SRS followed by EGFR-TKI and 30 months with upfront WBRT

followed by EGFR-TKI. Additionally, median intracranial PFS was

notably higher in the upfront RT arms (37.9 months) versus upfront

EGFR-TKI arm (10.6 months), and 58% of patients receiving upfront

EGFR-TKIs ultimately required salvage RT for CNS progression.

Notably, the vast majority of the cohort (98%) received erlotinib.

Given the improved CNS efficacy of third generation osimertinib, the

results of the phase II OUTRUN (NCT03497767) comparing

osimertinib versus osimertinib with SRS in patients with EGFR-

mutated NSCLC with the primary endpoint of intracranial PFS are

eagerly awaited.
Anaplastic lymphoma kinase inhibitors

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase,

initially discovered in anaplastic large cell lymphoma, but

chromosomal rearrangements resulting in a fusion gene, most

commonly with echinoderm microtubule-associated protein-like 4

(EML4), occur in 3-7% of NSCLC (51, 52). ALK rearrangements are

associated with the adenocarcinoma subtype, female sex, young age,

no or light smoking history, and are mutually exclusive with EGFR

and KRAS mutations (53). Patients with ALK-positive NSCLC have a

higher risk of BM, with 20-30% of patients having BM at diagnosis

(54, 55).

Crizotinib is a first-generation multi-target TKI targeting ALK as

well as c-MET and ROS1. Overall CNS activity appears to be modest in

post hoc analysis of clinical trials (Table 2). The CNS has been

recognized as a sanctuary site with ALK TKI penetration rates as low

as 0.26% (66, 67). In the pooled analysis of PROFILE 1005 and 1007,

Costa et al. found that among the 275 patients with ALK+ NSCLC and

BM who progressed after at least one line of systemic therapy, icORR,

icDCR, and median time to progression of intracranial disease were

33%, 62%, and 12.3 months, respectively, for those previously treated

with radiation, and 18%, 62% and 7 months, respectively, for those

untreated (68). The authors noted 70% of progression events in patients

with existing BM occur in the CNS and approximately 20% of patients

without BM eventually developed CNS disease. Comparatively, in the

upfront setting, a review of 39 treatment naïve patients with ALK+

NSCLC with BM in the PROFILE 1014 study showed improved results

with an icORR of 77%, icDCR of 85% and 56% at 12 weeks and 24

weeks, respectively, and time to intracranial progression of 15.7 months

(69). In several phase III trials evaluating next generation ALK-TKIs,

crizotinib was used as the control arm and demonstrated relatively poor

icORRs ranging from 21% to 50% and duration of responses lasting 5 to

10 months (70–73).

The eventual emergence of resistance to crizotinib via secondary

mutations and alternative signaling pathways led to the development of

second generation ALK TKIs (74). Ceritinib is a highly potent ALK TKI

active against several crizotinib-resistance mutations including the

gatekeeper L1196M mutation. Ceritinib is more selective than

crizotinib and does not target c-MET at relevant doses (75).

ASCEND-4 was the first phase III trial to compare a next generation

ALK TKI, ceritinib, against chemotherapy, ultimately demonstrating
Frontiers in Oncology 04
improved PFS (76). Patients with asymptomatic BM were included and

intracranial responses were substantial, with icORR of 72.7% and

median duration of response (DOR) of 16.6 months. In the

ASCEND-1, ASCEND-2, and ASCEND-5 trials, ceritinib was

evaluated in ALK+ NSCLC patients with prior platinum-based

chemotherapy and/or crizotinib. Intracranial outcomes were less

favorable with icORR ranging about 35%-55% (77–79). ASCEND-7

was a phase II trial specifically assessing outcomes of patients with BM

treated with ceritinib. Patients with prior RT and ALKi, prior ALKi

only, prior RT only, and RT/ALKi-naïve, respectively, had icORRs of

39.3%, 27.6%, 28.6%, and 51.5%, respectively (80).

Similarly, alectinib is a next generation ALK TKI active against

crizotinib-resistant tumors that has improved CNS efficacy (81). In

the phase III ALEX trial comparing alectinib versus crizotinib in

treatment naïve ALK+ NSCLC, the 21 patients with BM had

impressive icORR of 81% and DOR of 17.3 months. A post-hoc

analysis of the J-ALEX study by Nishio et al., which included ALK+

NSCLC patients who were untreated or with at most one prior

chemotherapy regimen, demonstrated that alectinib reduced the

risk of CNS progression by approximately 50% and 20% in patients

with and without baseline BM, respectively (82). The cumulative

incidence rate of CNS progression in patients with baseline BM was

low at 5.9% at one year with alectinib versus 16.8% with crizotinib.

Even in the pretreated setting following platinum agents or crizotinib,

subgroup analysis of the ALUR trial and several phase II trials showed

icORR ranging 50-75%, icDCR as high as 80-100%, and DOR of

approximately 11 months (59–62, 83).

More recently, brigatinib and ensartinib are second generation

ALK TKIs that have shown superior efficacy over crizotinib in the

phase III ALTA-1L and eXalt3 clinical trials, respectively (72, 73). In

patients with ALK TKI-naïve NSCLC with BM, brigatinib had an

intracranial ORR 78% with a long duration of response of 27.9

months (72). In a phase II dose-escalation trial in patients who

progressed on crizotinib, the icORR was more modest with a higher

dose demonstrating an icORR of 67% and median PFS of 12.8 (58) In

the eXalt3 trial, ensartinib found an intracranial icORR of 64% and

icDCR of 100% in ALK TKI-naïve patients, similar to results of early

phase clinical trials with pretreated patients who had icORRs of 64-

70% and icDCR of 93-98% (56, 57, 73).

Lorlatinib is a third generation ALK-TKI developed to overcome

the main limitations of second generation ALK TKIs, namely,

additional secondary ALK resistance mutations and limited CNS

penetration (84). Updates from a phase I/II trial by Bauer et al. and

Felip et al. evaluating intracranial outcomes following prior ALK TKI

inhibitor demonstrated substantial but decreasing efficacy with

subsequent lines of therapy (63, 64). Lorlatinib had icORR, icDCR,

and median DOR of 87.5%, 100%, and NR respectively in patients

treated with crizotinib only, 66.7%, 66.6%, and 20.7 months respectively

in patients treated with one second generation ALK TKI, and 54.2%,

87.4%, and 23.4 months is patients treated with more than one 2nd gen

ALK TKI. A phase II study conducted by Dagogo-Jack et al. enrolled 23

patients on a second generation ALK TKI who had developed CNS only

progression and discovered that lorlatinib provided an icORR of 59%,

icDCR of 95%, and median PFS of 24.6 months (65). In the phase III

CROWN trial evaluating loratinib in the upfront setting, loratinib
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TABLE 2 CNS-related Clinical Outcomes in ALK-positive NSCLC with Brain Metastases.

Study Population N Intervention icORR icDCR mPFS
(mo)

mTTP
(mo)

mDOR (mo)

Pooled
PROFILE
1005/1007
(Costa
et al.)

ALK positive NSCLC with
BM, s/p at least 1 line of

systemic therapy, prior RT or
untreated (no prior RT)

275 crizotinib Untreated: 18%, Treated:
33%

Untreated: 56%,
RT-rreated: 62%

NA NA Untreated:
mDOR 7 months,

RT-treated:
mDOR 12.3
months

PROFILE
1014

ALK positive NSCLC with
BM, treatment naive

39 crizotinib 77% 56% 9 15.7 NA

ALEX ALK positive NSCLC with
BM, treatment naive

22 crizotinib 50% NA NA NA 5.5

ALTA-1L ALK positive NSCLC with
BM, ALKi naïve

21 crizotinib 29% NA NA 9.2 NA 9.2

eXalt3 ALK positive NSCLC with
BM, ALKi naïve

19 crizotinib 21.10% NA 7.5 NA NA

CROWN ALK positive NSCLC with
BM, treatment naive

13 crizotinib 23% NA NA NA 10.2

eXalt3 ALK positive NSCLC with
BM, ALKi naïve

11 ensartinib 64% 100% 11.8 NA NA

(56) ALK positive NSCLC with
BM, with or without prior
ALKi

14 ensartinib 64.30% 92.90% NA NA 5.7

(57) ALK positive NSCLC with
BM, s/p crizotinib

40 ensartinib 70% 98% NA NA NA

(58) ALK positive NSCLC with
BM, s/p crizotinib

44 brigatinib 90 mg dose: 42%, 180 mg
dose 67%

NA 90 mg
dose: 15.6,
180 mg
dose: 12.8

NA NA

ALTA-1L ALK positive NSCLC with
BM, ALKi naïve

18 brigatinib 78% NA NA NA 27.9

ASCEND 1 ALK positive NSCLC with
BM, heavily pretreated with
ALKi and treatment naïve

94 ceritinib Untreated: 72.3%,
Pretreated: 56.4%

Untreated: 78.9%,
Treated 65.3%

Untreated:
18.4,

Pretreated:
6.9

NA NA

ASCEND 2 ALK positive NSCLC with
BM, s/p platinum therapy
and crizotinib

20 ceritinib 45% 80% NA NA NA

ASCEND 4 ALK positive NSCLC with
BM, untreated

22 ceritinib 72.70% 86.30% NA 16.6

ASCEND 5 ALK positive NSCLC with
BM, s/p platinum agent and
crizotinib

17 ceritinib 35% NA NA NA 6.9

ASCEND 7 ALK positive NSCLC with
BM, +/- prior ALKi +/- prior
RT

138 ceritinib prior RT + ALKi: 39.3%,
prior ALKi only: 27.6%,
prior RT only: 28.6%, RT/
ALKi naïve: 51.5%

NA NA NA NA

ALEX ALK positive NSCLC with
BM, treatment naive

21 alectinib 81% NA NA NA 17.3

(59) ALK positive NSCLC with
BM, s/p crizotinib

34 alectinib 58.80% 85.30% NA NA 11.1

(60) ALK positive NSCLC with
BM, s/p crizotinib

16 alectinib 75% 100% NA NA 11.1

(61) ALK positive NSCLC with
BM, s/p crizotinib

21 alectinib 52% 90% NA NA NA

(Continued)
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produced excellent icORR of 82% in 17 patients with BM, 71% of

whom had complete intracranial responses (71).

Development of newer generations of ALK TKIs have resulted in

superior efficacy in the upfront and refractory settings and have

improved CNS penetration. Given the long natural history and

younger age at diagnosis of ALK+ tumors, and enhanced

intracranial activity of newer ALK TKIs, the question of whether

ALK+ NSCLC BM can be initially managed with ALK TKIs while

deferring upfront RT is pertinent. Crizotinib is not an ideal agent for

the deferral of RT. Notably, in the pooled analysis of PROFILE 1005

and 1007, patients treated with crizotinib and who had no prior RT

had a poor icORR of 18%, icDCR of 56% and median time to

intracranial progression of 7 months (68). In the ASCEND-4 trial,

evaluating ceritinib in the upfront setting, 13 patients with BM

without prior RT had much improved icORR of 69.2% and icDCR

of 92.3% (76). Additionally, ASCEND-7 reported less favorable

icORRs of 51.5% and 27.6% in patients who were both RT/ALK

TKI-naïve and had prior ALK TKI only, respectively (80). Gadgeel

et al. conducted a pooled analysis of two phase II trials utilizing

alectinib in crizotinib-refractory patients, reporting intracranial ORR

and icDCR of 58.5% and 82.9%, respectively, in patients without prior

RT (85). Ensartinib in a phase II trial demonstrated excellent 88%

ORR in patients with prior RT versus 66% icORR in patients

without (57).

Petrelli et al. conducted a pooled analysis of 21 studies involving

1,016 patients receiving crizotinib and 2nd generation ALK-TKIs and

found intracranial ORR and icDCR in the first-line setting were 39.2%

and 70.3%, and in the ALK-TKI pretreated setting 44.2% and 78.2%,

respectively (86). The authors note that icORR was not influenced by

prior treatment with RT, and that icORR was 49% among those who

had never received RT. A multi-institutional retrospective study

comparing TKIs with or without RT for BM demonstrated that for

the 53 ALK+ NSCLC patients included, there was no difference in
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time to intracranial progression or time to treatment failure,

questioning the added benefit of RT (49).
Other targeted therapies

KRAS mutations are present in approximately 22% of lung

cancers, and yet historically targeted agents have failed to show

clinical efficacy despite significant effort and multiple avenues of

inhibition (87). KRAS is a GTPase, activation of which leads to

downstream signaling that promotes cell growth and proliferation

(88). More recently, the KRAS G12C mutation, which is present in

nearly 40% of KRAS-mutated NSCLC, has been targeted

pharmacologically. Sotorasib is a small molecule irreversible

inhibitor of KRAS G12C and was the first targeted agent against

KRAS approved by the FDA (89). A post hoc analysis of phase 1/2

CodeBreaK 100 trial by Ramalingam et al. evaluated sotorasib in the

setting of pretreated KRAS G12C mutant NSCLC with BM and

reported an icORR of 25%, icDCR of 77.5%, and median DOR of

11.1 months (90). 65% of patients had received prior radiation and

20% had resection. A newer agent, adagrasib, is currently being

evaluated in the accruing KRYSTAL-1 trial, and early data from 25

patients demonstrate an intracranial ORR, icDCR, and median PFS of

31.6%, 84.2%, and median PFS of 4.2 months (91).

Rearrangements of the receptor tyrosine kinase ROS1 is a driver

in a subset of NSCLC, occurring in 1-2% of cases (92). ROS1

rearrangement is associated with lung cancer patients of a younger

age, non- to light- smoking history, and adenocarcinoma histology.

Neurotropism is high with BM estimated to be present in

approximately 36% of patients (93). Due the multi-target nature of

ALK inhibitors, crizotinib and next generation ALK TKIs are being

utilized in the treatment of ROS1+ NSCLC, with observations being

made that the CNS is frequently a site of progression in as many as
TABLE 2 Continued

Study Population N Intervention icORR icDCR mPFS
(mo)

mTTP
(mo)

mDOR (mo)

ALUR ALK positive NSCLC with
BM, s/p platinum agent and
crizotinib

24 alectinib 54.20% 79.20% NR NA NA

(62) ALK positive NSCLC with
BM, s/p crizotinib

35 alectinib 57% 83% NA NA 10.3

CROWN ALK positive NSCLC with
BM, treatment naive

17 Lorlatinib 82% NA NA NA NA

(63) ALK positive NSCLC with
BM, s/p prior ALK TKI

81 lorlatinib S/p crizotinib: 87.5%, S/p
1 or more 2nd Gen TKI:
54.4%

S/p crizotinib:
100%, S/p 1 or
more 2nd Gen
TKI: 84.2%

NA NA S/p crizotinib:
NR, S/p 1 or
more 2nd Gen
TKI: 12.4

(64) ALK positive NSCLC with
BM, s/p prior 2nd gen TKI

57 lorlatinib S/p 1 prior 2nd gen TKI:
66.7%, s/p 2 or more 2nd
gen TKI: 54.2%

S/p 1 prior 2nd
gen TKI: 66.6%, s/
p 2 or more 2nd
gen TKI: 87.4%

NA NA S/p 1 prior 2nd
gen TKI: 20.7, s/p
2 or more 2nd
gen TKI: 12.4

(65) ALK positive NSCLC with
BM, s/p 2nd gen ALK TKI
with CNS-only progression

23 lorlatinib 59% 95% 24.6 NA NA
NSCLC, non-small cell lung cancer; BM, brain metastases; icORR, intracranial overall response rate; icDCR, intracranial disease control rate; mo, month; TKI, tyrosine kinase inhibitor; mTTP, median
time to progression; mPFS, median progression free survival; mDOR, median duration of response; NR, not reached; RT, radiation therapy; NA, not applicable.
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50% of ROS1+ NSCLC (93). In a phase 1/2 trial of loratinib in ROS1+

NSCLC, TKI-naïve patients had an intracranial ORR of 64% while

patients treated previously with crizotinib had an icORR of 50% (94).

c-MET is a proto-oncogene encoding a receptor tyrosine

kinase. Gene amplification or aberrant splicing leads to

proliferation and metastasis of cancer cells (95). The prevalence

of c-MET oncogene activation is approximately 5% with gene

amplification and altered gene splicing comprising 1.4% and

3.3%, respectively (96). Wolf et al. evaluated capmatinib, a

selective c-MET inhibitor with CNS penetration, in a phase I/II

trial in NSCLC with either a c-MET exon 14 skipping mutation or

c-MET amplification. They reported an intracranial ORR and

icDCR of 53.8% and 92.3%, respectively in 13 patients (97).

Another selective c-MET inhibitor, tepotinib, was evaluated in a

phase II trial in patients with c-MET exon 14 skipping mutation

and was found to have an icORR of 55% and median DOR of 9.5

months in a cohort of 11 patients (98).

RET is another oncogene encoding a receptor tyrosine kinase, and

rearrangements are found in only 1-2% of NSCLC (99). RET

rearrangements are associated with a younger age, non-smoking

history, poorly differentiated tumors, and nodal involvement (100).

Multi-kinase inhibitors targeting RET were initially used with

unimpressive results. In a multi-institution database of patients

with RET-rearranged NSCLC BM treated with multi-kinase

inhibitors (including but not limited to cabozantinib, vandetanib,

sunitinib, ponatinib, vandetanib, and alectinib), Drilon et al. reported

a short median PFS of 2.1 months in 37 patients and an icORR of 18%

in a separate cohort of 11 patients (101). More promising are selective

RET inhibitors, two of which have been FDA approved for treatment

of RET+ NSCLC. Selpercatinib was assessed in a phase I/II trial of

patients with RET fusion+ NSCLC, some of whom had received

platinum-based chemotherapy, and reported a remarkable icORR of

91% and median DOR of 10.1 months in a small cohort of 11 patients

(102). In a phase I/II trial, patients with RET fusion+ NSCLC received

pralsetinib, and in the 9 patients with measurable BM, icORR was

56% and median DOR was not reached (103).

The NTRK gene family (NTRK1, NTRK2, and NTRK3) encode

neurotrophic receptor tyrosine kinases. Genomic rearrangements

resulting in NTRK fusion oncogenes result in constitutively active

proteins (104). The prevalence of NTRK fusion genes in NSCLC is

<1%. Data regarding intracranial activity of targeted therapy against

NTRK is developing. A recently updated analysis of 3 phase I/II

studies including patients with NTRK fusion positive solid tumors

treated with the multikinase inhibitor entrectinib enrolled 31 patients

with NSCLC and baseline CNS disease and demonstrated an icORR

of 64.5% (105, 106). Larotrectinib is a highly selective NTRK inhibitor

that has shown efficacy in NTRK fusion positive lung cancers with

CNS metastases; however, data evaluating intracranial control is not

available (107).

Overall, the data for these molecular targets are limited and

emerging. Table 3 summarizes clinical outcomes reported by early

phase studies and retrospective reviews by targeted therapy agent.

Similar to EGFR-mutated and ALK-rearranged NSCLC, these

molecular targets show high propensity for involvement and

progression in the CNS. At this point, local therapy including

resection and radiation will be integral for CNS control until longer

term data with larger patient numbers mature.
Frontiers in Oncology 07
Immunotherapy

Immune checkpoint inhibitors have revolutionized the treatment

landscape for advanced NSCLC. By targeting PD-1 and CTLA-4 on

exhausted CD8+ T cells and PD-L1 on tumor cells, these drugs restore

immune system surveillance and enhance antitumor activity (115). As

a result, there is emerging data on intracranial efficacy of these agents.

Pooled analysis of large randomized clinical trials involving

pembrolizumab monotherapy and pembrolizumab/platinum-based

chemotherapy combinations in advanced NSCLC patients with BM

have demonstrated improvements in OS and PFS in general (116,

117). However, granular data on intracranial responses are lacking in

these trials.

In a phase II trial of 42 patients with NSCLC with BM treated with

pembrolizumab, intracranial ORR and icDCR was 30% and 40.5%,

respectively, with a median duration of response of 5.7 months for

patients with PD-L1 expression >1% (108). However, among the 5

patients with undetectable PD-L1, there was no response. Similarly, in

a large cohort of 255 patients treated with PD-1 and PD-L1 inhibitors,

Hendriks et al. noted an icORR of 20.6% and PFS of 1.7 months (109).

Notably, this patient population was diverse, with positive PD-L1

expression in only 61.5% of patients and with 27.4% of patients

receiving steroids prior to treatment. Through an expanded access

program in Italy, a retrospective analysis of patients receiving

nivolumab who had received at least one prior systemic therapy

showed icORR of 16-18% and icDCR 43-47% (110, 111). However, in

23 patients with NSCLC with BM receiving pembrolizumab and PD-

L1 tumor proportion score ≥ 50%, Wakuda et al. reported improved

results, with icORR of 77% and 60% and PFS of 13.6 and 18.6

months in pretreated and non-pretreated BM, respectively (113).

Additionally, a phase II trial by Nadal et al. yielded an intracranial

ORR of 42.5% and icDCR of 90% with atezolizumab combined with

chemotherapy in treatment-naïve non-squamous NSCLC patients

(114). These studies suggest that immune therapy may be an option

for some patients with BM, particularly those whose tumors have high

levels of PD-L1-expression.
Radiation necrosis risk with combined
modality treatment

Radiation necrosis is characterized as injury to normal brain

tissue months to years after radiation therapy (118). Depending on

the location and severity, radiation necrosis can be morbid,

potentially requiring pharmacologic and invasive interventions. The

rates of radiation necrosis can be as high as 34% (119). Whether

targeted therapy and immunotherapy increases the risk of radiation

necrosis is an area of active inquiry. Miller et al. retrospectively

reviewed a large NSCLC dataset of 2276 lesions in 826 patients and

reported radiation necrosis rates for EGFR+ and ALK+ lesions of

7.6% and 17.3%, respectively (120). When compared to wildtype

EGFR or ALK tumors, ALK+ but not EGFR+ lesions were associated

with higher 12-month cumulative incidences of radiation necrosis.

Notably, receipt of EGFR or ALK inhibitors did not significantly

impact rates of radiation necrosis, suggesting that they may be safely

administered with stereotactic radiosurgery (SRS).
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Evidence evaluating immunotherapy and radiation necrosis risk

are mixed and is primarily derived from retrospective cohort data.

In a series of 480 patients in which NSCLC comprised 61% of the

total cohort, Martin et al. reported radiation necrosis rates of 20% in

patients receiving immunotherapy versus 6.8% without (121). After

adjusting for tumor histology, receipt of immunotherapy was

associated with a 2.5 times increased risk of radiation necrosis

following SRS, with melanoma associated with the greatest risk of

radiation necrosis. On the other hand, in a separate study evaluating

the risk of RT-related adverse events in 163 patients with advanced

NSCLC patients receiving SRS, partial brain irradiation or WBRT,

Hubbeling et al. reported no differences in all-grade toxicity or grade

3 or higher toxicity with receipt of immunotherapy (122). Similarly,

Chen et al. found that in 260 patients with 634 brain metastases

from NSCLC (60%), melanoma (27%), and renal cell carcinoma

(13%), administration of SRS and immunotherapy was not

associated with acute neurologic toxicity (123). For further
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reading, Loganadane et al. provide a comprehensive review of

radiation necrosis in NSCLC patients with a focus on targeted

therapy and immunotherapy (118).
Conclusion

BM are a significant source of morbidity and mortality in

patients with oncogene driven NSCLC. These cancers have

demonstrated a higher predilection for CNS involvement, and due

to improved survival overall, control of CNS disease is paramount.

Traditionally, local therapy including resection, WBRT and SRS has

been the cornerstone of intracranial control in light of the limited

CNS penetration of historical systemic therapy. The review of CNS

ORR across multiple targetable mutation positive NCSLC subtypes

show that while early agents had modest intracranial activity,

successive generations of TKIs have improved upon this. In
TABLE 3 CNS-related Clinical Outcomes of Other Targeted Therapies and Immunotherapy in NSCLC with Brain Metastases.

Study Population N Intervention icORR icDCR mPFS (mo) mTTP
(mo)

mDOR
(mo)

CodeBreaK
100

KRAS G12C+ NSCLC with BM
s/p RT or resection

40 sotorasib 25% 77.50% NA NA 11.1

KRYSTAL-
1

KRAS G12C+ NSCLC with
untreated BM

25 adagrasib 31.60% 84.20% 4.2 NA NA

(94) ROS1+ NSCLC 35 loratinib TKI naïve: 64%,
prior crizotinib:
50%

NA NA NA NR

(97) NSCLC with a MET exon 14
skipping mutation or MET
amplification

13 capmatinib 53.80% 92.30% NA NA NA

(98) NSCLC with MET exon 14
skipping mutation

11 tepotinib 55% NA NA NA 9.5

(103) NSCLC with RET fusion+ 9 pralsetinib 56% NA NA NA NR

(102) NSCLC with RET fusion+,
untreated or s/p platinum agent

11 selpercatinib 91% NA NA NA 10.1

(106) NTRK fusion+ NSCLC with BM 31 entrectinib 64.50% NA NA NA NA

(108) PD-L1 positive NSCLC with BM 37 pembrolizumab 30% 40.50% NA NA 5.7

(109) NSCLC with BM 255 PD-1 and PD-L1
inhibitors

20.60% 43.90% 1.7 NA NA

(110) Squamous NSCLC with treated
BM s/p one prior systemic
therapy

38 Nivolumab 18.40% 47.30% 5.5 NA NA

(111) Non-squamous NSCLC s/p 1
prior systemic treatment

409 Nivolumab 16.60% 40% NA NA NA

(112) NSCLC with BM 11 pembrolizumab with
or without
chemotherapy

34.60% 63.70% NA NA NA

(113) NSCLC with BM with PD-L1
TPS ≥ 50%

23 pembrolizumab treated BM: 77%,
nontreated BMs:
60%

treated BM: 85%,
nontreated BMs:
60%

treated BM: 13.6,
nontreated BMs:
18.6

NA NA

(114) Non-squamous NSCLC with
untreated BM

40 atezolizumab with
carboplatin and
pemetrexed

42.50% 90% 7.1 NA NA
fron
NSCLCl, non-small cell lung cancer; BM, brain metastases; icORR, intracranial overall response rate; icDCR, intracranial disease control rate; mo, month; TKI, tyrosine kinase inhibitor; mTTP,
median time to progression; mPFS, median progression free survival; mDOR, median duration of response; NR, not reached; RT, radiation therapy; NA, not applicable.
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EGFR-mutant tumors, osimertinib has shown remarkable activity

and may be considered for patients with limited BM, reserving

radiosurgery for progression. Omission of upfront radiation is being

tested in the accruing OUTRUN trial. Similarly, tumors with high

levels of PD-L1 expression may respond to immune therapy. In

ALK-positive and other rare oncogene-positive cancers, data are

more limited but encouraging. A treatment strategy of systemic

therapy alone with close imaging and follow-up could be considered

for patients with small and asymptomatic BM and for whom the

benefits of upfront, aggressive local therapy may not be

readily apparent.

In summary, the management of BM is rapidly evolving with

improvements in systemic therapies that have brain penetrance.

Research is needed on the integration of and interactions between

these systemic treatments with local therapies. Future clinical trials

should prioritize marker driven studies, patient-centered quality of

life outcomes, neurocognitive outcomes of systemic therapy alone

compared to radiotherapy, and investigation of systemic agents as a

sole modality stratified by disease burden and symptom acuity.

Additionally, new imaging tools should be developed to predict

CNS response to various treatments and refine assessment of

therapeutic response.
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