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Single cell metabolic imaging of
tumor and immune cells in vivo
in melanoma bearing mice
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University of Wisconsin, Madison, WI, United States, 4Department of Pediatrics, University of
Wisconsin, Madison, WI, United States
Introduction: Metabolic reprogramming of cancer and immune cells occurs

during tumorigenesis and has a significant impact on cancer progression.

Unfortunately, current techniques to measure tumor and immune cell

metabolism require sample destruction and/or cell isolations that remove the

spatial context. Two-photon fluorescence lifetime imaging microscopy (FLIM) of

the autofluorescent metabolic coenzymes nicotinamide adenine dinucleotide

(phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD) provides in vivo

images of cell metabolism at a single cell level.

Methods: Here, we report an immunocompetent mCherry reporter mouse

model for immune cells that express CD4 either during differentiation or CD4

and/or CD8 in their mature state and perform in vivo imaging of immune and

cancer cells within a syngeneic B78 melanoma model. We also report an

algorithm for single cell segmentation of mCherry-expressing immune cells

within in vivo images.

Results:We found that immune cells within B78 tumors exhibited decreased FAD

mean lifetime and an increased proportion of bound FAD compared to immune

cells within spleens. Tumor infiltrating immune cell size also increased compared

to immune cells from spleens. These changes are consistent with a shift towards

increased activation and proliferation in tumor infiltrating immune cells

compared to immune cells from spleens. Tumor infiltrating immune cells

exhibited increased FAD mean lifetime and increased protein-bound FAD

lifetime compared to B78 tumor cells within the same tumor. Single cell

metabolic heterogeneity was observed in both immune and tumor cells in vivo.

Discussion: This approach can be used to monitor single cell metabolic

heterogeneity in tumor cells and immune cells to study promising treatments

for cancer in the native in vivo context.

KEYWORDS

intravital imaging, immune cells, melanoma, metabolism, murine models, multiphoton/
two-photon imaging, autofluorescence
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1 Introduction

Metabolic reprogramming is a hallmark of cancer (1, 2). Cancer

cells increase their metabolic activity to fuel rapid cell proliferation.

At the same time, fast tumor growth leads to poor vascularization,

decreased oxygen availability, increased metabolic waste products,

and increased acidity in the tumor microenvironment (TME). To

survive, cancer cells increase their metabolic plasticity and adapt to

the available nutrients. Whereas healthy cells primarily metabolize

glucose using oxidative phosphorylation, cancer cells primarily

metabolize glucose using glycolysis (3–7). Immune cells also

undergo metabolic changes during tumorigenesis that correlate to

immune cell phenotype and function (1, 8, 9). Some immune cell

reprogramming is critical for increased proliferation, activation,

and cytokine release while other reprogramming is necessary to

compete with cancer cells for nutrients in the TME. For example,

many lymphocytes shift toward increased glycolysis upon

stimulation to support proliferation and cytokine release,

however, nutrient competition in the TME is fierce as cancer cells

also increase glucose uptake (1, 2). This nutrient competition can

lead to detrimental effects on the immune cells such as exhaustion

or dysfunction, which further promote tumorigenesis. Improved

understanding of tumor and immune cell metabolism and their

complex interplay in the TME will improve clinical outcomes in

cancer. This knowledge could guide the development of therapies

aimed at modifying metabolism to limit tumor cell metabolism and

promote healthy immune cell metabolism.

Current techniques to measure tumor and immune cell

metabolism require destruction of the sample and/or single cell

isolations that remove relevant spatial context and may limit

collection of rare cell populations. There is a need for methods

that can monitor metabolic changes within intact in vivo samples

that maintain the native TME. Intravital optical metabolic imaging

(OMI) resolves many of these shortcomings by providing in vivo,

label free, single cell imaging of metabolic changes. These metabolic

changes are quantified with the fluorescence intensities and

lifetimes of metabolic coenzymes NAD(P)H and FAD, which are

autofluorescent molecules present in all cells (10–12). The

fluorescence of NADH and NADPH are difficult to separate

spectrally, so their combined fluorescence will be referred to here

as NAD(P)H. These metabolic coenzymes shuttle electrons during

most metabolic processes, where NAD(P)H is an electron donor

and FAD is an electron acceptor. NAD(P)H and FAD intensity

changes are often quantified using the optical redox ratio, defined

here as the intensity of NAD(P)H divided by the sum of the

intensity of NAD(P)H plus FAD, which monitors changes in the

oxidation-reduction state of the cell (10–13). A decrease in optical

redox ratio here indicates a more oxidized environment. The

fluorescence lifetime, the time a molecule remains in its excited

state before relaxing back to ground state, informs on the protein

binding activity of NAD(P)H and FAD as well as changes in the

cellular microenvironment. The fluorescence lifetimes of free versus

protein-bound NAD(P)H and FAD are distinct and can be

quantified using fluorescence lifetime imaging microscopy (FLIM)

(11–15). FLIM of NAD(P)H and FAD reports on changes in free

and protein-bound lifetimes due to microenvironmental factors and
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preferred binding partners, while also providing relative

proportions of free and protein-bound pools. Previous studies

have illustrated that OMI can quantify tumor cell (16–23) or

immune cell (24–29) metabolic changes separately. However,

imaging of in vivo metabolic changes in immune cells between

different tissues of origin and uncoupling tumor cell and immune

cell metabolism within the same tissue has not been well studied in

the context of melanoma.

Here we demonstrate in vivo optical metabolic imaging, a

fluorescent reporter mouse model, and single cell segmentation

approaches to quantify immune cell and tumor cell metabolism in

vivo. As proof-of-principle for this method, we show that: 1)

immune cell metabolism within spleens differs from metabolism

of tumor infiltrating immune cells, 2) tumor cells and tumor

infiltrating immune cells also differ metabolically, and 3) single

cell metabolic heterogeneity is present in both immune and tumor

cells populations in vivo. Overall, this approach can be used to

monitor single cell metabolic heterogeneity in tumor cells and

immune cells to study promising treatments for cancer in the

native in vivo context.
2 Materials and methods

2.1 CD4 mCherry reporter mouse
breeding, tumor inoculation, and surgery

Animals were housed and treated under an animal protocol

approved by the Institutional Animal Care and Use Committee at

the University of Wisconsin-Madison. The CD4 mCherry reporter

mouse model was made using Cre-lox methods by crossing CD4-

Cre mice (Jax 022071) with floxed H2B-mCherry mice (Jax 023139)

at the University of Wisconsin Biomedical Research Model Services

(Figure S1) (30, 31). H2B-mCherry homozygous/CD4cre

hemizygous mice were successfully bred and genotyped to

confirm mCherry labeling to all CD4+ cells that expressed CD4

either during differentiation or in their mature state. The reporter

mCherry was chosen to avoid spectral over lap with

autofluorescence of NAD(P)H and FAD, and to confirm the

identity of in vivo cells with CD4 expression presently or in their

lineage (32–34).

B78-D14 (B78) melanoma is a poorly immunogenic cell line

derived from B78-H1 melanoma cells, which were originally

derived from B16 melanoma (35–37). These cells were obtained

from Ralph Reisfeld (Scripps Research Institute) in 2002. B78 cells

were transfected with functional GD2/GD3 synthase to express the

disialoganglioside GD2 (36, 37), which is overexpressed on the

surface of many human tumors including melanoma (38). These

B78 cells were also found to lack melanin. B78 cells were grown in

RPMI-1640 (Gibco) supplemented with 10% FBS and 1% penicillin/

streptomycin, with periodic supplementation with 400 mg G418 and
500 mg Hygromycin B per mL. Mycoplasma testing was performed

every 6 months. B78 tumors were engrafted by intradermal flank

injection of 2×106 tumor cells (39). We have previously developed

successful immunotherapy regimens for mice bearing these B78

tumors, enabling the cure of mice with measurable tumors (~100
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mm3 volume) (40–42). These cured mice have demonstrated

tumor-specific T-cell mediated memory, as detected by rejection

of rechallenge with the same vs. immunologically distinct tumors.

Here, we continue our investigation of the B78 tumor model and

expand our work into the metabolic field. Tumor size was

determined using calipers and volume approximated as:

tumor volume = (tumor width2 � tumor length)=2

Intravital imaging of the mouse tumors (n = 2) was performed

in untreated mice when tumors were well established (280-340

mm3), 5-6 weeks after inoculation. Immediately prior to tumor

imaging, skin flap surgery exposed flank tumors. Mice were

anesthetized with isoflurane, then the skin around the tumor was

cut into a flap and separated from the body cavity so that the tumor

laid flat on the imaging stage while still connected to the vasculature

(43–45). Mice were placed on a specialized microscope stage for

imaging and kept in a heating chamber (air maintained at 37°C)

during imaging. An imaging dish insert and PBS for coupling were

used with surgical tape to secure skin flap tumors (Figure 1).
2.2 Multiphoton imaging

Intravital/in vivo imaging was performed live, as described in

2.1 above (Figure 1). Ex vivo imaging of whole spleens was

performed immediately following intravital imaging and

euthanasia. Excised spleens were secured to an imaging dish with

PBS coupling and tape. Ex vivo imaging was completed within one
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hour post mouse euthanasia, accurately capturing splenic

metabolism based on our previous work that showed that ex vivo

metabolism is statistically identical to in vivo metabolism for up to

12 hours post euthanasia (46). In vitro imaging of CD3+ splenic T

cells was performed following negative selection magnetic bead

separation with an EasySep™ Mouse T Cell Isolation Kit

(STEMCELL Technologies) and cells were plated on a glass

imaging dish.

Autofluorescence images were captured with a custom-built

multi-photon microscope (Bruker) using an ultrafast femtosecond

laser (InSight DSC, Spectra Physics). Fluorescence lifetime

measurements were performed using time-correlated single

photon counting electronics (Becker & Hickl). Fluorescence

emission, in FLIM mode, was detected simultaneously in three

channels using bandpass filters of 466/40 nm (NAD(P)H), 514/30

nm (FAD), and 650/45 nm (mCherry) prior to detection with three

GaAsP photomultiplier tubes (Hamamatsu). All three fluorophores

were simultaneously excited using a previously reported wavelength

mixing approach (47, 48) with two-photon excitation at 750 nm

(tunable line, l1) and 1041 nm (fixed line, l2), and two-color two-

photon excitation at 872 nm (l2c-2p):

l2c−2p =  
2

1
l1
+   1

l2

Briefly, the laser source tuned to 750 nm (NAD(P)H excitation)

was delayed and collimated with the secondary laser line fixed at

1041 nm (mCherry excitation) for spatial and temporal overlap at

each raster-scanned focal point (2-color excitation of FAD with 750
A B

C

FIGURE 1

In vivo multiphoton imaging experimental workflow. (A) Workflow began with intradermal inoculation of 2×106 B78 melanoma cells on mouse flank.
Tumors were monitored weekly until they reached ~300 mm3 volume. (B) On the day of imaging, the mouse was anesthetized, and tumor skin flap
surgery was performed where dermal and subcutaneous skin layers were gently cut away from the peritoneum revealing the tumor with intact
vasculature. (C) The tumor and skin flap were placed on a glass slide for imaging and the mouse on a specially designed microscope stage.
Throughout in vivo imaging, the mouse was kept under anesthesia and inside a heating chamber that enclosed the microscope stage.
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nm + 1041 nm). During wavelength mixing in FLIM mode, typical

power was 0.9-1.9 mW for the 750 nm laser and 0.7-1.0 mW for the

1041 laser. Second-harmonic generation (SHG) images, in galvo

mode, of collagen fibers and mCherry-expressing immune cells

were detected using bandpass filters of 514/30 nm (collagen/SHG)

and 650/45 nm (mCherry) at 1041 nm excitation (typical power 2.7-

3.0 mW). There will be some SHG contribution to the FAD channel

from our 1041 nm laser, but we can distinguish SHG signal from

true FAD signal due to the clear morphology and lifetime

differences between collagen fibers and FAD-containing cells.

Sum frequency generation (SFG) signal (436 nm) generated via

our wavelength mixing setup is excluded using these bandpass

filters (47, 48). A phasor plot was used to confirm that no mCherry

signal was present in the FAD channel. All images were acquired

with a 40×/1.13 NA water-immersion objective (Nikon) at 512×512

pixel resolution and an optical zoom of 1.0-2.0. A daily fluorescence

standard measurement was collected by imaging a YG fluorescent

bead (Polysciences Inc.) and verifying the measured lifetime with

reported lifetime values. NAD(P)H and FAD intensity and lifetime

images were acquired to sample metabolic behavior of B78 tumor

and immune cells across 3-8 fields of view and multiple depths

within each tissue.
2.3 Multiphoton image analysis

2.3.1 Fluorescence lifetime fitting
The fluorescence lifetimes of free and protein-bound NAD(P)H

and FAD are distinct, and these lifetimes along with their weights

can be recovered with a two-exponential fit function. Therefore,

fluorescence lifetime decays for both NAD(P)H and FAD were fit to

the following bi-exponential function in SPCImage:

I(t) =  a1e
−t=t1 +  a2e

−t=t2 + C

For NAD(P)H, t1 corresponds to the free lifetime, t2
corresponds to the protein-bound lifetime, and the weights (a1,

a2; a1 + a2 = 1) correspond to the proportion of free and protein-

bound NAD(P)H, respectively (11, 14, 15). Conversely for FAD, t1
corresponds to the protein-bound lifetime and t2 corresponds to

the free lifetime (13, 15, 49). An instrument response function was

measured using SHG (900 nm excitation) from urea crystals for

input into the decay fit procedure. The following fluorescence

lifetime endpoints were calculated from the fitted model: t1, t2,
a1, and a2 for both NAD(P)H and FAD; along with the optical

redox ratio (Table 1) (10, 11).
2.3.2 Manual cell segmentation
Manual immune and tumor cell segmentation was performed

through a custom CellProfiler pipeline. Immune cells were

segmented based on their mCherry intensity. Tumor cells were

segmented based on their NAD(P)H intensity. For both cell types,

single cells were circled and segmented as whole cells to include

both nucleus and cytoplasm. The resulting segmented images were

saved as masks. Using these masks and the raw imaging data from

2.3.1, fluorescence lifetime variables and redox ratio values were
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calculated for each individual cell. Calculations were performed

using RStudio.

2.3.3 Automated immune cell segmentation
Automated immune cell segmentation was performed through

a custom Python based pipeline (Figure S2). Intensity and lifetime

images of mCherry, thresholded to a predefined lifetime range of

800-1500 ps to reduce non-specific signal, were passed in as initial

inputs to the pipeline. Initial global and local thresholding of

intensity images through a series of standard thresholding

methods – otsu, yen, min, triangle, local, and their combinations

– was used to differentiate foreground vs. background (50, 51, 52).

Next, a left-merge intersection was performed to combine the

thresholded intensity image and the range-limited lifetime image.

A canny edge detector was used to identify and label individual

regions of interest (ROIs) in the resulting image. ROIs were

expanded through a first round of binary dilation or closing to

ensure proper coverage of cell bodies. Border clearing was

performed to remove any partial cells followed by an edge

detection step. A second round of binary dilation or closing was

then performed. Following ROI generation, a small-item filter was

used based on ROI area to limit noise and non-specific elements in

the mask. Ensemble voting was performed via combinatorial

analysis of intensity image thresholding and ROI region

expansion methods. A maximum intensity projection was

generated for each outcome, and a single ‘best’ binary mask was

established by maximizing Dice coefficients compared against

hand-segmented ground truth images for every image in the

dataset. The segmentation and dilation procedures explained

above resulted in whole cell immune cell masks that encompassed

both nuclei and cytoplasm. These masks were qualitatively

confirmed by visual inspection of whole cell segmentation. Whole

cell masks were also quantitatively confirmed by performing mask

dilations of 1, 2, and 3 pixels – which did not statistically differ

(p>0.05) from the original masks for any fluorescence intensity or
TABLE 1 Optical metabolic imaging parameters.

Optical Metabolic Imaging Parameters

NAD(P)H t1 Lifetime free NAD(P)H – short

NAD(P)H a1 % free NAD(P)H

NAD(P)H t2 Lifetime bound NAD(P)H – long

NAD(P)H a2 % protein bound NAD(P)H

NAD(P)H tm NAD(P)H mean lifetime = a1t1+a2t2

FAD t1 Lifetime bound FAD – short

FAD a1 % protein bound FAD

FAD t2 Lifetime free FAD – long

FAD a2 % free FAD

FAD tm FAD mean lifetime = a1t1+a2t2

Optical Redox Ratio =
Intensity NAD(P)H

Intensity NAD(P)H + Intensity FAD
Definitions of fluorescence lifetime imaging parameters and the optical redox ratio, which are
quantified for each cell.
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lifetime parameter. Final automated segmentation mask quality and

accuracy was assessed through calculations of the Dice coefficient

for each mask (Table S1). As needed, automated masks were also

manually improved using Napari. Using these automated masks

and the raw imaging data from 2.3.1, fluorescence lifetime variables

and redox ratio values were calculated for each cell. Calculations of

these single cell OMI parameters were performed using RStudio

(Version 4.1.0).
2.4 Multiplex immunofluorescence

Excised tissues were formalin fixed and paraffin-embedded for

antibody staining with a panel of fluorescent markers (CD4,

mCherry, and CD8). Embedded sections were deparaffinized and

hydrated prior to antigen retrieval and placement in blocking

solution. Next, primary antibodies were sequentially applied upon

removal of blocking solution at the following dilutions and

incubation times: CD4 – 1:500 for 15 min, mCherry – 1:500 for

10 min, and CD8 –1:250 for 15 min. Secondary antibodies were

then added following each primary antibody incubation using rat

and rabbit secondary antibodies. The following staining dyes were

added after secondary antibody washes at 1:100 dilution for 10 min:

CD4 – Opal-dye 520, mCherry – Opal-dye 570, CD8 – Opal dye

620. Finally, stained sections were incubated in DAPI for 5 min at

room temperature for nuclear labeling and mounted on coverslips

for imaging. Imaging was performed at 40× using a Vectra

multispectral imaging system (Akoya Biosciences) and a spectral

library was generated to separate spectral curves for each of the

fluorophores. Resulting images were analyzed using Nuance and

inForm software (Akoya Biosciences).
2.5 Flow cytometry

Tumors and spleens were harvested from euthanized mice.

Spleens were then dissociated into a single cell suspension and

filtered with a 70 mm filter. Red blood cells were lysed using 1 mL

ddH2O for 10 seconds, then spleen cells were stored in PBS on ice

until aliquoted into flow cytometry tubes. Tumors were cut into ~1

mm chunks using surgical scissors. The tumor chunks were

collected in gentleMACS C tubes (Miltenyi Biotec) containing 2.5

mL of RPMI 1640 + 10% fetal bovine serum, 100 U/mL penicillin,

100 mg/mL streptomycin, and 2 mM L-glutamine. 100mL of DNAse

I solution in RPMI 1640 (2.5 mg/mL, Sigma-Aldrich) and 100 mL
collagenase IV solution in RPMI 1640 (25 mg/mL, Gibco) were then

added and the samples were run on a MacsQuant Octo Dissociator

(Miltenyi Biotec) using the preset dissociation protocol for mouse

tumor dissociations. After dissociation, the tumors were filtered

through a 70 mm cell strainer, washed with 10 ml PBS, and stored on

ice until being aliquoted in flow cytometry tubes.

Flow cytometry tubes containing 2-5x106 tumor or spleen cells

were labeled and stained with 0.5 mL GhostRed780 (Tonbo

Biosciences) in 500mL of PBS per sample and light protected at 4°C

for 20-30 minutes. Samples were then washed with flow buffer (PBS

+2% FBS). Fc block was not used here. In the meantime, a master mix
Frontiers in Oncology 05
containing all antibody markers was prepared and aliquoted at 50 mL
per flow tube (Table S2). Fluorescence minus one controls (FMOs)

were also prepared for each marker minus live/dead. Cells were

stained with surface markers for 30-45 min at 4°C in the dark. After

staining, samples were washed in flow buffer and data acquired on an

Attune™ NxT flow cytometer (Thermo Fisher) with manufacturer

provided acquisition software. This instrument was maintained by

the Flow Cytometry Core Lab through the University of Wisconsin

Carbone Cancer Center, which performs daily quality control checks

and instrument calibration using Attune™ Performance Tracking

Beads (Thermo Fisher, cat 4449754). This cytometer was equipped

with the following excitation lasers: 488nm (BL), 561nm (YL), 405m

(VL), and 633nm (RL). The cytometer was equipped with the

following channel/bandpass filter combinations: BL1 (530/30), BL2

(590/40), BL3 (695/40), YL1 (585/16), YL2 (620/15), YL3 (695/40),

YL4 (780/60), VL1 (440/50), VL2 (512/25), VL3 (603/48), VL4 (710/

50), RL1 (670/14), RL2 (720/30), and RL3 (780/60). Data were

analyzed using FlowJo version 10.7.1 (FlowJo LLC, Becton

Dickinson & Company (BD) 2006-2020). Gates were determined

using FMOs. Gating strategies for each immune cell population are

defined in Table 2.
2.6 Heatmaps

Z-score heatmaps were created using the Complex Heatmap

package (RStudio) (53, 54). Hierarchical clustering of single cells

was performed based on twelve OMI parameters (NAD(P)H tm, t1,
t2, a1, a2; FAD tm, t1, t2, a1, a2; cell size; optical redox ratio) and

calculated using Ward’s method. Labels for cell type, tissue type,

and mouse were added afterwards and not included in

cluster analysis.
2.7 Statistical analysis

Mann–Whitney statistical tests for non-parametric, unpaired

comparisons were performed to assess differences in OMI
TABLE 2 Flow cytometry gating strategies.

Population Gating Definition (after Cells/
Single/Live)

CD45 Lymphocytes CD45+

CD8 T Cells CD45+/CD3ϵ+/NK1.1-/CD8a+

CD4 T Cells CD45+/CD3ϵ+/NK1.1-/CD4+

NKT Cells CD45+/CD3ϵ+/NK1.1+

NK Cells CD45+/CD3ϵ-/NK1.1+

B Cells CD45+/CD3ϵ-/NK1.1-/CD19+

Macrophages CD45+/CD3ϵ-/Ly6G-/F4/80+

Dendritic Cells CD45+/CD3ϵ-/NK1.1-/CD11c+

Neutrophils CD45+/CD3ϵ-/Ly6G+/CD11b+
Gating definition for flow cytometry analysis of each immune cell population.
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parameters between cell types. This test was chosen because these

data distributions were not assumed to be parametric. Results are

represented as dot plots showing mean ± standard deviation where

each dot represents a single cell (GraphPad Prism 9). Effect size was

also calculated to assess differences in OMI parameters between cell

types using Glass’s D because comparisons of very large sample sizes

of individual cells almost always pass traditional significance tests

unless the population effect size is truly zero (55). Glass’s D is

defined as the difference between the mean of the experimental

group (M1) and the mean of the control group (M2) divided by the

standard deviation of the control group (scontrol).

Glass0s  D =  
M1   −M2

scontrol

A Glass’s D > 0.8 was chosen to indicate significant effect size

based on previous studies (22, 56, 57). When comparing immune

cells from different tissues, the immune cells from the spleen were

designated as the control. When comparing tumor cells and

immune cells within the tumor, immune cells were designated as

the control. Here, we report the absolute value of Glass’s D. The
OMI heatmaps represent Z-score (4 standard deviations ± from the

mean of all cells in the heatmap) for each OMI parameter per cell

type (RStudio) (53). A Z-score of 0 indicates that data point score is

identical to the mean score.
3 Results

3.1 CD4 mCherry reporter mouse
demonstrates mCherry expression in all
CD4 T cells as well as most CD8 T cells
and NKT cells

Multiphoton images of ex vivo isolated CD3+ splenic T cells

illustrate successful nuclear mCherry-expression (red) by all T cell

populations within the CD4 mCherry reporter mouse (Figure 2A

left) with no mCherry present in the C57BL/6 wild type mouse

(Figure 2A right). As expected, both reporter and wild type mice

exhibit endogenous NAD(P)H (blue) in all T cells. Multiplex

immunofluorescence images from reporter mouse spleen

(Figure 2B left) and B78 tumor (Figure 2B right) illustrate

mCherry-expression by several subsets of immune cells including

CD4+mCherry+ (yellow arrow) and CD8+mCherry+ (magenta

arrow) T cells as well as other immune cells. Quantitative cell

population analysis via flow cytometry in reporter mouse spleens

and B78 tumors (Figure 2C) indicates efficient mCherry-expression

by all CD4+ T cells (70-100%), with mCherry labeling also

occurring in other cells known to express CD4 during

differentiation including CD8 T cells and NKT cells (70-100%) as

well as B cells, dendritic cells, and macrophages (<20%). The data

also indicates very low mCherry expression by cells that do not

typically express CD4 during differentiation, including NK cells and

neutrophils (<20%). During maturation, high CD4 expression is

expected for CD4 and CD8 T cells as well as NKT cells while CD4 is

expressed to a minor extent on macrophages, B cells, dendritic cells,

and some monocytes (32–34). When comparing mCherry mean
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fluorescence intensity (MFI) of these more mature immune cell

populations, CD8 T cells, CD4 T cells, and NKT cells exhibited the

brightest mCherry signal with significantly lower MFI for all other

populations (Figure S3). Additionally, the mCherry MFI of NK

cells, B cells, macrophages, dendritic cells, and neutrophils

overlapped with our negative control – a spleen from a wild type

C57BL/6 mouse (Figure S3). Overall, the Cre-lox methods used to

create this reporter mouse (Figure S1) were successful at labeling the

majority of T cell and NKT populations known to express CD4 in

either their mature state or during maturation. This reporter mouse

model may be a useful tool to researchers performing tumor

immunotherapy work where visualization of T cells via mCherry-

expression is beneficial, especially for techniques where secondary

methods can be used to further identify subsets of mCherry+ cells, if

desired. If a highly specific CD4 T cell model is needed, this model

may not be the optimal choice.
3.2 Intravital imaging enables concurrent
visualization of tumor and immune cells

Intravital imaging of reporter mouse tumors was performed

using a skin flap surgery method (Figure 1) to image B78 melanoma

tumor and immune cell subsets live. Representative in vivo

fluorescence intensity tumor images (Figure 3A left, middle)

highlight mCherry-expressing immune cells (red) infiltrated into

the tumor tissue and within the vasculature as well as

autofluorescent NAD(P)H (blue) and FAD (green) expressed and

detected in all cells. Collagen fibers (endogenous SHG signal, white)

and their interaction with mCherry-expressing immune cells were

also visualized within the TME, where some immune cells are co-

localized with collagen fibers (Figure 3A right). Ex vivo imaging of

freshly excised reporter mouse spleens was completed within one

hour post mouse euthanasia, accurately capturing splenic

metabolism based on our previous work that showed that ex vivo

metabolism is statistically identical to in vivo metabolism for up to

12 hours post euthanasia (46). Representative ex vivo fluorescence

intensity spleen images (Figure 3B) highlight mCherry-expressing

immune cells (red) within the spleen tissue and lining the

vasculature. Autofluorescent NAD(P)H (blue) and FAD (green)

can be detected in all cells. Optical redox ratio images inform on

tumor and immune cell redox balance in both tumor and spleen

tissues (Figure 3C). Representative in vivo fluorescence lifetime

images of the tumor and spleen show the mean lifetime of mCherry,

NAD(P)H, and FAD mapped to their location with each cell

(Figure 3D). The mCherry mean lifetime values (typical tm =

1,300-1,500 ps) help distinguish mCherry+ cells from nonspecific

red autofluorescence in vivo (58–61). The NAD(P)H and FAD

mean lifetime values inform on protein-binding and other

environmental changes within the cell. Our imaging technology

provides clear, concurrent images of both B78 and mCherry+

immune cells from both cancerous and healthy tissues. This

imaging approach may be helpful to researchers performing

immunotherapy, infectious disease, and autoimmune disorder

research where the focus is on both the immune system and

local tissues.
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3.3 Automated immune cell segmentation
algorithm provides fast, reproducible,
single cell metabolic information

To obtain quantitative metabolic information from the images we

acquired, single cell segmentation was performed. Traditionally, cell

segmentation has been performed manually. However, in vivo and ex

vivo images often have low signal to noise ratios, additional cell types

that complicate analysis, and poorly distinguished cell boundaries – all

of which makes the manual segmentation process difficult and slow.

Manual segmentation also introduces variability between researchers.

To promote faster and more reproducible segmentation, an
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automated single cell segmentation method was developed

(Figures 4A, S2) to segment immune cells. This custom Python

algorithm provided unbiased, accurate segmentation masks and

validated results against hand segmented ground truth masks

(Figures 4B, C). The automated segmentation algorithm performed

the segmentation in a fraction of the time required to segment the

images manually – on the order of seconds compared to hours.

Additionally, this automated method combined both fluorescence

intensity and fluorescence lifetime images to create the most accurate

immune cell mask – a step that helps differentiate true mCherry signal

from nonspecific red autofluorescence in the tissue. The algorithm

also allowed rapid iteration of cell segmentation to provide the most
A

B

C

FIGURE 2

Characterization of CD4 mCherry reporter mouse tissues. (A) Ex vivo two-photon images of isolated CD3+ splenic T cells at 40× illustrate nuclear
mCherry labeling of all T cell populations (red) within the reporter mouse (left) which colocalizes well with the metabolic coenzyme NAD(P)H also
present in all T cells (blue), primarily in the cytoplasm. Within the unlabeled wild type C57BL/6 mouse (right), NAD(P)H but not mCherry is present in
all T cells (blue). Cell density is higher for the wild type C57BL/6 image (right) compared to reporter mouse. Scale bar 25 mm. (B) Representative 40×
multiplex immunofluorescence images from reporter mouse spleen (left) and B78 melanoma tumor (right) illustrates mCherry labeling of several
subsets of immune cells. CD4+mCherry- cells with only green membrane (green arrow), CD8+mCherry- cells with only blue membrane (blue
arrow), CD4-CD8-mCherry+ with only red nuclei (red arrow), CD4+mCherry+ with both red nuclei and green membrane (yellow arrow), CD8
+mCherry+ with both red nuclei and blue membrane (magenta arrow). Scale bar 50 mm. (C) Quantitative cell population analysis by flow cytometry
in both spleens (left) and B78 melanoma tumors (right) indicates efficient mCherry expression by the majority of CD4+ T cells (70-100%) with
mCherry expression also occurring in other cells known to express CD4 during differentiation, including CD8 T cells and NKT cells (70-100%) as well
as B cells, dendritic cells, and macrophages (<20%). The data also indicates very low mCherry expression by cells that do not typically express CD4
during differentiation, including NK cells and neutrophils (<20%) (n = 5 untreated mice, mean ± SD).
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optimized mask. The final immune cell masks were high quality and

closely matched the manually segmented masks (Table S1). Dice

coefficient accuracy metrics were calculated to compare images, where

Dice scores range from 0 (no overlap) to 1 (perfect match). The image

segmentation field typically considers 0.5 the minimum acceptable

Dice coefficient, with higher regard for segmentation techniques that

produce Dice coefficients in the 0.6-0.7 range (62–64). Our automated

segmentation algorithm performed better on images from the spleen

(Dice coefficients average 0.663) compared to images from the tumors

(Dice coefficients average 0.590). Immune cell size was more
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heterogenous and signal to noise was worse within the tumor

images, likely contributing to this difference in performance.
3.4 Optical metabolic imaging
distinguishes immune cells from healthy
and cancerous tissue origin

Using these techniques, we then quantified single cell mCherry+

immune cell OMI parameters from spleens and B78 tumors.
A

B

C D

FIGURE 3

In vivo multiphoton images of immune and tumor cell populations. (A) Representative in vivo fluorescence intensity images of B78 melanoma
growing in an untreated CD4 mCherry reporter mouse, live during skin flap surgery. Images (left and center) of all fluorophores show mCherry-
expressing immune cells (red) infiltrating into tumor tissue (black arrow) and within vasculature (gray arrow) as well as autofluorescent NAD(P)H
(blue) and FAD (green) expressed by all cells. Center image is a zoom of 2.0, inset from left image. Right image shows mCherry-expressing immune
cells (red) interacting with collagen fibers (white) within the tumor microenvironment. Scale bar 25 mm. (B) Representative ex vivo fluorescence
intensity images of spleen from untreated CD4 mCherry reporter mouse, spleen imaged immediately after euthanasia and excision. Images of all
fluorophores show mCherry-labeled immune cells (red) within spleen tissue (black arrow) and vasculature (gray arrow) as well as autofluorescent
NAD(P)H (blue) and FAD (green) expressed by all cells. Right image is a zoom of 2.0, inset from left image. Scale bar 25 mm. (C) Optical redox ratio
images (the intensity of NAD(P)H divided by intensity of NAD(P)H plus FAD) show cellular redox balance within tumor (top) and spleen (bottom).
Scale bar 25 mm. (D) Representative in vivo fluorescence lifetime images of B78 melanoma growing in an untreated CD4 mCherry reporter mouse.
mCherry tm images show mCherry-expressing immune cells and their corresponding mean lifetime (tm) values that are used to distinguish mCherry-
expressing cells (typical tm = 1,300-1,500 ps) from nonspecific red autofluorescence in vivo. NAD(P)H and FAD tm images show NAD(P)H and FAD
intensity and corresponding mean lifetime values that provide insight into tumor metabolism. ps, picoseconds. Scale bar 25 mm.
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Immune cells from B78 tumors exhibited significantly decreased

FAD tm compared to immune cells from spleens (Figure 5A, Glass’s

D > 0.8). Immune cells from B78 tumors also exhibited significantly

increased FAD a1, the proportion of protein-bound FAD,

compared to immune cells from spleens (Figure 5A, Glass’s D >

0.8). Additionally, immune cells from B78 tumors are significantly

larger in size compared to immune cells from spleens (Figure 5A,

Glass’s D > 0.8). Finally, immune cells from B78 tumors exhibited

decreased NAD(P)H tm compared to immune cells from spleens;

though the p value indicates substantial significance (p<0.0001),

only a trend is observed using the more conservative Glass’s D test

(Figure 5A, Glass’s D = 0.5366). We also visualized single cell

heterogeneity based on OMI parameters from immune cells within

spleens and tumors using a heatmap of z-scores where each column

is a single immune cell (Figure 5B). The OMI parameters cluster

cells best by tissue type (spleen vs. tumor) with some clustering by

mouse. When the OMI parameters are plotted without the optical

redox ratio, we continue to see consistent clustering by tissue type

(Figure S4). Taken together, these data show that in vivo OMI can

distinguish immune cells from different tissues of origin and

visualize single cell heterogeneity in metabolism.
3.5 Optical metabolic imaging distinguishes
tumor and infiltrating immune cells within
the same tumor

We also quantified single cell OMI parameters from B78 tumor

cells versus tumor infiltrating mCherry+ immune cells within the

same tumor. Tumor infiltrating immune cells exhibited significantly

increased FAD tm compared to B78 tumor cells within the same

tumor (Figure 6A, Glass’s D > 0.8). Tumor infiltrating immune cells
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also exhibited significantly increased FAD t1, the lifetime of protein-

bound FAD, compared to B78 tumor cells within the same tumor

(Figure 6A, Glass’s D > 0.8). Additionally, tumor infiltrating immune

cells exhibited a decreased FAD a1 and NAD(P)H tm compared to

B78 tumor cells; though the p values both indicate substantial

significance (p<0.0001), only a trend is observed using the more

conservative Glass’s D test (Figure 6A, FAD a1 Glass’s D = 0.5746,

NAD(P)H tm Glass’s D = 0.4448). We visualized single cell

heterogeneity based on OMI parameters from tumor infiltrating

immune cells and B78 tumor cells within the same tumors using a

heatmap of z-scores where each column is a single cell (Figure 6B).

The OMI parameters cluster cells best by mouse (mouse 1 vs. mouse

2) indicating variability in the different tumor microenvironments in

the two mice. We also observed heterogeneity in OMI between the

two tumors that were imaged on different days, which was especially

prominent within the optical redox ratio parameter. Interestingly,

when the OMI parameters are plotted without the optical redox ratio,

cells cluster based on both the mouse and cell type (tumor infiltrating

immune cell vs. tumor cell) (Figure S5). Taken together, these data

show that in vivo OMI can distinguish tumor infiltrating immune

cells from B78 tumor cells, all within the same tumor environment,

and visualize single cell heterogeneity in metabolism.
4 Discussion

Metabolic reprogramming plays an active role in cancer

progression (1, 2). Complex metabolic changes occur in parallel

for both tumor and infiltrating immune cell populations in the

TME. To improve clinical cancer outcomes, an improved

understanding of tumor and immune cell metabolism and their

interplay in vivo is greatly needed. Here, we demonstrated the
A

B C

FIGURE 4

Automated immune cell segmentation pipeline to analyze in vivo multiphoton optical metabolic images. (A) Flowchart showing automated
segmentation pipeline analysis on a single example image for mCherry-expressing immune cells. Pipeline developed in Python. This pipeline enables
the extraction of metabolic data from each immune cell. (B, C) Representative examples of the comparison between an automated segmentation
mask versus a manual segmentation mask of immune cells in a (B) B78 tumor (Mouse 2 FOV 7) and (C) spleen (Mouse 1 FOV6) field of view. Dice
coefficient scores were also calculated to show quantitative accuracy between automated masks and manual masks, as shown in Table S1. All fields
of view (FOV) 300 × 300 mm.
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potential power of intravital OMI to help fulfill this need by imaging

single cell metabolism in tumor and immune cells in vivo.

Our mCherry reporter mouse model enabled in vivo tracking

and segmentation of single immune cells. We showed that this

immunocompetent mouse model had efficient mCherry-expression

in nearly all T cells (CD4 and CD8) and NKT cells as well as a few

other immune cell subsets via multiphoton imaging, multiplex

immunofluorescence, and flow cytometry assays. Immune cell

mCherry-expression was also shown to be consistent between

spleen and B78 melanoma tumor tissues. The low mCherry

expression observed on NK cells and neutrophils, which do not

typically express CD4 during differentiation, is likely due to low

levels of baseline, non-targeted mCherry expression in the floxed

H2B-mCherry strain (Jax 023139) prior to introduction of Cre,

which has been reported by Jackson Labs. Additionally, the

mCherry reporter allowed simultaneous detection of NAD(P)H

and FAD autofluorescence in vivo without fluorescence interference

from the reporter. This reporter mouse model may be a useful tool

to researchers performing tumor immunotherapy studies where

visualization of CD3+ immune cells (such as CD4 T, CD8 T, or

NKT cells) via mCherry-expression is beneficial.
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In vivo OMI provided clear visualization of tumor and

immune cells within both spleen and tumor tissues. We

observed tumor infiltrating immune cells, immune cells within

and lining blood vessels, and immune cells co-localized with

collagen fibers. We captured autofluorescence changes within the

healthy and diseased tissue context and visualized single cell

heterogeneity in metabolism within immune cells and tumor

cells. We note that the FAD channel includes contributions from

other endogenous fluorophores in cells [e.g., lipofuscin, flavin

mononucleotide (FMN)] and the extracellular matrix (e.g.,

collagen, elastin). The extracellular matrix signals from fibers

are easily segmented from cells based on location and

morphology. We do not anticipate that lipofuscin and FMN

strongly affect our FAD signal changes because metabolic

perturbations (cyanide) confirm expected changes in FAD

intensity and lifetime. Additionally, the lifetimes of FMN and

lipofuscin are longer and shorter, respectively, than the FAD

lifetime observed in this study and in prior works (15, 65–68).

Therefore, we label this the FAD channel to reflect its presence

while acknowledging the caveat of other sources of contrast.

Taken together, this in vivo imaging platform is a valuable
A

B

FIGURE 5

In vivo optical metabolic imaging of mCherry+ immune cells within tumor and spleen discriminates metabolic changes based on tissue type. (A) Single
cell mCherry+ immune cell OMI parameters from spleen (n = 1672 cells) and B78 tumor (n =1688 cells) across n = 2 mice. Immune cells from B78
tumors exhibit significantly decreased FAD tm (361 ps vs. 554 ps) and significantly increased FAD a1 (90% vs. 85%) compared to immune cells from
spleens (Glass’s D >0.8). Immune cells from B78 tumors are significantly larger in size (149 pixels vs. 95 pixels) compared to immune cells from spleens
(Glass’s D >0.8). Immune cells from B78 tumors exhibit decreased NAD(P)H tm (667 ps vs. 734 ps) compared to immune cells from spleens; though the
p value indicates substantial significance (p<0.0001), only a trend is observed using the more conservative Glass’s D test (Glass’s D = 0.5366). Data points
colored to reflect individual replicates acquired on different days. Bars indicate mean ± SD, Mann-Whitney U Test, **** p<0.0001 shown for reference;
all Mann-Whitney U Test comparisons are significant due to the large sample size so Glass’s D was also included as a more conservative significance
test, see Methods. (B) Heatmap of z-scores of 12 OMI parameters from immune cells within both spleens and tumors. Hierarchical clustering of single
cells indicates data clusters best by tissue type. Each column is a single cell (n = 3360 cells).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1110503
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Heaton et al. 10.3389/fonc.2023.1110503
technique to probe metabolic changes within intact, unlabeled

tissues that better preserves the TME.

We also reported an automated segmentation algorithm that

provided robust segmentation of single immune cells from our in

vivo images. The algorithm incorporated both fluorescence

intensity and lifetime information for more accurate cell

segmentation while dramatically reducing segmentation time

(seconds vs. hours for automated vs. manual segmentation). Dice

coefficients to compare the accuracy of the automated segmentation

algorithm to manual segmentation showed robust results, with the

spleen images providing the highest agreement. Overall, this

automated segmentation algorithm enabled single cell

segmentation and quantification of metabolism within mCherry-

expressing immune cells in vivo and ex vivo.

Optical metabolic imaging parameters discriminated immune

cells from spleen and cancerous tissues of origin. Immune cells from

B78 tumors are larger with an increase in protein-binding of FAD

and decreased FAD tm and NAD(P)H tm compared to immune
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cells in spleens. We have previously shown that T cell activation

correlates with a decrease in FAD tm and NAD(P)H tm along with

an increase in FAD a1 (27), as we also showed here, providing

confidence in our findings for immune cells from B78 tumors in

vivo. Further, our observed decrease in FAD tm in immune cells

within the tumor compared to spleen trends the same as our

previously reported work with macrophages in tumors vs. skin

(26). Additionally, the observed decrease in FAD tm found in

immune cells within B78 tumors versus spleens may be partly

due to decreased pH within the TME which has been shown to

influence autofluorescence lifetime (69, 70). We also observed a

significant increase in immune cell size from B78 tumors compared

to spleens. This size difference is expected as immune cell size

typically increases during stimulation, activation, and proliferation,

which can occur within the tumor microenvironment (27, 71–74).

Our analysis of single cell heterogeneity based on all OMI

parameters showed clustering of immune cells based on tissue of

origin – spleen versus tumor. Therefore, our metabolic imaging is
A

B

FIGURE 6

In vivo optical metabolic imaging within tumors discriminates infiltrating immune and tumor cells. (A) Single cell OMI parameters from infiltrating
mCherry+ immune cells (n = 1688 cells) and B78 tumor cells (n =1455 cells) within the tumors from n = 2 mice. Immune cells from the B78 tumors
exhibit significantly increased FAD tm (361 ps vs. 306 ps) and FAD t1 (213 ps vs. 174 ps) compared to B78 tumors cells (Glass’s D > 0.8). Immune cells
from B78 tumors exhibit decreased FAD a1 (89% vs. 91%) compared to B78 tumor cells; though the p value indicates substantial significance
(p<0.0001), only a trend is observed using the more conservative Glass’s D test (Glass’s D = 0.5746). Immune cells from B78 tumors exhibit
decreased NAD(P)H tm (667 ps vs. 686 ps) compared to B78 tumor cells; though the p value indicates substantial significance (p<0.0001), only a
trend is observed using the more conservative Glass’s D test (Glass’s D = 0.4448). Data points colored to reflect individual replicates acquired on
different days. Bars indicate mean ± SD, Mann-Whitney U Test, ****p<0.0001 shown for reference; all Mann-Whitney U Test comparisons are
significant due to the large sample size so Glass’s D was also used as a more conservative significance test, see Methods. (B) Heatmap of z-scores of
12 OMI parameters from immune cells and tumor cells within B78 tumors. Hierarchical clustering of single cells indicates data clusters best by
mouse with some clustering by cell type. Each column is a single cell (n = 3143 cells).
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sufficient to distinguish immune cell population features based on

size and metabolic differences within the TME compared to spleen.

Finally, metabolic imaging parameters also showed differences

between immune cells and tumor cells within the same tumor

environment. We found that tumor infiltrating immune cells

exhibited an increase in FAD tm and lifetime of protein-bound

FAD (FAD t1) with a decrease in amounts of protein-bound FAD

(FAD a1) and NAD(P)H tm compared to the B78 tumors cells within

the same tumor. This increase in FAD tm in non-malignant,

infiltrating immune cells compared to B78 tumor cells trends the

same as other reported work comparing FAD lifetime of non-

malignant breast cells vs. breast cancer cells (17). We also observed

a significant increase in the lifetime of protein-bound FAD (FAD t1)
for tumor infiltrating immune cells compared to B78 tumor cells. The

fluorescence lifetime of protein-bound FAD changes with varying

NAD+ concentrations due to increased FAD quenching in the

presence of NAD+. So, this increase in protein-bound FAD may be

indicative of a decrease in NAD+ concentration in infiltrating

immune cells versus tumor cells (13, 75). Similarly, prior work has

shown a comparable decrease in the NAD(P)H tm of macrophages

compared to breast cancer cells (24) and non-malignant brain cells

compared to glioblastoma (76). Taken together, tumor infiltrating

immune cells exhibited an increase in FAD tm and lifetime of

protein-bound FAD with a decrease in amounts of protein-bound

FAD and NAD(P)H tm –whichmay be indicative of a shift towards a

more glycolytic metabolism. These findings are in trend with prior

work where it has been widely reported that many cancer cells

primarily metabolize glucose using glycolysis (3–7). Heterogeneity

analysis of all OMI parameters in immune and tumor cells within the

same melanoma tumors showed clustering by mouse – highlighting

the heterogeneity that occurs within each unique TME, even though

these were mice from the same strain (nearly genetically identical),

and each was implanted with the exact same B78 melanoma cells.

However, when the OMI parameters are plotted without the optical

redox ratio, cells cluster based on mouse and cell type (tumor

infiltrating immune cell vs. tumor cell), indicating that the

fluorescence lifetime parameters can capture differences in the

metabolism of the immune vs. tumor cells. The optical redox ratio

is an intensity-based measurement with increased sensitivity to day-

to-day changes in laser power, laser alignment, tissue

autofluorescence differences, and tissue composition differences

such as increased presence of red blood cells. These factors make

the redox ratio more sensitive to artifacts compared to fluorescence

lifetime measurements that are self-referenced. Some of the observed

immune cell metabolic heterogeneity may be partly attributed to the

presence of three main mCherry+ immune cell types composing this

group: CD4 T cells, CD8 T cells, and NKT cells. As these cells play

different roles, their metabolic phenotypes also differ especially in the

context of the TME. For example, activated CD4 T cells have been

shown to rely more heavily on oxidative phosphorylation compared

to their CD8 T cell counterparts in mice (77, 78). Similarly, CD8 T

cells have been shown to be less sensitive to oxygen changes, which

may result in differences compared to CD4 T cells within the hypoxic

TME (79, 80). In contrast, NKT cells suppress glycolysis in the TME

and rely on enhanced oxidative phosphorylation for function (81, 82).

Heterogeneity within the TME itself may also contribute to the
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observed immune and tumor cell metabolic heterogeneity,

influenced by factors such as pH as well as nutrient and oxygen

availability. For example, tumor cells that are closer in proximity to

blood vessels – resulting in higher oxygen concentrations and more

nutrients – contain higher mitochondrial content, exhibit increased

mitochondrial respiration, have a higher optical redox ratio, and

exhibit a more aggressive phenotype compared to tumor cells far

away from blood vessels (83–85). Immune cells are also affected by

environmental factors, for example, more acidic pH (often due to an

increase in lactate) in the TME inhibits mobility and tumor

infiltration of both CD4 and CD8 T cells (86, 87). These factors,

and many more, contribute to the metabolic heterogeneity we

observed within our tumor and immune cell populations. Overall,

we showed the versatility of in vivo OMI, our mCherry reporter

mouse, and single cell segmentation to study single cell metabolic

heterogeneity within different tissues and cell types of interest in the

context of melanoma.

Although in vivo OMI provides information on metabolic

changes across cells and tissues in vivo, alone it is not sufficient to

specify a biological mechanism. Combining our live, spatial imaging

with additional assays such as metabolite measurements via mass

spectrometry or radiolabel tracing of glucose should identify

specific metabolic pathways and possible drug targets (88–91).

There is also great potential to use this in vivo imaging platform

to assess drug, and especially immunotherapy, treatments in vivo,

work that we are currently pursuing (40–42). Future studies may

include the analyses done here – in mice receiving immunotherapy

regimens known to be effective compared to those from which

tumors are resistant or escape – in combination with other analyses

of immune cell function, phenotype, and gene expression to identify

metabolic patterns characteristic of effective anti-tumor immunity.

We note that though only two animals were imaged in this study,

single cell statistical power was high (3360 immune cells, 1455

tumor cells). In future studies focused on biological endpoints such

as immunotherapy regimens, we will include additional animals.

Ultimately, this imaging approach could provide insight into tumor

and immune cell metabolism in a label free, in vivo manner to

develop more effective cancer therapies.
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