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Objective: In order to explore the relationship between mammographic density

of breast mass and its surrounding area and benign or malignant breast, this

paper proposes a deep learningmodel based on C2FTrans to diagnose the breast

mass using mammographic density.

Methods: This retrospective study included patients who underwent

mammographic and pathological examination. Two physicians manually

depicted the lesion edges and used a computer to automatically extend and

segment the peripheral areas of the lesion (0, 1, 3, and 5 mm, including the

lesion). We then obtained the mammary glands’ density and the different regions

of interest (ROI). A diagnostic model for breast mass lesions based on C2FTrans

was constructed based on a 7: 3 ratio between the training and testing sets.

Finally, receiver operating characteristic (ROC) curves were plotted. Model

performance was assessed using the area under the ROC curve (AUC) with

95% confidence intervals (CI), sensitivity, and specificity.

Results: In total, 401 lesions (158 benign and 243malignant) were included in this

study. The probability of breast cancer in women was positively correlated with

age and mass density and negatively correlated with breast gland classification.

The largest correlation was observed for age (r = 0.47). Among all models, the

single mass ROI model had the highest specificity (91.8%) with an AUC = 0.823

and the perifocal 5mm ROI model had the highest sensitivity (86.9%) with an

AUC = 0.855. In addition, by combining the cephalocaudal and mediolateral

oblique views of the perifocal 5 mm ROI model, we obtained the highest AUC

(AUC = 0.877 P < 0.001).

Conclusions: Deep learning model of mammographic density can better

distinguish benign and malignant mass-type lesions in digital mammography

images andmay become an auxiliary diagnostic tool for radiologists in the future.

KEYWORDS

mammographic density, deep learning model, convolutional neural network, regions of

interest, breast mass
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Introduction

In 2020, WHO reported that female breast cancer had surpassed

lung cancer as one of the most common cancers and leading causes

of cancer deaths in the world (1). According to the GLOBOCAN

2020 database, female breast cancer prevalence and mortality will

increase in the next 20 years due to population growth and ageing

alone (2). In China, the incidence and mortality of female breast

cancer are generally on the rise year by year (3, 4). In this regard, the

“three early stages”, namely early prevention, early detection, and

early treatment, are effective ways to improve the survival rate and

quality of life of patients with breast cancer. Therefore, early

diagnosis of breast cancer is very important.

Regular imaging screening, especially in high-risk groups, is an

effective means to improve the early diagnosis rate of breast cancer.

Currently, commonly used screening tests include ultrasound and

radiography. Mammography (MG) is a screening method that has

been proven to reduce breast cancer mortality and is the most

effective and reliable screening method for early detection and

diagnosis of breast cancer (5). Although many countries have

introduced mammography screening, some have not significantly

improved early detection of breast cancer. The main reasons for this

may include two aspects: the first is that screening X-rays are not

widely used, and the second is that radiologists do not accurately

diagnose images. Breast mass is a most common X-ray

manifestation of breast lesions. Breast mass density provides

another observation for the identification of benign and

malignant masses, and studies have found the degree of

malignancy of the breast tumor is closely related to the density of

the mass (6, 7). Nowadays, the current evaluation of mass density is

mainly based on the empirical qualitative judgment of doctors, and

its accuracy is limited by experience and subjectivity. How to detect

the density of lesions more objectively and accurately is very

important for the diagnosis of benign and malignant lesions.

Therefore, our study aims to explore whether we can use artificial

intelligence (AI) to quantitatively evaluate focal density.

In the past decade, with the development of AI technology, deep

learning methods have been applied in medical imaging technology

and have improved the accuracy of detection and diagnosis. This

has helped radiologists to minimize the rate of false positives and

false negatives in clinical diagnosis. Deep learning, a subset of AI,

trains large-scale data by building multi-layered machine learning

models, and then obtains a large amount of meaningful feature

information, which is finally used to classify and predict sample

data. Convolutional neural networks (CNN) are the most popular

architecture for medical image analysis based on deep learning.

CNNs improve the ability to accurately identify images by

processing them through multiple sequential stages and

representation layers and then decomposing spatially relevant

information from the images into more abstract and simpler

information (8).

Therefore, deep learning, especially CNN, has rapidly become

the preferred method for medical image analysis. In the last five

years, the computational AI revolution, mainly driven by deep

learning and CNN, has also penetrated the field of automatic breast
Frontiers in Oncology 02
cancer detection in mammography, contributing to the early

detection of diseases such as breast cancer and improving

prognosis and survival percentage (9, 10). Some related studies

have shown that the detection accuracy of CNN models is higher

than that of computer aided system (CAD) models. Moreover,

CNN models can help radiologists provide a more accurate

diagnosis by quantitatively analyzing suspicious lesions (11, 12).

Deep learning plays an increasingly important role in breast

imaging diagnosis. Currently, the development and application of

computer and artificial intelligence technologies have made

it possible to quantitatively assess breast gland density.

Several computer software is available to automatically

measure mammographic density, such as Quantra and LIBRA

(13, 14). Each of this software can obtain the percentage of

mammographic density of the entire breast gland. However,

reports exploring the mammographic density of any region of

interest (ROI) of the breast are still scarce. Therefore, this study

attempts to obtain quantitative mammographic density of ROIs of

the breast masses with the help of deep learning.

Previous studies have not explored the mammographic density

of breast mass lesions to any extent, and there is no software

available to calculate mammographic density for any ROI. In

addition, it is well known that the tumor microenvironment plays

an important role in tumor growth and invasion (15, 16), and

peritumor tissues have been shown to provide useful information

for diagnosis and prediction of prognosis. However, how to identify

and evaluate the peritumor tissues has not been systematically

investigated. Therefore, we propose a deep learning model based

on ROI density of breast lesions, using a novel architecture—

C2FTrans (17), to quantitatively analyze the value of ROI density

in the classification and diagnosis of breast masses and different

regions around them for benign and malignant breast diseases. The

C2FTrans, proposed by Lin, has better performance, faster speed,

and greater robustness relative to the state-of-the-art CNN-based

and Transformer-based approaches. The algorithm has the

following advantages. First, the transformer network with

sufficient receptive field and adaptive surface segmentation can

effectively solve the imbalance problem in the data. Second, the local

boundary network can accurately locate the boundary of the tumor.

Third, the coding and decoding structure can adapt to the different

shapes and sizes of tumor lesions.

By analyzing the clinical diagnostic value of the density of breast

lumps, and different areas around them, in differentiating benign

and malignant breast lesions, the methodology is expected to

provide a more accurate and objective basis for early diagnosis

and screening of breast cancer in the future, assisting physicians to

work more efficiently and effectively guiding the establishment of

personalized treatment plans to improve prognosis.
Materials and methods

This retrospective study was approved by the Ethics Committee

of the Second Affiliated Hospital of Fujian Medical University,

which waived the requirement for individual informed consent.
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Study participants

We retrospectively analyzed the profiles of female patients who

underwent histological biopsy and mammography at the Second

Affiliated Hospital of Fujian Medical University from August 2016

to December 2021. In all cases, the underlying lesion on Full Field

Digital Mammography (FFDM) images appeared as masses, and the

lesions were not accompanied by other underlying lesions e.g.,

calcification or structural distortion. We excluded patients based on

the following criteria: (1) poor image quality; and (2) a history of

breast surgery, breast radiotherapy, chemotherapy, or hormone

therapy (Figure 1A).
Image analysis

For each patient, cephalocaudal (CC) and medio-lateral oblique

(MLO) views of both breasts were obtained. All mammograms were

reviewed by two radiologists. The classification of the mammary
Frontiers in Oncology 03
glands, lump sizes and shapes, and the margins of the breast masses

were evaluated with reference to the Breast Imaging Reporting and

Data System. The maximum diameter of the lesion was measured

independently by two radiologists at the workstation, and the average

of the two maximum values was taken as the final lesion size. In case

of disagreement, the final decision was made by consensus.

Image segmentation

The image segmentation process included manual segmentation

of the lesion and automatic segmentation of the surrounding area. All

segmentation steps were performed in the CC and MLO views of the

images in Digital Imaging and Communications in Medicine format.

First, Radiologist 1 (with 5 years of experience in breast work)

examined the mammographic images and manually contoured the

lesions using 3D-Slicer (Version: 4.11.20210226 ;www.slicer.org). All

contouring results were reviewed and agreed upon byRadiologist 2,

who has more than 10 years of experience in the field of breast cancer.

Then, the lesion and its surrounding area with 0-, 1-, 3-, and 5 mm

(including the lesion area) were automatically segmented using the

C2FTrans segmentation framework (Figure 1B). Finally, the density

of the breast, the ROI density of the mass, and the density of different

areas around the mass were obtained, and a diagnostic model of the

breast mass was constructed according to the ratio of 7:3 between the

training set and the testing set.
Deep learning models training and testing

In this study, we used C2FTrans (17), a multi-scale

segmentation framework based on coarse-to-fine transformers

that can be used to segment medical images of different shapes

and sizes as a coarse-to-fine process. C2FTrans consists mainly of a

cross-scale global transformer and a boundary-aware local

transformer. The former deals with local context similarity in

CNNs, and the latter overcomes the boundary uncertainty

associated with rigid division in transformer, thus reducing the

computational complexity and detail loss based on large-scale

feature mapping. U-Net and U-Net ++ were selected as

comparison models to conduct experiments on the FFDM image

data set of breast mass, respectively, to verify the segmentation effect

of this method (C2FTrans), compared with the typical methods in

the field of medical image segmentation in recent years.

Based on the obtained mass ROI density (Model 1) and

mammographic densities of the mass and different surrounding

areas (Models 2-4), we constructed the corresponding learned

diagnostic models (as shown in the model diagram). In addition,

we combined the CC and MLO views of the mass ROI and the

surrounding 5-mm area to construct case 0 (Model 5) and case 5

(Model 6), respectively (Figure 1C). Sensitivity, specificity and area

under the curve (AUC) were used to evaluate model performance.

Sensitivity is the probability that the model output is positive

(malignant) when the sample is malignant; specificity is the

probability that a given sample is benign when the model output is

negative(benign); and AUC is the average sensitivity of all possible

specificity values.
FIGURE 1

Summary of the Study. (A). Description of the dataset used in this
study. (B). Generating process of the proposed multi-scale medical
image segmentation framework based on coarse-to-fine
transformers(C2FTrans). (C). CNN model construction and model
performance analysis. CC, cephalocaudal; CNN, Convolutional
neural networks; BLT, Boundary-aware Glocal Transformer; CGT,
Cross-scale Global Transformer; MLO, Medio-lateral oblique; ROC,
The receiver operating characteristic.
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Histological analysis

The references were the histopathological diagnoses obtained by

biopsy or surgery after mammography. Malignant cases were

defined as lesions or ductal carcinoma in situ with an invasive

component. Benign lesions were defined as lesions or carcinoma in

situ without any invasive components.
Statistical analysis

This study used Dice Similarity Coefficient (DSC), Recall (equal

to sensitivity), and Intersection over Union. Objective evaluation

indicators such as IoU specificity were used to evaluate the

performance of specificity for breast mass segmentation.

All statistical analyses were performed using SPSS 26.0 software.

Continuous variables were expressed as mean ± standard deviation

and differences were compared using the independent samples t-test

for normal distribution and the nonparametric Mann-Whitney U test

for non-normal distribution. Categorical variables were expressed as

percentages (%) and differences were compared by rank sum test. The

deep learning model was evaluated for diagnostic performance by

plotting the ROC curve and analyzing the AUC with 95% confidence

intervals (CI), specificity, and sensitivity. A two-sided P value of less

than 0.05 was considered statistically significant.
Results

Data sets

A total of 401 lesions were included in this retrospective study,

including 158 benign lesions and 243 malignant lesions. The general

clinical characteristics of the subjects in this study are summarized

in Table 1. In the training and test sets, there were significant
Frontiers in Oncology 04
differences between the benign and malignant groups in terms of

age, glandular classification, and mass density (P<0.001). However,

the size of the mass lesion was not statistically significant for benign

and malignant breast mass lesion classification (P=0.303).

Among the variables we counted: age, breast gland type, long

and wide sides of breast lump lesions, mass shape, mass margin

characteristics, mass density, breast density of any ROI, and benign

and malignant mass lesions. According to the thermal spectrum

(Figure 2), benign and malignant breast lesions were positively

correlated with age, mass density and glandular density. There was a

negative correlation with breast gland typing. Among them, the age-

related coefficient was the highest(r=0.47). Therefore, histograms of

age and the number of benign and malignant lesions, were plotted

(Figure 3). The results clearly showed that malignant cases mostly

occurred between the ages of 43 and 55, while benign cases usually

occurred between the ages of 30 and 47.
Performance of the deep learning models

Table 2 shows the results of comparison evaluation indexes of

C2FTrans model proposed in this paper and other methods. DSC,

Recall, IoU and specificity were all above 0.85, and the specificity

was close to 1, indicating the low misdiagnosis rate of this model.

The DSC, Recall and IoU of C2FTrans model were all higher than

those of U-Net and U-net ++, suggesting that the C2FTrans model

proposed in this study has better segmentation performance.

Our deep learning-based mammography density diagnostic

models demonstrated good diagnostic performance, and the

AUCs of all the models were greater than 0.800. The classification

and diagnostic performance results of the mammography density

models constructed by deep learning in the study are shown in

Table 3. The ROC curves of each model are shown in Figure 4.

Among all our models, the mass ROI model alone (Model 1) had

the highest specificity (91.8%), and the 5 mm ROI model around the
TABLE 1 General clinical characteristics of the study subjects.

Totality
(n=401)

Benign
(n=158)

Malignance
(n=243) P value

Age, y
47.0 ± 11.7
(100%)

40.2 ± 10.7
(33.7%)

51.4 ± 10.2
(66.3%)

<0.001***

ACR category

<0.001***

a 10(2.5%) 0(0) 10(4.1%)

b 37(9.2%) 4(2.5%) 33(13.6%)

c 315(78.6%) 134(84.8%) 181(74.5%)

d 39(9.7%) 20(12.7%) 19(7.8%)

Maximum diameter of the mass, cm 2.0(1.8-2.5) 2.1(1.7-2.7) 0.303

CC-mass density 2023.2 ± 19.4 1907.0 ± 31.0 2098.7 ± 23.6 <0.001***

MLO-mass density 2059.7 ± 17.9 1939.4 ± 30.1 2138.0 ± 20.7 <0.001***
fron
***Mean statistically significant difference on test.
ACR, American College of Radiology. a. Breasts are almost entirely fat (about 10% of women). b. A small amount of breast tissue is scattered in the breast (about 40% of women). c. Mammary
glands are evenly distributed throughout the breast (approximately 40% of women). d. Very dense breasts (about 10% of women). CC, The craniocaudal projection. MLO, The mediolateral
oblique projection.
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mass (Model 4) had the highest sensitivity (86.9%) compared to

other models (Figure 4A). Based on the above results and combined

with the daily work experience of radiologists, we selected a subset

of cases in the dataset with both CC and MLO views. We combined

the two body views to construct Case-0 and Case-5, respectively
Frontiers in Oncology 05
(Figure 4B). We found that the case AUC of the combined two body

image data was higher than that of the single position image (AUC

Model 5 = 0.835 vs AUC Model 1 = 0.823;AUC Model 6 = 0.877 vs AUC

Model 4 = 0.855), and the AUC of the Case-5 model (model 6) could

reach 0.877 (95% CI: 0.805-0.949 P<0.001).
TABLE 2 Comparison of objective evaluation indicators between different segmented networks.

model Testing Training

DSC recall IoU Specificity% DSC recall IoU Specificity%

UNet 0.744 0.744 0.715 99.9 0.843 0.826 0.794 99.9

UNet++ 0.768 0.876 0.691 99.6 0.882 0.873 0.855 99.9

C2FTrans 0.889 0.913 0.850 99.7 0.902 0.932 0.887 99.8
FIGURE 2

Thermal spectrum of correlation coefficient of characteristic statistics of research subjects. MB means the pathological findings of Malignant or
Benign lesions.
FIGURE 3

Distribution histograms of age and lesions in benign and malignant groups. The abscissa in the histogram represents age, and the ordinate is the
number of cases in the corresponding age group. B represents the benign lesion group; M represents the malignant lesion group.
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Discussion

In this study, six deep learning-based mammographic density

diagnostic models were proposed and their diagnostic performance

was evaluated. We have summarized the technical route and some

of the results of this study in Figure 1. Key findings are: 1) Age had a

high positive correlation in benign and malignant classification of

breast lesions compared with other characteristics, and age was

significantly associated with breast mass lesions; 2) The mass only

ROI model (Model 1) had the highest specificity (91.8%), which

would help improve radiological diagnostic performance and

reduce misdiagnosis of benign masses in diagnostic workup; 3) A

5-mm ROI around the masses were more valuable in differential
Frontiers in Oncology 06
diagnosis than other ROIs, providing more imaging information on

normal tissue and reducing the missed diagnosis rate of early breast

cancer screening by radiologists (4). The AUC of the model with a

combined CC and MLO view could be increased to 0.877 at the

highest, suggesting that the combined dual-position view might

achieve more satisfactory diagnostic performance compared to

image information from a single position.

From our results, it is clear that age has the highest correlation

with the classification of benign and malignant breast lesions, with

more women more likely to have malignant breast lesions between

the ages of 43 and 55 years. This is consistent with two age peaks for

breast cancer in Chinese women: one at the age of 45-55 and the

other at the age of 70-75 (18). According to GLOBOCAN 2020 data,
A B

FIGURE 4

The ROC curves for each model in this study. (A). Model 1-4: The blue curve is the receiver operating characteristic (ROC) curve of the model
(model 1) constructed using features extracted from the mass region of interest (ROI). The red curve represents the ROC curve of the model (model
2), which was constructed using image features extracted from the ROI around the 1 mm lesion. The green curve represents the ROC curve of the
model (model 3), which was constructed using the image features extracted from the ROI around the 3 mm lesion. The orange curve is the ROC
curve of the model (model 4), which was constructed using image features extracted from the ROI around the 5-mm lesion. (B). Model 5-6:
Combining both cephalocaudal and medio-lateral oblique dual views. The blue curve is the model constructed using image features extracted from
the tumor ROI after combining the dual views (model 5), and the red curve is the model constructed using image features extracted from the 5mm
lesion surrounding ROI after combining the dual views (model 6).
TABLE 3 The performance of the deep learning models.

Deep Learning models AUC(95%CI) Sensitivity, % Specificity, %

Model 1:mass alone (ROI-0) 0.823(0.754~0.892) 71.4 91.8

Model 2:mass+perilesional ROI-1mm 0.843(0.784~0.903) 71.4 84.9

Model 3:mass+perilesional ROI -3mm 0.833(0.770~0.895) 70.2 83.6

Model 4:mass+perilesional ROI -5mm 0.855(0.798~0.912) 86.9 69.9

Model 5:case-0 0.835(0.740~0.930) 79.1 90.7

Model 6:case-5 0.877(0.805~0.949) 86 79.1
Case: A patient’s mammograms with both cephalocaudal and medio-lateral oblique views.
AUC, area under the receiver operating characteristic curve; CI, confidence interval; ROI, region of interest.
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the median age of breast cancer incidence in Chinese women is 50-

54 years old, earlier than that in women from Europe and the

United States (60-64 years old). An increasing number of Chinese

women are developing breast cancer at a younger age (19).

Therefore, it is important for Chinese women to start breast

cancer screening as early as possible in order to detect suspicious

lesions early, improve prognosis, and reduce the burden of disease.

The detection, segmentation and classification of image lesions

were achieved with the help of deep learning. Additionally, better

diagnostic performance was achieved with applications in

mammography, ultrasound, and magnetic resonance imaging

(MRI) (20–24). This result is consistent with the deep learning

model for mammography in this study. Ultrasound deep learning

models were built by Fujioka and his colleagues using multiple

CNN architectures, and the results showed that the deep

convolutional neural network model has better diagnostic

performance (20, 25). Previous studies have used different CNN

approaches to classify benign and malignant mammography images

with good diagnostic performance (26–28). However, there are

difficulties in using deep learning for mass segmentation in

mammographic images. They include problems of dataset

imbalance, diversity of mass shapes and sizes, occlusion and

overlap. Therefore, we utilized the CNN multi-scale architecture

C2FTrans as a breast mass lesion segmentation algorithm in our

study. C2FTrans is a novel multi-scale architecture developed by

Lin et al. that allows medical image segmentation as a coarse-to-fine

process, reducing the computational complexity and detail loss

based on large-scale feature mapping. After conducting extensive

experiments, C2FTrans performed better than the current state-of-

the-art CNN-based and transformer-based methods. The algorithm

has the following advantages. First, the transformer network with

sufficient receptive field and adaptive surface segmentation can

effectively solve the imbalance problem in the data. Second, the local

boundary network can accurately locate the boundary of the tumor.

Third, the coding and decoding structure can adapt to different

shapes and sizes of tumor lesions. In the same way, the C2FTrans-

based deep learning models constructed in this study also achieved

better accuracy (AUC > 0.8). The single-mass ROI model had the

best specificity and could accurately diagnose breast cancer.

The surrounding tissues can provide useful information for

diagnosis and prognosis prediction. However, there has never been

a systematic study on peritumoral tissue selection of different

degrees in deep learning. Therefore, one of the aims of this study

was to evaluate their diagnostic role by comparing different ranges

of peritumoral tissues. With the increase of the peritumoral scope of

dynamic contrast enhanced (DCE)-MRI, the diagnostic

performance became worse, as comprehensively highlighted by

Zhou (29). A study has compared the value of different range of

radiomic features of contrast-enhanced mammography images in

differentiating benign and malignant lesions. and reported the

highest diagnostic performance of the AUC=0.930 in the test set

with a 3mm circumferential area (30). However, the results of their

study are not identical to those of ours. Our findings suggest that

increasing the area around the lesion increases sensitivity but

decreases specificity. The possible reason for this is that the

inclusion of too much normal tissue dilutes the information of
Frontiers in Oncology 07
the mass, resulting in a decreased specificity of the model for mass

judgment. Therefore, we can choose different areas around the

tumor according to different clinical applications to diagnose the

disease. For example, if our goal is to screen for breast cancer early, a

5mm peritumoral area could be selected to reduce false-negative

diagnoses. If the goal is to accurately diagnose benign and

malignant lesions, a separate lesion area model can be selected as

an auxiliary diagnostic tool to achieve a higher level of accuracy.

In summary, we investigated the results of a single position

image of the lesion. In order to be consistent with the daily work of

radiologists, we selected 68 cases and combined CC andMLO image

data of the lesions to construct a mass alone and a 5mm peri-

tumoral area model (Case-0 and Case-5). We found that the

classification diagnostic model combining CC and MLO view

image information performed better than the classification

diagnostic model using only CC or MLO view images. This is

consistent with the previous findings (31) and with one of our

earlier expectations or research hypotheses. The possible reason for

this higher accuracy is that analyzing the lesion by extracting the

information from only one view would lead to neglecting important

features which might be only visible from the other view.

Accordingly, using dual view images provide more information,

which essentially leads to higher diagnostic accuracy. Therefore, it is

hoped that this study can provide new scientific evidence or data for

the further development of multi-view studies in the future.

Our study has several limitations. First, our study was a single-

center study with samples from the same hospital, which may have

led to selection bias. For future studies, it would be desirable to

reduce study selection bias through the collaboration of multiple

research centers. Second, the sample size of this retrospective study

was relatively small. Although the performance of the constructed

model was stable and the obtained results were promising, a larger

prospective study is needed to validate the predictive efficiency of

the model. Third, in our study, we acknowledged the high

proportion of malignant breast lesions (60.6%), implying that

there might have been a potential patient selection bias.

Therefore, balanced datasets were also important for developing

deep learning classification models. Fourth, due to the

characteristics and inherent limitations of CNN and its

algorithms, we extracted 2D breast density and other image

features on FFDM images. Compared with 3D density and

features, it might lose some lesion information. However, the

results showed that the 2D-based features also displayed good

performance in the classification of breast mass lesions. In the

future, the model could be tried to be applied to Digital Breast

Tomosynthesis to obtain the bulk density and to detect more

realistic lump density.
Conclusion

Our study found that 5mm ROI around the mass combined

with CC and MLO views on DM images were more helpful in

differentiating benign and malignant breast mass lesions and may

improve diagnostic efficiency. Deep learning models may improve

the accuracy of breast disease diagnosis in future practice, reduce
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the misdiagnosis of benign masses to some extent, and become an

important auxiliary diagnostic tool for radiologists. Our study was

only focused on the diagnosis of breast lesion classification based on

masses and peri-masses and did not explore the correlation between

the area around malignant masses and the invasive extent of cancer

components, predicted breast cancer prognosis and lymph node

metastasis. Artificial intelligence and deep learning have not been

used to their full potential for breast cancer diagnosis, staging and

prognosis prediction, so further research and development is

still needed.
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