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Molecular features and predictive
models identify the most lethal
subtype and a therapeutic target
for osteosarcoma

Kun Zheng1,2†, Yushan Hou1,3†, Yiming Zhang1,3†, Fei Wang2*,
Aihua Sun1,3* and Dong Yang1*

1State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein
Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China, 2Department of Orthopedics, General
Hospital of Southern Theater Command, Guangzhou, China, 3Research Unit of Proteomics Driven
Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, China
Background: Osteosarcoma is the most common primary malignant bone tumor.

The existing treatment regimens remained essentially unchanged over the past 30

years; hence the prognosis has plateaued at a poor level. Precise and personalized

therapy is yet to be exploited.

Methods: One discovery cohort (n=98) and two validation cohorts (n=53 & n=48)

were collected from public data sources. We performed a non-negative matrix

factorization (NMF) method on the discovery cohort to stratify osteosarcoma.

Survival analysis and transcriptomic profiling characterized each subtype. Then, a

drug target was screened based on subtypes’ features and hazard ratios. We also used

specific siRNAs and added a cholesterol pathway inhibitor to osteosarcoma cell lines

(U2OS and Saos-2) to verify the target. Moreover, PermFIT and ProMS, two support

vector machine (SVM) tools, and the least absolute shrinkage and selection operator

(LASSO) method, were employed to establish predictive models.

Results: We herein divided osteosarcoma patients into four subtypes (S-I ~ S-IV).

Patients of S- I were found probable to live longer. S-II was characterized by the

highest immune infiltration. Cancer cells proliferated most in S-III. Notably, S-IV held

the most unfavorable outcome and active cholesterol metabolism. SQLE, a rate-

limiting enzyme for cholesterol biosynthesis, was identified as a potential drug target

for S-IV patients. This finding was further validated in two external independent

osteosarcoma cohorts. The function of SQLE to promote proliferation and

migration was confirmed by cell phenotypic assays after the specific gene

knockdown or addition of terbinafine, an inhibitor of SQLE. We further employed

twomachine learning tools based on SVM algorithms to develop a subtype diagnostic

model and used the LASSO method to establish a 4-gene model for predicting

prognosis. These two models were also verified in a validation cohort.
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Conclusion: The molecular classification enhanced our understanding of

osteosarcoma; the novel predicting models served as robust prognostic biomarkers;

the therapeutic target SQLE opened a new way for treatment. Our results served as

valuable hints for future biological studies and clinical trials of osteosarcoma.
KEYWORDS

osteosarcoma, molecular classification, cholesterol metabolism, drug target, SQLE,
predictive model
1 Introduction

Osteosarcoma is the most prevalent primary malignant tumor of

bone (1) and has an annual incidence of 2-3 cases per million

individuals (2), accounting for 0.2% of human malignancies and

11.7% of primary bone tumors (3–6). It most frequently occurs in

adolescents (4.4 cases per million individuals) (7), which coincides

with the growth spurt. The second peak of the incidence occurs in

adults aged > 65 years (4.2 cases per million individuals) (7, 8).

Besides, 80%~90% of osteosarcoma is diagnosed in long tubular

bones, with the most common sites being the distal femur and

proximal tibia, followed by the proximal humerus (9). Moreover,

about 85% of metastases tend to disseminate to the lungs, and most

cases occur within two years (10). However, the exact etiology and

pathogenesis of osteosarcoma remain unclear.

Due to highly aggressive malignancy, osteosarcoma patients

persistently endure severe pain and an increased risk of

pathological fracture (11, 12). Regardless of whether the tumor is

localized or metastatic, patients have to undergo standard treatment

regimens consisting of rigorous multidrug therapy and extensive

surgical resection (13). Despite continuous attempts to refine the

established treatment protocol, improvements in survival outcomes

for osteosarcoma have plateaued over the past 30 years (14).

Osteosarcoma being metastatic or recurrent portends a bleak

prognosis with a 5-year survival rate below 30% (15). Additionally,

osteosarcoma cases are prone to be resistant to intensive

chemotherapy, leading to severe toxicities and increased morbidities

in neutropenia, infective complications, and thrombocytopenia (16).

In recent years, a growing number of studies utilizing whole

genome sequencing (WGS) or single-cell RNA landscape led to a

deeper understanding of osteosarcoma’s genome features and

immunological signatures (17). For example, osteosarcoma is

distinguished by plenty of copy number variations (CNVs) with few

single-nucleotide variations (SNVs) except for TP53 and RB1 (15).

These mutations remain non-applicable for targeted therapy (18).

Clinical trials of targeted therapy are currently being conducted

around the world; however, no effective drug has been proven

available for osteosarcoma until now (19). Thus, it is urgent to

develop novel strategies for addressing the current treatment

dilemma of osteosarcoma.

Omics data mining and machine learning models have become

increasingly popular in stratifying patients and further exploring

biological information hidden behind the high-throughput
02
sequencing data of osteosarcoma and other solid tumors (20, 21).

In 2020, Chia-ChinWu, et al. (17) conducted multi-omics sequencing

and used single sample gene set enrichment analysis (ssGSEA) to

identify osteosarcoma with three clusters based on levels of immune

infi l trate. Their data and classification reveal multiple

immunosuppressive features of osteosarcoma. In 2021, Song, Y.J.,

et al. (22) stratified osteosarcoma into two subtypes according to the

tumor microenvironment (TME) and described the immunological

features of its subtypes. Deyao Shi, et al. (23) used DNA methylation

profiles to categorize patients into three subgroups. They found

distinct prognoses and tumor microenvironment patterns across

subgroups. All these osteosarcoma stratifications mentioned above

were mainly focused on the divergence of immune infiltration.

However, immune checkpoint inhibitors (ICI) treatment, including

the PD-1/PD-L1 treatment, which contributes to a breakthrough in

immunotherapy for many solid tumors, has limited therapeutic effects

in osteosarcoma so far (24). Up to now, no currently available

classifier can comprehensively delineate the metabolic features of

each subtype, which severely limits the ability of researchers to

explore more individualized treatments for this disease.

To refine the current treatment regimen with more personalized

therapeutic options, we herein divided osteosarcoma patients into

four subtypes and provided a full view of prognostic differences and

enriched pathways. Then our study placed emphasis on subtype IV,

which was characterized by a poor outcome and active cholesterol

biosynthesis. Unprecedentedly, we proposed SQLE, a rate-limiting

enzyme for cholesterol biosynthesis, as a potential drug target for S-IV

patients. Knocking down SQLE or adding the inhibitors could

suppress the proliferation and migration of osteosarcoma cells.

Besides, we applied the support vector machine (SVM) algorithm to

develop a subtype diagnostic model and used the least absolute

shrinkage and selection operator (LASSO) method to establish a 4-

gene model for identifying unfavorable outcomes. Our work served as

a helpful reference for further improving efficacy in precision

medicine of osteosarcoma.
2 Materials and methods

2.1 Study design

Our overall study design is illustrated in Figure 1.
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2.2 Patient population acquisition

We collected a training cohort coupled with two validation

cohorts. All datasets are available from public data sources.

The training cohort comprised 98 clinically annotated patient

cases produced by the Therapeutically Applicable Research to

Generate Effective Treatments (TARGET) Osteosarcoma project

(https://ocg.cancer.gov/programs/target/projects/osteosarcoma).

Transcripts per million (TPM) values and read counts were

downloaded from the TARGET data matrix. Furthermore, TPM

values were scaled with Min-Max normalization.

The dataset GSE21257 containing clinical information of 53

osteosarcoma patients (25), was obtained from the Gene Expression

Omnibus (http://www.ncbi.nlm.nih.gov/geo/). It was treated as a

validation cohort to test the molecular subtyping and drug targets.
Frontiers in Oncology 03
The other validation dataset provided by the European Genome-

phenome Archive (EGA, https://ega-archive.org) contains RNA-seq

data from 48 specimens of osteosarcoma patients labeled with

primary, relapsed, or metastatic (17). The accession number

is EGAS00001003887.
2.3 NMF clustering and principal
component analysis

The gene expression matrix of the 98 osteosarcoma samples was

used to identify the molecular subtypes using the non-negative matrix

factorization (NMF) consensus cluster method (26). NMF is a

practical machine-learning approach for identifying molecular

classification and has been widely used in many subtyping cases

(27). Firstly, we filtered the genes expressed (read counts≥10) in less

than 24 samples, and 26824 genes remained. Secondly, after min-max

normalization, all TPM data were rescaled from 0 to 1. Thirdly, we

performed principal component analysis (PCA) to select the top 1600

genes based on the sum of PC1 and PC2 rotation values. These 1600

genes and expression profiles were further subjected to NMF v.0.22.0

in R for unsupervised consensus-clustering. Non-smooth NMF

(nsNMF) algorithm was employed with 100 iterations for the rank

survey between 2 and 6 clusters.
2.4 Survival rate comparison
among subtypes

The R package Survminer plotted the Kaplan-Meier survival

curves. This tool employed a log-rank test to compare subtypes’

overall and event-free survival rates.
2.5 Tumor-infiltrating immune cell
abundance calculation

Using the single sample gene set enrichment analysis (ssGSEA)

method, xCell and ESTIMATE calculated the tumor-infiltrating

immune cell content of cancer samples. xCell could compute the

abundance of 64 different cell types and scores of immune, stroma,

and microenvironment (28). ESTIMATE could take advantage of the

unique properties of the transcriptional profiles of cancer samples to

infer tumor cellularity as well as the different infiltrating normal cells

(29). They were two efficient publicly available algorithmic tools.
2.6 Differentially expressed
genes identification

The differentially expressed genes (DEGs) were identified as

highly expressed in one subtype compared to all three other

subtypes. The limma package in R performed this computation.

Adjusted P-values were applied for multiple testing corrections

through the default Benjamini-Hochberg false discovery rate (FDR)

method (30). Adjusted P-value < 0.05 and |fold change (FC)| > 1.5

were set as the cutoff values to determine DEGs.
FIGURE 1

Outline of the study design. A dataset containing gene expression data
from 98 osteosarcoma patients and relevant clinical information was
utilized for molecular classification and subtype characterization.
Features of subtype IV were mined to identify a drug target that
fulfilled the “targeting cholesterol biosynthesis for living longer”
implication. The screening yielded 24 candidates, of which only SQLE
was encoded for a therapeutically actionable option. This drug target
was tested in two independent cohorts and in vitro experiments.
Moreover, we employed two machine learning tools to develop a 13-
gene model to determine the subtype of osteosarcoma patients.
Based on the 13 curated genes, we used the LASSO method to
establish a 4-gene model to recognize patients with a significant
unfavored outcome. These two models were both well evaluated by
an independent dataset. TARGET, Therapeutically Applicable Research
to Generate Effective Treatments; PCA, principal component analysis;
NMF, non-negative matrix factorization; DEG, differentially expressed
genes; S-IV, subtype IV; LASSO, least absolute shrinkage and selection
operator; GEO, Gene Expression Omnibus.
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2.7 Functional enrichment analyses

Gene set enrichment analysis (GSEA) was performed on all genes.

GSEA was run with Molecular Signatures Database (MSigDB) set

V7.4, C2: curated gene sets (browse 6290 gene sets) (31). In addition,

enrichment analyses of gene ontology (GO), Reactome, and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway, were

conducted on the DEG by using the R package clusterProfiler

(version 4.2.2) (32).
2.8 PPI network analysis

The PPI (protein-protein interactions) network was constructed

via an open-source platform Cytoscape (33). Using the Search Tool

for the Retrieval of Interacting Genes/Proteins (STRING) database

(https://string-db.org), the PPI network illustrated how proteins

interrelate functionally and physically with each other by encoding

the gene list as input (34).
2.9 Candidate drug targets identification

Druggable genes for osteosarcoma were mined using the Drug–

Gene Interaction Database (DGIdb 4.0, https://www.dgidb.org). This

database contained drug targets, indications, MOA, and drug status

from over thirty reputable sources, including DrugBank, FDA, and

NCI (35). The hazard ratios (HR) were computed with log-rank tests

using univariate analysis based on a cox proportional hazards

regression model. In addition, we used the Survminer R package to

calculate the log-rank p values and the optimal cut-off values to

stratify patients into high/low gene expression groups and further

visualize the survival differences between groups. High-risk genes

were identified with HR>1 and log-rank p<0.05.
2.10 Cell culture

The U2OS and Saos-2, human osteosarcoma cell lines, were

obtained from the American Type Culture Collection (ATCC, VA,

USA). The U2OS was cultured in high glucose DMEM supplemented

with 10% fetal bovine serum (FBS), and the Saos-2 was cultured in

McCoy’s 5A supplemented with 15% FBS. They were incubated at 37°

C in 5% CO2. 1% penicillin and streptomycin (Gibco, USA) were

added to the base media as supplements.
2.11 Gene silencing

Knockdown of SQLE in cells was achieved by using Turbofect

transfection reagent (Thermo Fisher Scientific, OR, USA). 2 mL
Turbofect reagent was mixed with 500 mL Opti-MEM (Thermo

Fisher Scientific) and combined with 1 mg siRNA (GenePharma,

Shanghai, China). The mixture was incubated at room temperature

for 20 minutes and added dropwise to the cells. The targeted oligos

were as follows (5’-3’):
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siSQLE#1: GCCUCUAAAUCUUUAGGUUTT;

siSQLE#2: GCCCAGGUUGUAAAUGGUUTT;

siSQLE#3: GCUCAGGCUCUUUAUGAAUTT;
siNegative control: UUCUCCGAACGUGUCACGUTT.
2.12 Real−time quantitative PCR

Total RNA was extracted by Trizol reagents (Thermo Fisher

Scientific). After reverse transcription by HiScript III All-in-one RT

SuperMix (Vazyme, Nanjing, China), the mRNA levels were

measured by SYBR master mix dye (Vazyme). The relative gene

expression level was analyzed using the 2-DD Ct method, and

GAPDH was used as the internal reference gene. The Q-PCR

primer sequences were as follows (5’-3’): SQLE, forward,

GGCATTGCCACTTTCACCTAT; reverse, GGCCTGAGAGAAT

ATCCGAGAAG. GAPDH, forward, TGCACCACCAACTGCTTA

GC; reverse, GGCATGGACTGTGGTCATGAG. QPCR was

conducted after 24h siRNA transfection.
2.13 Western blot analysis

Total protein was extracted by RIPA lysis buffer (Thermo Fisher

Scientific). After BCA quantification, equal volumes of protein

samples were separated by 10% SDS-PAGE and transferred to a

0.45 nitrocellulose filter membrane (Millipore, MA, USA). The

immunoblots were sequentially probed with the SQLE primary

antibody (Cat No. 12544-1-AP, Proteintech, Wuhan, China) and

secondary antibody (Cat No. SA00001-2, Wuhan, China). Finally, the

detection was performed using an ECL chemical luminescent

detection kit (Thermo Fisher Scientific), and the bands were further

analyzed using ImageJ software. The levels of the target protein were

normalized to b-actin expression. Western blot analyses were

conducted after 48h siRNA transfection.
2.14 CCK8 assays

Terbinafine was purchased from Selleckchem (Houston, TX,

USA). Cells were plated in 96-well plates at a density of 3,000 cells;

the indicated siRNAs or terbinafine were introduced to cells after

12 h. When it came to the endpoint of the assay, 10% CCK8 reagent

(Dojindo, Kyushu Island, Japan) was added into the wells; after 2 h

incubation at 37°C, the OD values were detected at 450 nm.
2.15 Colony formation assays

Cells treated by siRNAs or terbinafine were plated in 6-well plates

at a density of 2,000 cells and then cultured for two weeks. The cells

were fixed and stained with 0.1% crystal violet (Beyotime,

Beijing, China).
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2.16 Transwell assays

15,000 cells were plated in the upper chamber for the silencing

cells, while DEME containing 10% FBS was added to the lower

chambers. For the inhibitor-treated cells, cells in the upper chamber

were treated with terbinafine (25 mM, 50 mM) for 24h in advance,

while DEME containing 10% FBS was added to the lower chambers.

After 24h incubation, the crossed cells were fixed and stained with

0.1% crystal violet.
2.17 Intracellular cholesterol assays

Treated cells were washed with PBS twice and resuspended in

isopropanol containing 1% Triton X-100 for 30 min at room

temperature. After centrifugation at 12,000 rpm for 15 min, the

supernatants were dried under nitrogen. The powders were

dissolved with assay buffers. Cholesterol measurements were

performed according to the instruction guide of the Amplex™ Red

cholesterol assay kit (Thermo Fisher Scientific).
2.18 Machine learning models for diagnosis
and prognosis prediction

The subtype diagnostic model was constructed using a supervised

learning method SVM. Permutation-based feature importance test

(PermFIT) implemented in the R package “deepTL” (https://github.

com/SkadiEye/deepTL) was proposed for assisting the interpretation

of individual features in complex frameworks including SVM (36).

Herein, we conducted PermFIT-SVM on expression profiles of DEG

with a threshold of p-value<0.05 and thereby obtained 16, 25, 32, and

69 feature genes for S-I, S-II, S-III, and S-IV subtypes, respectively.

ProMS (https://github.com/bzhanglab/proms) is a unified and

effective computational framework containing an SVM classifier for

feature selection with the help of an omics view (e.g., RNA-seq) (37).

We applied ProMS-SVM on feature genes of each subtype for training

and testing the subtype diagnostic model. Preliminary runs were

repeated 20 times, from K=1 to K=5, with the percentiles offifth, 10th,

15th, 20th, and 25th. Then, runs were repeated 100 times to confirm

the model’s accuracy. Hyperparameters were tuned using grid search

with 3-fold cross-validation to select the best model viameasuring the

area under the receiver operating curve (AUC) value.
2.19 LASSO logistic regression modeling

Utilizing patient information and expression data of 13 genes

from SDM, the model’s genes were rigorously screened out using the

R package “glmnet” (38) to repeat 5-fold cross-validation 100 times.

The optima l (l.min) was selected to minimize the penalization in

each iteration of the LASSO regression analysis. The number of model

genes was determined by the most frequent gene numbers when

setting l.min and coefficient ≠ 0. Then, genes with the most

frequencies were retained and combined as significant predictors of

mortality. Finally, another 100 iterations were conducted to

determine the coefficient of each signature gene.
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3 Results

3.1 Molecular classification of osteosarcoma
and characteristics of each subtype

The NMF algorithm, an effective consensus-clustering method,

was employed for osteosarcoma subtype identification. The

cophenetic score and silhouette width of the rank survey profiles

indicated a potential option of four-subtype (Supplementary

Figures 1A, B). Furthermore, we conducted 400 iterations for the

clustering runs in the case of rank=4. The consensus clustering heat

maps (Supplementary Figure 2) illustrated that four-subtype is an

appropriate solution for osteosarcoma (Figure 2A; Table S1).

Hereinafter referred to as S-I, S-II, S-III, and S-IV. The TARGET

database provided clinical information and genomic alteration (Table

S2). According to immune scores computed by xCell (Table S3) and

expression level of immune-related genes (Supplementary Figures 3A,

B), S-II had the highest tumor-infiltrating immune cell abundance. In

addition, overall survival and disease-free survival varied among

subtypes (Figure 2B). Patients of S-IV showed the most

unfavorable outcome.

To obtain the biological signatures of each subtype, we performed

functional enrichment analyses on all genes and DEG (Tables S4, S5).

GSEA conducted on all genes (Figure 2C) demonstrated that patients

of S-I tended to exhibit more osteoclastic bone resorption (e.g., ACP5,

SIGLEC15, CTSK), which was consistent with the clinical

manifestations of osteosarcoma at the early stage (39). Multiple

immune pathways were enriched in S-II (e.g., IGKC, S100A9,

CD14), while S-III was prone to manifest salient cell proliferation

features (e.g., TUBB2B, MYC). Patients of S-IV showed markedly

enhanced lipid metabolism (e.g., SQLE, CD36, LPL), including

cholesterol biosynthesis, which was believed to be a critical driven

factor in the development of some solid tumors (40, 41). Apart from

GSEA analysis, functional enrichment of DEG also revealed that S-I

mainly correlated with bone resorption and osteoclast differentiation.

Remarkable enrichment in immune-related functions was found in S-

II. Various processes involved primarily in cancer cell proliferation

were exhibited in S-III. Several functional categories, including the

metabolism of lipids, were enriched in S-IV (Figure 2D).
3.2 Cholesterol biosynthesis was found
particularly active in S-IV and probably led
to a poor prognosis

Cholesterol metabolism produces metabolites with various

biological functions and plays complex roles in tumorigenesis (42).

Clinical trials manipulating cholesterol metabolism to inhibit

tumorigenesis and reinvigorate anti-tumor immunity are ongoing

(43). Overall, cholesterol homeostasis is maintained by the balance of

de novo biosynthesis, cholesterol uptake, bile acid metabolism,

esterification, and efflux (44). To decipher whether cholesterol

metabolism was reprogrammed in patients of different

osteosarcoma subtypes, we identified expression features of critical

regulators that contribute to various modules (Figure 3A; Table S6).

Cholesterol accumulation was facilitated by cholesterol biosynthesis
frontiersin.org

https://github.com/SkadiEye/deepTL
https://github.com/SkadiEye/deepTL
https://github.com/bzhanglab/proms
https://doi.org/10.3389/fonc.2023.1111570
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zheng et al. 10.3389/fonc.2023.1111570
and cellular uptake of LDL-cholesterol, while cholesterol

consumption was mainly regulated by cholesterol esterification and

efflux (45). When cholesterol accumulates to a high level, cells relieve

cellular stress through esterification and efflux (46). In S-IV patients,

mediators involved in cholesterol biosynthesis (HMGCS, HMGCR,

SQLE) and cholesterol consumption (ACAT1, ACAT2, ABCA1,

ABCG1) were highly expressed, while regulators promoting cellular

uptake of LDL-cholesterol (LDLR, Niemann-Pick C proteins

including NPC1 and NPC2) were not active. Especially, NPC2 was

significantly depleted in S-IV. Besides, massive intracellular

cholesterol limited the translocation of the SREBP2 to the nucleus,

reducing its transcriptional target LDLR (47). The LDLR depletion
Frontiers in Oncology 06
suppressed the cholesterol uptake pathway and its downstream

regulators NPC1/NPC2. These findings suggested cholesterol

biosynthesis was particularly active in S-IV, leading to cholesterol

accumulation. As a result of negative feedback regulation, cellular

uptake of cholesterol was inhibited.

In addition to the TARGET cohort, GSEA performed on the EGA

cohort (Table S7) indicated that the cholesterol biosynthesis pathway

was more enriched in recurrent or pulmonary metastases than in

primary lesions (Figure 3B). Furthermore, according to gene

expression level comparison, almost all the genes involved in this

pathway were observably highly expressed in relapsed or metastatic

tumors (Figure 3C; Table S8). Since recurrence or metastasis lead to
A B

DC

FIGURE 2

Clinicopathologic correlations and functional features of each subtype. (A) Consensus-clustering analysis of transcriptomic profiling identified four
subtypes (Tumor samples, n = 98): S-I (green, n = 20), S-II (blue, n = 27), S-III (yellow, n = 29) and S-IV (red, n=22). Each column indicated a patient
sample, and rows represented genes. The associations of subtypes with clinical, immune, and genomic characteristics were annotated in the middle
panel. The heat map below depicted the relative abundance of signature genes (log2-transformed). Biological functions were denoted on the right,
based on the enrichment of functional pathways. (B) Kaplan–Meier curves of disease-free and overall survival for each subtype in the TARGET cohort. P
values were calculated by log-rank test. (C) Ridge and box plots depicted the enrichment of representative GSEA biological pathways in each subtype.
(D) PPI network described functional enrichment analyses of DEG (FC>1.5, adjusted p value<0.05). Each dot corresponded to a gene. The dot color
represented the subtype, the size fit the fold-change, and different transparency referred to different functional categories. FC, fold change; GSEA, gene
set enrichment analysis; PPI, protein-protein interactions.
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treatment failure in most cases (48), and S-IV patients were predicted

with poor prognosis, a hint was uncovered that active cholesterol

biosynthesis could probably confer an unfavorable outcome.
3.3 SQLE was identified as a potential drug
target for osteosarcoma patients of S-IV

As patients of S-IV tended to exhibit active cholesterol

biosynthesis with a poor prognosis, and this pathway was strongly

associated with a poor prognosis in the EGA cohort, we speculated

that S-IV patients could benefit from targeting the cholesterol

biosynthesis process.

Genes highly expressed in S-IV, showing high-risk scores for

mortality (HR>1, log-rank p<0.05), and druggable in the DGIdb

database, were identified as potential candidates for targeted therapy.

24 candidates fit the criteria above (Figure 4A; Table S9). They were

ordered by decreasing HR values and top 15 were presented

(Figure 4B). Among these candidates, CD36, SQLE, and LPL

participated in cholesterol metabolism. Each over-representation led

to an apparent inferior overall and disease survival (Figure 4C). SQLE

is one of the rate-limiting enzymes in cholesterol biosynthesis (49).

Meanwhile, Food and Drug Administration (FDA)-approved drugs

targeting SQLE have been used in trials exploring the treatment of

various cancers (50, 51). The impacts of SQLE on the prognosis of the

GSE21257 dataset and the EGA cohort were also examined; high
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expression portended a poor prognosis (Figure 4D) and a significant

trend of recurrence or metastasis (Figure 4E). Hence, we proposed

that SQLE was a suitable drug target for osteosarcoma patients of

S-IV.
3.4 Cellular phenotypic experiments well
verified the potential drug target SQLE

To evaluate the contribution of SQLE to the phenotype associated

with tumor growth, we knocked down SQLE via specific siRNAs in

osteosarcoma cells, including U2OS and Saos-2 cell lines. To confirm

the knockdown effect of SQLE, Q-PCR and western blot were used to

detect SQLE expression at the mRNA and protein levels, respectively

(Figures 5A, B; Supplementary Figures 4A, B). Experimental results

indicated that the silencing of SQLE could substantially inhibit cell

proliferation, colony formation, and migration (Figures 5C–G,

Supplementary Figures 4C–E). Furthermore, we examined the effect

of terbinafine, a specific inhibitor of SQLE, on the cell phenotype.

According to a conventional pharmacodynamic measure IC50 (drug

concentration causing 50% inhibition), terbinafine was found to

inhibit cell viability in a time- and dose-dependent manner

(Figure 6A and Supplementary Figure 5A). Next, we set the

concentration gradient of terbinafine based on the value of IC50 at

48h. The colony formation ability decreased dose-dependently

(Figures 6B, C), and the migrated cells were reduced with the
A B

C

FIGURE 3

Schematic diagram showing active cholesterol metabolism in patients with unfavorable outcomes. (A) Mechanisms regulating cholesterol homeostasis in
different subtypes, including repletion (biosynthesis, uptake) and depletion (esterification, bile acid metabolism, efflux). De novo biosynthesis pathway
started from acetyl-CoA and HMG-CoA and stepwise provided squalene for cholesterol synthesis. This process was mediated by rate-limiting enzymes
HMGCR and squalene epoxidase (SQLE). Besides biosynthesis, cells also acquire cholesterol from low-density lipoprotein (LDL) uptake via LDLR-
mediated endocytosis. Excessive cholesterol was utilized as a precursor to generating bile acids by CYP27A1 or was esterified by acyl-coenzyme A:
cholesterol acyltransferases (ACATs; also known as SOATs). Furthermore, cholesterol efflux was regulated by ATP-binding cassette (ABC) transporters
such as ABCA1 and ABCG1. In the nucleus, sterol regulatory element binding protein 2 (SREBP2) and liver X receptor (LXR) were two transcription factors
that reciprocally regulated cholesterol metabolism. Colored rectangles from left to right represent S-I, S-II, S-III, and S-IV subtypes in the same row. The
color of each rectangle showed Z-score (log2 of relative abundance scaled by genes’ SD) of the gene in that sample; red showed high expression while
blue showed low. (B) Violin plots exhibited the various enrichment of cholesterol biosynthesis pathways between relapsed or metastatic lesions and
primary lesions. The width of the violin plot represented the number of samples at the given enrichment score on the height. Data were derived from the
cohort from European Genome-phenome Archive (EGA cohort). **P<0.01, ****P<0.0001 by Wilcoxon-test. (C) Heatmap depicted proteins involved in
cholesterol biosynthesis pathways (rows) with the expression level of that sample type in the EGA cohort (columns). Red indicated the high expression;
green showed the low.
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gradient of terbinafine challenge (Figures 6D, E; Supplementary

Figures 5B, C). Meanwhile, both SQLE knockdown and terbinafine

treatment decreased intracellular cholesterol (Figure 5H;

Supplementary Figure 4F, Figure 6F, and Supplementary

Figure 5D). Due to the negative feedback regulation of intracellular

cholesterol, the protein abundance of SQLE was dose-dependently

enhanced by terbinafine challenge in U2OS and Saos-2 cells.

(Supplementary Figures 6A, B). These results signified that

targeting SQLE could reduce proliferating and migrating ability of

osteosarcoma via reducing intracellular cholesterol. Thus, SQLE

could be a potential therapeutic target for osteosarcoma patients.
3.5 Subtype diagnostic model and LASSO
model

Identifying subtypes of osteosarcoma patients at initial biopsy

could help make more precise therapeutic strategies early and

optimize treatment efficacy (52). We used the PermFIT to
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determine 142 feature genes for subtypes (Table S10) and employed

the machine learning approach SVM by ProMS to build the subtype

diagnostic model (SDM). This model was composed of 13 genes with

high or low expression levels (Table S11). Patients were subtyped in

sequence of S-IV, S-III, S-II, and S-I (Figure 7A). To assess the

accuracy of the SDM, we applied this model to distinguish the

discovery cohort. Most patients were grouped into identical

subtypes in this model compared with the NMF approach

(Figure 7B; Table S12). We also applied SDM to the GSE21257

dataset; survival curves suggested that S-IV generated poorer

outcomes than the rest (Figure 7C; Table S13). These results

reflected that our SDM achieved excellent prediction accuracy.

To recognize grim prognosis using fewer genes, we established a

prognostic classifier using the LASSO Cox regression analysis. 13

genes measured at the SDM were included in the LASSO regression

selection. Finally, only 4 of the 13 genes with the most significant

appearances were retained as the signatures of our LASSO model

(Tables S14, 15), including PTPRZ1 (HR, 3.51; 95% CI, 1.76-7),

SLC8A3 (HR, 4.1; 95% CI, 1.9-8.83), SIGLEC15 (HR, 0.31; 95% CI,
A B

D E

C

FIGURE 4

Potential drug targets for osteosarcoma patients. (A) The workflow of the drug-target screening pipeline. We set three layers of filtration and obtained 24
candidates. (B) The candidates were ranked by hazard ratio (HR), and the top 15 were chosen to be presented. Left, Heatmap depicted the relative
abundances of the top 15 candidates. Right, Forrest plot showed risk scores of genes. The red points denoted the HR of overall survival. The endpoints
indicated lower or upper of the 95% confidence intervals (CI). P-values were calculated by log-rank test. (C) Kaplan-Meier curves. The TARGET patients
were divided into high/low gene expression groups using the optimal cut-off value. Patients with high expression levels of CD36, LPL, or SQLE displayed
poor outcomes. (D) The GSE21257 patients with high expression levels of SQLE displayed poor outcomes. (E) Violin plots showed the distributions of
expression levels of SQLE in the EGA samples with different pathological stages. The width represented the number of samples at the given expression
level on the height. *P<0.05, **P<0.01, ***P<0.001 by Wilcoxon-test.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1111570
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zheng et al. 10.3389/fonc.2023.1111570
A B

D E F

C

FIGURE 6

Terbinafine treatment impaired the growth and migration of U2OS cells in vitro. (A) Different gradient concentrations of terbinafine were added to the
U2OS cells. As the dosage of terbinafine increased, the viability of the cells decreased. (B) The U2OS cells were respectively treated with 25 mM and 50
mM terbinafine. Cell colony formation ability was found reduced with the increasing dosage of terbinafine. (C) The number of migrating cells decreased
obviously with the increase in drug concentration. Scale bars, 100 mm. (D, E) indicated the quantification of positive signals from (B, C), respectively. (F)
The terbinafine treatment significantly reduced the intracellular cholesterol. Error bars represent mean ± SD; statistical analysis was performed using the
Student t-test. **P < 0.01, ***P < 0.001.
A B

D E

F G H
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FIGURE 5

SQLE knockdown produced significant inhibition on cancer-related phenotypes of U2OS cells in vitro. (A) Quantitative PCR (Q−PCR) with mRNA
expression confirmed the knockdown of SQLE after 24h siRNA transfection. (B) Western blot analyses with protein expression confirmed the knockdown
of SQLE after 48h siRNA transfection. The b-actin was treated as the loading control. (C) Cell proliferation was suppressed by SQLE knockdown. (D) Cell
colony formation ability was reduced by SQLE knockdown. (E) Cell migration was inhibited by SQLE knockdown. The scale bar represented 100 mm. (F)
and (G) indicated the quantification of positive signals from (D, E), respectively. (H) The knockdown of SQLE significantly reduced the intracellular
cholesterol. Error bars represented ± SD of three biological replicates. **P < 0.01, ***P < 0.001 by Student t-test.
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0.15-0.67), and CCR1 (HR, 0.12; 95% CI, 0.02-0.89) (Figure 7D; Table

S14). After coefficient determination, we used the following formulas

for this 4-gene model to calculate the risk score:

R i s k S c o r e = 1 . 4 8 6 × S L C 8 A 3 + 0 . 5 4 1 × P T P R Z 1

−0.508×CCR1−0.552×SIGLEC15

The model’s high/low scores divided the TARGET cohort into

two groups with sharply different prognoses (HR, 5.93; 95% CI, 3.01-

11.68; P < 0.001). The 5-year survival rate tended to zero in the high-

risk group, while it exceeded 60% in the low-risk group. This 4-gene

model also separated GSE21257 patients with favorable or

unfavorable prognosis based on its risk scores; high score generated

statistically significant mortality (HR, 5.4; 95% CI, 2.06-14.13; P <

0.001) than the low (Figure 7E). Thus, the 4-gene model could act as a

stable prognostic predictor across various datasets.
4 Discussion

This study performed transcriptome profiling and consensus-

clustering analysis to classify osteosarcoma into four subtypes.

Patients of S-IV were closely correlated with poor outcomes and

demonstrated active cholesterol metabolism. SQLE was screened out

as a potential drug target for S-IV patients within the scope of

druggable genes with high-risk scores. For achieving diagnosis at

initial biopsy, we developed the SDM and a 4-gene LASSO model to
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identify patients more likely with poor outcomes. The classification,

therapeutic target, and diagnostic models were all novel to

osteosarcoma and verified well by independent datasets or cellular

phenotypic experiments.

Molecular classification for cancer aims to handle the drug

response variability and optimize curative effects by considering

underlying tumor biology (53). Previous studies concerning

subtyping for osteosarcoma mainly focused on immune subgroups

(17, 22). This study was the first comprehensive analysis of molecular

stratification using RNA-seq data. We demonstrated integrated

information on survival, immunity, and metabolic signature

pathways for each subtype and proposed therapeut ic

recommendations for patients.

As we know, cholesterol is vital for the growth of mammalian cells

(54). It is a precursor to bile acids and steroid hormones (55), which

can initiate or facilitate colon, breast, and prostate cancers (56).

Besides, cholesterol can also disturb signaling pathways involved in

tumor growth and cancer progression (57). SQLE is a rate-limiting

enzyme in cholesterol biosynthesis via catalyzing the first oxygenation

step in sterol biosynthesis (58). This paper proposed that clinical

drugs targeting SQLE could help prolong the survival time of S-IV

patients. Research has reported that SQLE was markedly up-regulated

(25.2-fold) in non-alcoholic fatty liver disease hepatocellular

carcinoma (NAFLD-HCC) (59). Our work demonstrated that

knocking down SQLE could suppress proliferating and migrating
A B

D E

C

FIGURE 7

Establishment and evaluation of two predictive models. (A) Schematic workflow of the subtype diagnostic model. Osteosarcoma patients were
sequentially stratified according to 13 marker genes with high (red) or low (blue) expressions. (B) Sankey diagram showed that subtypes identified by SDM
matched very closely with those by the NMF method. Each rectangle represented a subtype, and each row represented a patient sample. The
connection degree was visualized based on the size of rectangles. (C) Kaplan–Meier curves of S-IV and other patients predicted by SDM in the GSE21257
dataset (S-IV, n = 28; others, n = 25). (D) PTPRZ1, SLC8A3, SIGLEC15, and CCR1 were the top four genes that were selected most frequently within the
100 iterations. They were retained to develop the LASSO model. (E) Kaplan-Meier curves. The 4-gene model with high scores led to poorer outcomes
compared to the low in the TARGET cohort and GSE21257 dataset. P values were calculated by log-rank test.
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ability of osteosarcoma cells, which reinforced our belief that SQLE

could play a targetable oncogenic role in osteosarcoma.

In current clinical practice, terbinafine is an anti-fungal drug used

to treat cutaneous mycoses, including onychomycosis (60). It is

preferably combined with topical nail lacquers such as ciclopirox

and amorolfine (61). As for osteosarcoma, terbinafine has not yet

been established as a clinical treatment. However, previous basic

studies suggest terbinafine has broad therapeutic potential for tumors.

Indeed, terbinafine inhibited angiogenesis by suppressing endothelial

cell proliferation and migration (62). Additionally, combined

therapies with terbinafine and nocodazole induced cell cycle arrest

and apoptosis in cancer cells (63). One study regarding colorectal

cancer (CRC) proved that terbinafine suppressed the growth of

patient-derived organoids and inhibited the proliferation of CRC

cells in vitro and in vivo (64). Apart from tumors, another study

regarding nonalcoholic steatohepatitis (NASH) indicated combined

terbinafine and acetazolamide synergistically ameliorated NASH in

mice with superior efficacy (65).

To refine the current diagnostic regimen, we established two

practical and reliable predictive models for distinguishing subtypes of

patients at an early stage. Thus, patients could receive timely and

efficacious drug treatment before surgery. Our models could

complement existing computational frameworks relying

predominately on immune infiltration or other aspects.

In addition to good prediction accuracy, the predictive models

also possessed meaningful biological implications. Taking the 4-gene

LASSO model as an example, previous studies have demonstrated

that PTPRZ1 mediates mitotic somal translocation and glioblastoma

tumor invasion (66). PTPRZ1 has been found over-expressed in

var ious tumors such as lung cancer , cerv ica l cancer ,

hepatocarcinoma, renal cancer, and glioblastoma (67). Moreover,

this protein functions in cell proliferation, cell adhesion and

migration, epithelial-to-mesenchymal transition, cancer stem cells,

and treatment resistance by interacting with some molecules (68). It

could decrease chemosensitivity in triple-negative breast cancer

(TNBC) by enhancing the activation of the NF-kB signaling

pathway (69). Thus, PTPRZ1 could facilitate tumor development

and therefore influence patients’ prognosis. SLC8A3 was also believed

to associate with a poor prognosis, but the mechanisms remained

unclear (70). CCR1-chemokines were produced by osteoclasts and

played an essential role in inflammatory cell chemotaxis (71). In 2018,

Jennie Briard et al. found SIGLEC15 positively regulated osteoclast

differentiation, and loss of it could result in impaired osteoclast

differentiation and osteopetrosis in SIGLEC15-deficient mice (72).

Because of the retrospective study design, validation of

classification and models in large clinical trials is needed. The

putative drug targets were derived from data analysis and require

further confirmation of in vivo experiments. Perhaps targeting

cholesterol biosynthesis deserves more robust therapeutical

attempts in human osteosarcoma. Despite the limitations, this study

could offer a more comprehensive description and enhance our

understanding of osteosarcoma. The distinct features of different

subtypes delineated the complex mechanism of osteosarcoma

pathogenesis. The predictive models and potential drug target

SQLE might serve as valuable hints for further in-depth biological,

diagnostic and therapeutic exploration.
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5 Conclusions

In summary, stratifying osteosarcoma patients into different

subtypes and establishing diagnostic models hold the possibility to

enable treatment to be more precise, more individualized, and more

effective than current treatments—and probably generate fewer side

effects. The therapeutic target SQLE could probably be a potential key

to refining traditional treatment addressing the current treatment

dilemma of osteosarcoma.
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