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Fatty acid metabolism:
A new therapeutic target
for cervical cancer
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Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University,
Dalian, China
Cervical cancer (CC) is one of the most common malignancies in women.

Cancer cells can use metabolic reprogramming to produce macromolecules

and ATP needed to sustain cell growth, division and survival. Recent evidence

suggests that fatty acid metabolism and its related lipid metabolic pathways are

closely related to the malignant progression of CC. In particular, it involves the

synthesis, uptake, activation, oxidation, and transport of fatty acids. Similarly,

more and more attention has been paid to the effects of intracellular lipolysis,

transcriptional regulatory factors, other lipid metabolic pathways and diet on CC.

This study reviews the latest evidence of the link between fatty acid metabolism

and CC; it not only reveals its core mechanism but also discusses promising

targeted drugs for fatty acid metabolism. This study on the complex relationship

between carcinogenic signals and fatty acid metabolism suggests that fatty acid

metabolism will become a new therapeutic target in CC.
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1 Introduction

Cervical cancer (CC) seriously affects women’s life and health. Globally, approximately

530,000 new cases and 266,000 new deaths are reported annually (1). Early HPV detection

and vaccination have greatly reduced the incidence of CC and grade 3 cervical

intraepithelial neoplasia (CIN3) in young women (2). Even though CC can be actively

prevented, it still remains the second leading cause of cancer-related death among young

and middle-aged women (3). The most common histological subtype of CC is cervical

squamous cell carcinoma (CSCC) (4), which accounts for approximately 70% of all CC

cases in the United States (5) and approximately 90% of CC cases in China (6, 7). SCC Ag is

considered to be the most clinically valuable serum tumor marker of SCC, and its levels are

usually associated with larger primary tumors, later stage, and lymph node involvement (8–

10). Of note, nearly a quarter of CC patients do not have elevated SCC Ag levels (11).

Furthermore, almost all CCs are related to high-risk human papillomavirus (HPV)

infections, of which nearly 50% are HPV16 infections (12, 13). However, HPV infection

is not a requirement. Approximately 3-8% of cases are HPV-negative CC (14–16). The
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staging, based on histopathological observations, was updated to

reflect HPV-associated and HPV-unrelated carcinomas. Moreover,

HPV-independent cervical cancer is usually linked to early lymph

node metastasis and is more often diagnosed with nonsquamous

histology (17, 18). Interestingly, HPV infection does not always

develop into cancer; there must be additional changes. At present,

most patients diagnosed with advanced CCmiss the opportunity for

radical surgery. The standard therapy for locally advanced cervical

cancer (LACC) is concurrent chemoradiotherapy (CCRT) (19).

However, the prognosis of stage III and IV patients remains poor,

with 5-year progression-free survival (PFS) and overall survival

(OS) rates of 51% and 55%, respectively (20). Pelvic lymph node

metastasis remains an important independent prognostic factor for

CC In addition, it is associated with a lower 5-year survival rate and

a higher recurrence rate (21–23). However, there is no effective

method to control and prevent lymph node metastasis. Although

the use of targeted and immunological agents has improved survival

to some extent (24, 25), there is still an unmet need for additional

treatment for patients with node-positive and recurrent CC.

Therefore, it is necessary to explore novel and promising

therapeutic targets for CC.

As early as 1956, Otto Warburg found that glucose metabolism

differed substantially between normal cells and cancer cells. Even

when oxygen is abundant, cancer cells preferentially convert

pyruvate to lactate rather than utilizing glucose to produce

maximum energy; thus, glucose consumption increases (26).

Recently, increasing studies have revealed the metabolic kinetics

of cancer and subsequently introduced the concept of metabolic

plasticity or metabolic recombination of cancer cells. In addition to
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the use of glucose, cancer cells undergo a variety of carcinogenic

mutations or adaptations to allow the use of more diverse nutrients,

including fatty acids, to promote tumor survival, metastasis and

disease progression (27). These research achievements have led to

renewed interest in defining the various roles of lipid metabolism in

cancer. Moreover, the dysregulation of fatty acids and related lipid

metabolism pathways can affect the occurrence of a variety of

malignant tumors and lead to poor prognosis (28, 29).

Interestingly, in previous studies, CC was considered to be related

to lipid metabolism, which can promote the occurrence and

development of cervical cancer to a certain extent (30, 31).

This review aimed to better understand the roles of fatty acid

metabolism and related lipid metabolism pathways in CC. We

reviewed a large number of studies, examined the effects of

various fatty acid metabolic pathways in CC, and focused on their

mechanisms of action and future perspectives (Figure 1

and Table 1).
2 Targeting de novo fatty
acid synthesis

A well-studied aspect of cancer metabolism is the upregulation

of de novo fatty acid synthesis (60). Unlike normal cells, tumor cells

shift lipid acquisition from fatty acid uptake to enhanced de novo

fatty acid synthesis to acquire characteristics of unlimited

proliferation, thus providing survival advantages for tumor cells

and inducing tolerance to radiotherapy and chemotherapy (61, 62).

The production of nascent fatty acids is mediated by a variety of

enzymes, including fatty acid synthase (FASN), stearoyl-CoA
FIGURE 1

Fatty acid metabolism in CC. Exogenous fatty acids are ingested through CD36 and FABP. SREBP1 regulates the expression of ACLY, ACC, FASN,
SCD1 and ACSL4 at the transcriptional level. Activated acyl-CoA enters mitochondria via CPT to participate in b-oxidation and generate acetyl-CoA.
Eventually, acetyl-CoA enters the TCA cycle to produce ATP. In CC, CD36 promotes the Src/ERK1/2 pathway, FABP4 promotes the AKT/GSK3b/Snail
pathway, FABP5 promotes the NF-kB pathway, FASN promotes the c-Src/PI3K/AKT/FAK pathway, and SCD1 promotes the Akt/GSK3b pathway to
regulate the progression of cervical cancer. Abbreviations: TCA cycle, tricarboxylic acid cycle; CD36, cluster of differentiation 36; FABP, FA-binding
protein; SREBP1, sterol regulatory element-binding protein 1; ACLY, ATP–citrate lyase; ACC, acetyl-CoA carboxylase; FASN, fatty acid synthase;
SCD1, stearoyl-CoA desaturase-1; MUFAs, monounsaturated fatty acids; ACSL4, long-chain acyl-CoA synthetases 4; CPT1, carnitine
palmitoyltransferase 1; ATGL, adipose triglyceride lipase; HSL, hormone-sensitive lipase; MAGL, monoglyceride lipase; SSO, an inhibitor of CD36; OA,
oleic acid; OGT, O-linked N-acetylglucosamine transferase; C75, cerulenin, orlistat, the inhibitors of FASN; eugenol, an inhibitor of CPT1; JZL184, an
inhibitor of MAGL.
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desaturase 1 (SCD1), ATP-citrate lyase (ACLY), and acetyl-CoA

carboxylase (ACC). Here, we study their respective mechanisms of

action in CC.
2.1 Fatty acid synthase (FASN)

Enhanced expression of fatty acid synthesis enzymes is one of

the important metabolic adaptations in some malignant tumors (60,

63). For example, free fatty acids promote the proliferation and

invasiveness of estrogen receptor alpha-positive breast cancer cells

by activating the mTOR pathway (64). In addition, studies have

shown that elevated fatty acid synthesis levels may be an early

metabolic deregulation in Myc-driven prostate cancer (63). Xu et al.

demonstrated that plasma fatty acid composition levels are highly

likely to be potential biomarkers for ovarian cancer and other

gynecological tumors (65, 66). Carcinogenic transformation is

closely related to fatty acid metabolism (67). Because it provides a

large amount of energy for the proliferation of malignant tumors,

FASN, as the hub of lipid metabolism, plays an increasingly

prominent role in tumors with lipid-rich phenotypes. In fact, a

series of new FASN inhibitors have been designed. Interestingly, an

experiment confirmed that the expression of FASN was upregulated

in patients with CC and was associated with lymph node metastasis

(28). Additionally, the correlation between the expression of FASN

and clinicopathological features was evaluated, and FASN was

identified as an independent prognostic factor in patients with

CC by multivariate Cox proportional hazard analysis. The specific

mechanism involves the ability of FASN to regulate cholesterol

reprogramming, which leads to disordered lipid raft-related c-Src/

PI3K/AKT/FAK signaling and further increases the invasiveness of

CC cells (28). This mechanism has also been elucidated in ovarian

cancer (68, 69). In addition, FASN induces lymphangiogenesis
Frontiers in Oncology 03
through the production of PDGF-AA/IGFBP3.Meanwhile, the

FASN inhibitors cerulenin and C75 can significantly inhibit

lymph node metastasis of CC (28). Although cerulenin has effects

on various types of tumors in vitro and in vivo, the high activity and

off-target activity of cysteine reactive epoxides hinder their clinical

development, and the side effects of cerulenin and C75 in mice also

include serious weight losses (70, 71). Another FASN inhibitor that

has been widely investigated is orlistat, which is an anti-obesity drug

approved by the FDA that has been proven to be effective in tumor

biology (72, 73). Interestingly, a study demonstrated that the

expression of FASN in CC was higher than that in cervical

benign lesions and increased with the increase of the disease

stage; however, statistical results showed no significant correlation

between the expression of FASN and the grade of cervical lesions.

However, in cell experiments, orlistat significantly inhibited the

growth and proliferation of CC cells, and this effect was more

significant in HPV16-positive and HPV18-positive CC cells. The

mechanism underlying these effects was not related to necrosis but

was related to apoptosis (32). One of the reasons for this result is

that the sample size of this study was relatively small, and it may

also be possible that FASN plays an important role in early tumor

transformation. However, previous studies have shown that the

expression of FASN is related to epithelial-mesenchymal

transformation (EMT). FASN can promote EMT in breast cancer,

while inhibition of FASN can reverse the EMT process (74). These

results are compatible with those of other studies showing that the

FASN inhibitor orlistat inhibits CC cell proliferation and blocks

lymph node metastasis (30, 33). However, oral orlistat can cause

significant gastrointestinal dysfunction, such as fat leakage and

abdominal distention (75). Considering the important role of

FASN inhibitors in cancer, researchers designed new protocols,

such as nanoencapsulation, to improve their oral bioavailability and

solubility (76).
TABLE 1 Role of fatty acid metabolism and related lipid metabolism pathways in cervical cancer (CC).

FA Metabolism Target Effects and Features References

FA Synthesis FASN FASN promoted CC cell migration, invasion, and lymphangiogenesis (28, 32, 33)

ACLY MiR22 downregulated ACLY and attenuated CC cell proliferation and invasion (34)

ACC Silencing of ACCa significantly promoted the apoptosis of CC cells (35–37)

SCD1 SCD1 level was associated with the CC stage, the overall survival rate, and the disease-free survival rate (38)

FA Uptake CD36 Overexpression of CD36 promoted the invasion and metastasis of CC cells in vitro and in vivo (39–42)

FA Transport FABP FABP promoted epithelial-mesenchymal transition, lymphangiogenesis, and LNM by reprogramming fatty acid
metabolism

(43–47)

FA Activation ACSL4 Upregulated ACSL4 expression promoted CC cells ferroptosis (48–50)

FA Oxidation CPT1A High expression of CPT1A promoted lipid metabolism modification and CC progress (51)

Intracellular
Lipolysis

ATGL (52)

HSL Enhanced lipid catabolism contributes to the malignant progression of CC (53)

MAGL (54)

Transcription
Factors
Lipid Metabolism

SREBP
LPA
CHOL

High expression of SREBP-1 promoted the proliferation of CC cells
LPA inhibited apoptosis of CC cells induced by chemotherapy

Intersection of different metabolic pathways in CC

(55, 56)
(57, 58)
(28, 59)
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To overcome the shortcomings of first-generation FASN

inhibitors, researchers have focused on designing FASN inhibitors

with superior selectivity, reversibility and nonreactivity to improve

drug performance. For example, JNJ-54302833, GSK2194069, IPI-

9119, and TVB-2640 have been developed, but only TVB-2640 was

used in clinical trials (77). Moreover, treatment with TVB-2640 has

shown potent effects in all kinds of solid tumors, including breast

cancer, KRAS-mutated non-small cell lung cancer, and CC, and the

combination of TVB-2640 and paclitaxel has shown effective target

binding (78). Moreover, TVB-2640 is well tolerated, and adverse

effects can be reversed when the drug is discontinued (79). A clinical

trial involving TVB-2640 in combination with paclitaxel and

trastuzumab in HER2-positive advanced breast cancer is under

evaluation (80).

Certainly, FASN inhibitors are not universal, there are

differences in sensitivity to different metabolic inhibitors and in

metabolic characteristics of different tumors and different subtypes

of the same tumor. Therefore, it is necessary to clearly understand

the metabolic susceptibility of different tumors. After metabolite

analysis, pancreatic cancer cells can be divided into three subtypes,

namely, the low-proliferative subtype, the lipogenic subtype and the

glycolytic subtype. Only the lipogenic subtype shows good

sensitivity to FASN inhibitors, indicating the plasticity of the

metabolic network of cancer cells (81). Therefore, to accurately

predict the sensitivity of cancer cells to FASN inhibitors, we first

need to understand the interactions between the different metabolic

networks of cancer cells.
2.2 ATP-citrate lyase (ACLY)

ACLY catalyzes the conversion of citrate to oxaloacetate and

acetyl-CoA. A variety of ACLY inhibitors have been used to treat

hyperlipidemia (82, 83). ACLY is a key enzyme linking fatty acid

synthesis with glycolysis. ACLY has been shown to be highly

expressed in a variety of cancers (84), and its inhibitor has a

more significant anticancer effect in high-glycolytic cells (85). The

PI3K/Akt pathway plays an important role in CC (86).

Hyperglycolysis promotes tumor growth by increasing ACLY

levels and fatty acid synthesis through the activation of PI3K/Akt

signaling (85). Caffeic acid combined with metformin

downregulates the expression of the ACLY protein by activating

AMPK, which further reduces fatty acid synthesis, resulting in an

increase in the apoptosis rate of metastatic cervical HTB-34 cells

(87). Mei et al. showed that the level of ACLY was increased in CC

cells. Furthermore, miR-22 could mediate the downregulation of

ACLY and accelerate the apoptosis of CC cells. It was also found

that the tumor weight in mice treated with miR-22 was much lower

than that in the control group. The mechanism underlying these

effects may be that miR-22 reduced the ability of de novo lipid

synthesis by inhibiting the expression of ACLY, thus inhibiting the

proliferation and invasion of cancer cells (34). The combination of

an AMPK activator and an ACLY inhibitor may be another strategy

for cancer treatment (88). There are few studies on targeting ACLY

in the treatment of CC, but it is undeniable that it may be a powerful

potential target for the treatment of CC.
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2.3 Acetyl-CoA carboxylase (ACC)

ACC is a rate-limiting enzyme that catalyzes the formation of

malonyl-CoA from acetyl-CoA. There are two subtypes of

mammalian ACC, ACCa (ACC1 or ACACA) and Accb (ACC2

or ACACB) (89). While ACCa is enriched in adipose tissue (90),

ACCb mainly exists in oxidized tissues (91). These expression

patterns determine the difference in its metabolism in different

tissues. Gu et al. performed immunohistochemical staining of

CD147, a transmembrane glycoprotein, in 85 cases of CC and 24

cases of normal cervical epithelia. CD147 was highly expressed in

CC, with a positive rate of 78.7%. In vitro experiments showed that

CD147 could promote the proliferation and lymph node metastasis

of CC cells. The mechanism involves the reprogramming of lipid

metabolism by CD147 through FAS and ACC1. After CD147

knockdown, the lipid content of CC cells was markedly reduced,

and the migration ability of cancer cells was also greatly reduced

(33). Li et al. reported that SIRT3 could accelerate lipid synthesis by

upregulating ACCa in CC oncogenic tissues, thereby increasing

their invasion. Moreover, in an allograft mouse model, the tumors

were significantly larger in the high SIRT3 expression group than in

the SIRT3 knockout group (35). Consistent with this finding,

studies have shown that the level of ACACA is upregulated in CC

cells. Silencing ACACA can accelerate the apoptosis of CC cells

(36). Previous studies have shown that berberine can inhibit the

proliferation of CC cells by reducing the activity of ACC and the

synthesis of intracellular fatty acids, resulting in the decreased

production of extracellular vesicles (37). Similarly, metformin can

activate AMPK and downregulate ACCa levels in CC cells to

inhibit lipid synthesis, thereby inhibiting tumor growth (87).

Interestingly, silencing ACCa or ACCb can promote NADPH-

dependent redox balance, leading to the accelerated growth of lung

cancer cells (92). At the same time, ACC levels may be useful for

predicting the prognosis of some patients undergoing anticancer

treatment. A MITO phase III trial found that the increase in the

phosphorylation level of ACC predicted poor outcomes in patients

with ovarian cancer treated with paclitaxel/carboplatin (93). The

role of ACC in tumors is complex, but these indicate that targeting

ACC is a potential therapeutic strategy for CC. However, to date, no

ACC inhibitor has reached the stage of clinical trials for

gynecological cancers.
2.4 Stearoyl-CoA desaturase-1 (SCD1)

The transformation of saturated fatty acids to monounsaturated

fatty acids requires the catalysis by SCD1, which can promote the

occurrence of a variety of tumors and accelerate their malignant

progression. However, cancer progression may result from an

imbalance between unsaturated and saturated fatty acids (94, 95).

The expression level of SCD1 is highly upregulated in several

malignancies, such as ovarian (96, 97), gastric (98), and lung

cancer (99), and is associated with poor prognosis. SCD1

targeting or gene knockout can significantly inhibit tumor growth

and restore cisplatin resistance (99–101). Wang et al. analyzed the

role of SCD1 in CC using the GEPIA database. A total of 306 CC
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samples and 13 normal samples were included. It was found that the

expression levels of SCD1 in CC tissues were high and were related

to the overall survival time and staging of patients. At the same

time, the low expression of KLF9 was found in advanced CC and

negatively correlated with that of SCD1. The final results showed

that the expression of KLF9/SCD1 could regulate the Akt/GSK3-b
signaling pathway in CC cells and affect the proliferation, invasion

and EMT process of CC cells. This phenomenon can be suppressed

by knocking out SCD1 (38). Studies have also shown that SCD1 can

regulate the level of miR-1908, and its high expression levels can

promote the proliferation and invasion of CC cells (59, 102).

Interestingly, a study has shown that metformin can

downregulate SCD1 expression, thereby inhibiting CC cells (87).

Notably, SCD1 protects tumor cells from ferroptosis (103).

Therefore, targeting SCD1 provides a new idea for the treatment

of CC. To date, however, virtually no SCD1 inhibitors have been

clinically tested as cancer therapies in humans.
3 Targeting fatty acid uptake

The growth of tumor cells depends on the intake of exogenous

fatty acids, which can promote tumor progression and metastasis

(104). The intake of exogenic fatty acids mainly depends on FABP,

LDLR, and CD36, which is a member of the FATP family (105).

CD36 is negatively linked to the prognosis of patients and is an

important biomarker of malignant tumors (106). Previous studies

have demonstrated that CD36 levels are upregulated in some

malignancies, such as ovarian cancer (104), breast cancer (107),

gastric cancer (108), oral cancer (109), melanoma (110), and

colorectal cancer (111), to maintain cancer cell progression and

metastasis. In one experiment, 133 cases of CC and 47 cases of

normal cervical tissues were evaluated. In normal cervical tissues,

CD36 expression was detected only in 19.15% of tissues (9/47),

while in CC cases, CD36 immunoreactivity was detected in 73.68%

of tissues (98/133). The evaluation results showed that CD36 was

closely associated with CC progression. High CD36 levels are

associated with enhanced EMT, tumor differentiation and lymph

node metastasis through synergistic interactions with TGF-b (39).

Another study showed that dietary oleic acid, was linked with an

increase in malignant tumors in HeLa cells. Oleic acid induced the

activation of Src kinase and the downstream ERK1/2 pathway in a

CD36-dependent manner, and the overexpression of CD36 in HeLa

cells aggravated tumor growth and invasion in xenograft mice. The

CD36 inhibitor sulfonyl-n-succinic acid oleic acid (SSO) can

specifically and irreversibly bind to CD36 and reverse the process

of malignant transformation by inhibiting the uptake of fatty acids

(40). Increasing expression level of miR-1254 could inhibit the

invasion of SiHa and CaSki cells. Additionally, the increase in the

expression of CD36 significantly enhanced the proliferation of CC

cells, and the increase in the expression of CD36 reversed the

inhibitory effect of miR-1254 (41). Similarly, An et al. confirmed

that the expression of CD36 in CSCC tissues was higher than that in

normal cervical tissues, and the change in CD36 expression level

was a unique feature associated with HR HPV infection. HR HPV

infections could promote the tumorigenesis and progression of CC
Frontiers in Oncology 05
and are associated with shorter recurrence-free survival (42). In

conclusion, we predict that CD36 is a breakthrough target for the

treatment of CC.
4 Targeting fatty acid activation

Fatty acids need to be converted into acyl-CoA to be activated

before lipid synthesis and oxidation. The enzyme mediating this

process is long-chain acyl-CoA synthetase (ACSL), which can

activate the most abundant long-chain fatty acids (112, 113). There

are 5 subtypes of ACSL inmammals (ACSL1, ACSL3, ACSL4, ACSL5

and ACSL6), each with specific functions. Among them, ACSL4 is the

best studied. ACSL4 can promote uncontrolled cell growth and

enhance tumor escape from programmed cell death and invasion

(112, 114, 115). ACSL4 is highly expressed in ovarian (116), prostate

(113), liver (117), breast (118) and other tumors and is associated

with poor prognosis. Interestingly, oleanolic acid (OA), which is

naturally present in plant fruits and leaves, enables dramatic

inhibition of the mass and volume of CC tumors in mice, and

ACSL4 expression remains highly upregulated in CC cells and

xenograft models treated with OA. When the level of ACSL4 is

inhibited by siRNA, OA no longer has the ability to inhibit cancer

cells (48). The mechanism underlying these effects may be that OA

promotes ferroptosis by upregulating ACSL4 levels. Circular RNA

(circRNA) has been shown to limit the progression of malignant

tumors. Circular RNA (CircLMO1) has been demonstrated to

promote ferroptosis induced by the high expression of ACSL4 in

CC cells and prevent the growth and invasion. Additionally, ACSL4

knockdown abolished the inhibitory effect of CircLMO1 on CC cells

(49). Zhao et al. demonstrated that ACSL4-mediated ferroptosis plays

an essential role in the effect of the combination of paclitaxel and

propofol against cancer (50). More interestingly, Li et al.

demonstrated that the expression of ACSL4 was significantly lower

in patients with lung adenocarcinoma, and the prognosis was poor

compared with that in patients with high expression of ACSL4 (119).

By contrast, some studies have also proven that the high expression of

ACSL4 promotes the development of lung cancer. Owing to the

heterogeneity of tumors, the role of ASCL4 in different cancers is not

consistent, and the mechanism of ACSL4 in cancer promotion and

inhibition is complex and variable. However, targeting ACSL4 can

regulate tumor progression, so ACSL4 is very likely to be a novel

target for treatment.
5 Targeting fatty acid oxidation

Fatty acid oxidation (FAO) must first occur through the action

of carnitine palmitoyl transferase (CPT), which is composed of

CPT1 and CPT2 located in the outer and inner membranes of

mitochondria. CPT1 has three isoforms, CPT1A, CPT1B and

CPT1C (120, 121). Recently, FAO has been suggested to be

closely linked to cancer progression, proliferation and drug

resistance. ATP is significantly decreased by blocking FAO in

cancer cells (121–123). CPT1A is highly expressed in prostate

cancer (124), nasopharyngeal carcinoma (125, 126), glioblastoma
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(127), etc. Inhibition of CPT1A significantly inhibits tumor growth,

improves survival, and increases the sensitivity of nasopharyngeal

carcinoma to radiotherapy (125). Almost all CCs are associated

with high-risk HPV infections, and HPV16 is responsible for nearly

50% of infections (12, 13). The level of CPT1A in HPV16-positive

CC tissues was reported to be markedly higher than that in normal

tissues, suggesting that CPT1A could promote cervical cancer

progression through lipid metabolism modifications (51). The

overexpression of adipose-triglyceride lipase (ATGL) was also

found to be dependent on the induction of hypoxia-inducible

factor-1a (HIF1a) by reactive oxygen species (ROS), which are

mediated by increased mitochondrial FAO to promote CC cell

proliferation (52). Xiao et al. demonstrated that SIRT3 can promote

the invasion of CC cells by activating the AMPK/PPAR pathway

(128). Notably, AMPK activators and PPAR activators can induce

CPT1 expression, thereby enhancing FAO (129, 130). In a phase III

clinical trial conducted in a resource-scarce environment, eugenol, a

CPT1 inhibitor, as one of the ingredients of antiviral AV2, was

slightly effective in inducing the regression of cervical precancerous

lesions, although there was no statistically significant difference

between the treatment and placebo groups. However, this lack of

statistical significance may change in a later stage in a high-resource

environment and by expanding the sample size (131). Research on

the involvement of CPT in cervical cancer seems to have received

little attention, but it may bring new insights into the treatment

of CC.
6 Targeting the intracellular transport
of fatty acids

Fatty acid-binding proteins (FABPs) are a series of lipid

chaperones and members of the superfamily of intracellular lipid-

binding proteins. These proteins are mainly involved in the

transport of intracellular fatty acids between organelles and

promote fatty acid solubilization and metabolism. Recent studies

have found that FABPs play an increasingly prominent role in

oncology, and tumor progression and invasion may be linked to an

elevated level of an exogenous FABP (132). A study has shown that

circulating levels of A-FABP, also known as FABP4, are

significantly higher in obese patients with breast cancer than in

those without breast cancer, and circulating A-FABP enhances

tumor stemness and aggressiveness by activating the IL-6/STAT3/

ALDH1 pathway (133). FABPs are found not only in breast cancer

but also in ovarian cancer (134, 135), acute myeloid leukemia (136),

and liver cancer (137, 138). Interestingly, both FABP4 and FABP5

seem to play a role in CC. Real-time quantitative PCR and western

blotting were used to evaluate the expression of FABP5 in 206 CC

and 40 normal cervical tissues, and the mRNA and protein

expression of the FABP5 was found to be significantly

upregulated in CC tissues (P<0.05). In vitro experiments with

silenced FABP5 showed that cell proliferation and migration were

significantly decreased. In an in vivo xenograft model and lung

metastasis model, the tumor formation ability of mice was

significantly reduced (P<0.001), and tumor metastasis in each side
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of the lung lobe was also significantly reduced (P<0.001). The

mechanism may involve the promotion of the occurrence and

metastasis of CC through the upregulation of MMP-2 and MMP-

9 (139). Consistent with the results of Liu et al, an experiment found

that FABP5 expression was significantly upregulated in CC with

lymph node metastasis, and FABP5 was an independent prognostic

factor in multivariate Cox proportional risk model analysis. A

Kaplan-Meier survival curve and log-rank test showed that

patients with high FABP5 expression had significantly lower RFS

and OS. In nude mice with lymph node metastasis, FABP5

knockdown resulted in a higher survival. Mechanistically, FABP5

expression promotes the invasion, EMT, and lymphangiogenesis by

increasing the levels of intracellular fatty acids in CC to activate NF-

kB signaling. Treatment with orlistat suppresses this effect (43).

Previous work has suggested that high expression of FABP5 is

positively correlated with the existence of lymph node metastasis in

CC (44, 45). An experiment found that the long noncoding RNA

LNMICC could promote the tumor growth, CC cell proliferation

and lymph node metastasis by recruiting NPM1 to the promoter of

FABP5 (46). Additionally, Jin et al. found that the FABP4 level in

CSCC was strikingly higher than that in normal tissue (47), which is

in line with the conclusions of previous investigations (140, 141).

Moreover, the elevation of FABP4 has been shown to promote EMT

through the activation of the AKT/GSK3b/Snail pathway in CSCC.

Li et al. screened 243 genes related to lymph node metastasis in 178

TCGA CC samples and analyzed these genes by univariate and

multivariate Cox regression analyses of FABP4 (HR=1.582, P <

0.001) FABP4 (HR=1.384, P=0.024). It was proven that FABP4

could be used as a prognostic factor to evaluate OS. Cell

experiments also showed that FABP4 could promote the

occurrence of lymph node metastasis by activating the AKT

signaling pathway, thus accelerating the process of EMT (140).

FABPs are undoubtedly potential biomarkers or targets in patients

with CC.
7 Targeting the intracellular
lipolytic pathway

It has been reported that intracellular lipolysis may be closely

related to the survival and growth of tumor cells. Lipolysis is the

process in which triglycerides stored in fat cells are hydrolyzed to

produce fatty acids, thereby supplying internal or whole-body

energy (142–144). This process occurs through the actions of

ATGL, hormone-sensitive lipase (HSL) and monoglyceride lipase

(MAGL) in turn. However, the role of lipase in cancer is still

unclear. Various exceptional literature reports and reviews have also

elaborated the association between lipases and cancer (144–146),

among which the relationship between MAGL and cancer has been

discussed the most. Castelli et al. showed that the expression of

ATGL in CC was extremely high, they verified their results by

bioinformatics analysis of a large human cervical cancer sample

data set on an Affymetrix-U133-plus2.0 array and found that the

expression level of ATGL was positively correlated with the grade of

CC. Additionally, ATGL promotes tumor cell proliferation and
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invasion through ROS production and HIF1a induction (52).

Meanwhile, HIF1a is also closely related to radiotherapy

resistance and paclitaxel resistance in CC (147, 148). One study

demonstrated that 2,4-dienyl-CoA reductase (DECR1) enhanced

the expression of HSL to increase lipolysis and thus promote the

release of fatty acids, leading to malignant progression of CC (53).

Interestingly, a study also showed that the level of MAGL was

upregulated in CC cells and tissues. The use of the MAGL inhibitor

JZL184 or gene knockout induces apoptosis in CC cells by

mediating the downregulation of Bcl-2 and the upregulation of

cleaved caspase-3 and Bax (54). Lipase may be a promising target to

treat CC and alleviate its drug resistance.
8 Targeting transcriptional regulators
of fatty acid metabolism

In addition to FASN, another key factor worth noting is sterol

regulatory element binding protein 1 (SREBP-1). SREBP-1

activation promotes the expression of FASN, ACC, and SCD1,

thereby enhancing lipid synthesis (149). SREBP binds to SREBP

cleavage–activating protein (SCAP) in the ER and is negatively

regulated by endogenous sterol levels (150). When sterols are

abundant, insulin-induced genes (INSIGs) bind tightly to SCAP

and restrict SREBP to the endoplasmic reticulum. Once sterol levels

drop, INSIGs dissociate from the SCAP protein, and the SREBP-

SCAP complex enters the Golgi. These proteins are sequentially

cleaved at the Golgi by site-1 and site-2 proteases (S1P and S2P).

This releases the N-terminus of SREBP, which eventually binds to

sterol response elements (SREs) in the nucleus to activate

transcription (Figure 2) (150, 151). Several excellent reviews have

elucidated the role of SREBP-1 in cancer, and tumor proliferation

can be inhibited by knocking down or inhibiting SREBP-1

expression (62, 149, 152). One experiment proved that the level

of SREBP-1 was high in CC cells, and quercetin (a naturally

occurring polyphenolic flavonoid) could reduce the levels of

SREBP-1 and its transcriptional targets by reducing the O-
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GlcNAcylation of AMPK. Thus, the growth of CC cells are

inhibited and apoptosis is induced (Figure 3) (55). This is

compatible with several studies suggesting that AMPK activation

leads to the phosphorylation of SREBP-1, which slows cancer

progression by inhibiting its nuclear translocation and the

transcription of target genes (153, 154). Interestingly, O-

GlcNAcylation-mediated inactivation of AMPK also accelerated

the growth of colon cancer cells (155). An experiment also

showed that O-linked N-acetylglucosamine transferase (OGT)

upregulated the expression of O-GlcNAcylated LXRs and

increased sCLU (a glycoprotein) levels by inducing SREBP-1

expression to regulate apoptosis, the cell cycle and cisplatin

resistance (Figure 3) (56). Interestingly, Yang et al. showed that

the levels of human hydroxysteroid dehydrogenase 2 (HSDL2) in

CC tissues were significantly higher than those in normal tissues

and HSDL2 upregulated the expression of FASN, ACSL and

SREBP-1, thus inducing stronger invasiveness of CC. When

SREBP-1 was knocked down, the proliferation and migration of

CC cells were significantly inhibited (156). As a transcriptional

regulator of lipid metabolism, SREBP-1 may become a new

therapeutic breakthrough.
9 Targeting other lipid
metabolic pathways

Lipids are a class of substances that are insoluble in water and

include glycerol phosphates, triglycerides, sterols, and sphingolipids

(157). A large number of studies have proved that disorders of lipid

metabolism are closely related to the occurrence of various cancers.

It is worth noting that the relationship between phospholipids and

cholesterol levels and cancer has received much less attention in the

past. However, research has shown that lysophosphatidic acid

(LPA) may be a potential biomarker of gynecological cancer (65).

LPA is a glycerophospholipid that stimulates cell migration and

tumor cell invasion. Interestingly, Sui et al. showed that the serum

LPA level in cervical cancer patients was significantly higher than
FIGURE 2

SREBP binds to SCAP in the ER and is negatively regulated by endogenous sterol levels. When sterols are abundant, INSIGs bind tightly to SCAP and
restrict SREBP to the endoplasmic reticulum. Once sterol levels drop, INSIGs dissociate from the SCAP protein, and the SREBP-SCAP complex enters
the Golgi. These proteins are sequentially cleaved at the Golgi by S1P and S2P. This releases the N-terminus of SREBP, which eventually binds to
sterol response elements (SREs) in the nucleus to activate transcription.
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that in healthy people, which was consistent with the results of Xu

et al. (65), and found that LPA stimulated the progression of CC

through the Ras/Raf1/MEK/ERK pathway. Noticeably, LPA could

block the alterations in the caspase-3 enzyme activity caused by

cisplatin, resulting in the resistance to cisplatin-induced apoptosis

(57). An experiment also showed that LPA markedly reduced the

expression level of the caspase-3 protein in doxorubicin

hydrochloride-induced CC cells and protected CC cells from

doxorubicin hydrochloride-induced apoptosis (58). These results

provide sufficient experimental basis for the possibility of using

LPA as a therapeutic target for CC. Lipogenesis generally includes

fatty acid synthesis and the mevalonate pathway, the latter referring

to isoprenoid and cholesterol synthesis. It is well known that acetyl-

CoA is the raw material for the synthesis of fatty acids and

cholesterol (158). Studies have shown that HMG-CoA inhibitors,

statins, can not only reduce cholesterol levels but also inhibit cell

proliferation and chemical resistance in gynecological cancers,

including CC (159). At the same time, an experiment has found

an unexpected link between fatty acid metabolism and cholesterol

metabolism (160). MiR-1908 is a miRNA located in the intron of

fatty acid desaturase 1 gene. It has been found that miR-1908 is

highly expressed in CC, ovarian cancer, breast cancer and other

tumors and is related to their poor prognosis. It is interesting that

the expression of miR-1908 is regulated by free fatty acids,

cholesterol, SCD1 and other factors (59). Liu et al. proved that

FASN, a key enzyme in fatty acid synthesis, was highly expressed in

patients with CC and found that FASN could regulate cholesterol

metabolism, increase total cholesterol and free cholesterol when

overexpressed, lead to lipid raft reprogramming and actin

remodeling, and help enhance the invasion and migration of CC

cells. After targeted inhibition of FASN, the total amount of

cholesterol and free cholesterol decreased, thus effectively

reducing the lymph node metastasis of CC (28). A recent

experiment showed that the mechanism of FASN regulation of

cholesterol metabolism in liver cancer was similar to this

mechanism (161). The interference between these metabolic

pathways provides more possibilities for targeted therapy of CC.
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10 Dietary interventions

In several large studies, obesity and a high body mass index have

been found to be positively associated with the development of CC

(162, 163). These studies have also proved that the diet influences

the occurrence and progression of cancer, and the level of fatty acid

intake has been shown to contribute to these effects (164–166).

Among fatty acids, omega-3 polyunsaturated fatty acids (w-3
PUFAs), such as a-linolenic acid (a-ALA), docosahexaenoic acid

(DHA), and eicosapentaenoic acid (EPA), are widely believed to

have triglyceride-lowering and anti-inflammatory properties,

whereas w-6 PUFAs, including linoleic acid (LA) and arachidonic

acid (AA), are thought to be involved in proinflammatory

mechanisms (167–169). One study showed that increased

consumption of w-3 PUFAs (EPA) in men with prostate cancer

reduced tumor vascularization and inhibited the progression of

prostate cancer (170). Similarly, w-3 PUFAs inhibit the invasion of

gastric cancer through the COX-1/PGE3 signaling axis, and w-6
PUFAs enhance the potential of malignant metastasis through

COX-2/PGE2 (171). A randomized controlled study suggested

that increasing the intake of w-3 PUFAs was effective in

maintaining the nutritional status and skeletal muscle mass in

women w i t h CC and a l l e v i a t i n g t h e t o x i c i t y o f

chemoradiotherapy (172). a-ALA inhibits the growth of CC cells

by downregulating the expression of HPV oncoproteins E6 and E7,

thereby restoring the expression of Rb and p53 (173). Notably,

DHA could induce the apoptosis of CC cells by reducing the levels

of the anti-apoptotic proteins Bax, cleaved caspase-3 and Bcl-2 and

regulate the levels of VEGF and MMP-9 to control the invasion of

CC cells (174). However, excessive intake of w-3 PUFAs may result

in immunosuppression and other adverse effects. Since w-3 PUFAs
and w-6 PUFAs are both essential fatty acids, it is necessary to

reasonably adjust the diet, aiming to control their appropriate levels.

Olive oil, a component of the Mediterranean diet, has recently been

found to have antitumor effects in breast, prostate and other cancers

(175). The main ingredient in olive oil is oleic acid (OA), which has

recently been found to promote the progression of CC in vitro and
FIGURE 3

Schematic representation of quercetin- and OGT-mediated effects on adipogenesis and cell growth in CC. Quercetin could reduce the expression
of SREBP-1 and its transcriptional targets by reducing the O-GlcNAcylation of AMPK. Thus, the growth of CC cells is inhibited and apoptosis is
induced. OGT upregulated the expression of O-GlcNAcylated LXRs and increased sCLU levels by inducing SREBP-1 expression. Thus, CC cells
become resistant to chemotherapy drugs such as cisplatin. LXRs, liver X receptors; sCLU, secretory clusterin.
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in vivo (40, 176). However, Muhammad et al. found that

monounsaturated and diunsaturated fatty acids could improve the

sensitivity of obese patients with CC to radiotherapy, and the tumor

volume was significantly reduced in a mouse xenograft tumor

model treated with oleate and radiotherapy compared with that

in the radiotherapy alone group. The supplementation of oleate and

linoleate during radiotherapy increases the expression of P53,

PPARg, and CD36 to support increased free fatty acid uptake,

thereby regulating the cell cycle and inducing apoptosis (177).

However, these contradictory results make the effect of dietary

olive oil or OA on cancer inconclusive. Complex interactions

between environmental factors and genetics may partially explain

this phenomenon. At a later stage, much research is still needed to

explain the link between dietary olive oil or OA and cancer.

Certainly, a diet combined with other treatments may have

greater potential for the treatment of CC.
11 Conclusion

Lipid reprogramming has been widely confirmed as an

important marker of CC that can act on membrane production,

energy production and signal transduction to control cell growth,

differentiation and motility. This review analyzed in detail the

involvement of various pathways of fatty acid metabolism in CC.

Targeting or knocking down proteins or enzymes involved in the

process of fatty acid metabolism can effectively limit the growth and

progression of CC cells, inhibit lymph node metastasis to a certain

extent, improve the sensitivity of CC to chemoradiotherapy, and

significantly improve the treatment effect and prognosis. Therefore,

targeting fatty acid metabolism is extraordinarily attractive for the

treatment of CC to achieve precise antitumor effects. However, due

to the plasticity of tumor fatty acid metabolism, few preclinical
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studies can be effectively applied to the clinical field. A novel

combination strategy or strict diet provides promising prospects.

Further experiments to investigate the dynamic relationship

between fatty acid metabolism reprogramming and CC and to

overcome the complexity and plasticity of fatty acid metabolism

in cancer are extremely important. Although this road is tortuous,

fatty acid metabolism and its related lipid metabolism pathways are

expected to become new targets for CC treatment.
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