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Tumor microenvironment
promotes lymphatic metastasis
of cervical cancer: its
mechanisms and clinical
implications
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Yingying Chen1,2, Liru Xue1,2, Qingqing Zhu1,2, Bo Wang1,2

and Mingfu Wu1,2*

1National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of
Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and
Technology, Wuhan, Hubei, China, 2Key Laboratory of Cancer Invasion and Metastasis, Ministry of
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Although previous studies have shed light on the etiology of cervical cancer,

metastasis of advanced cervical cancer remains the main reason for the poor

outcome and high cancer-related mortality rate. Cervical cancer cells closely

communicate with immune cells recruited to the tumor microenvironment

(TME), such as lymphocytes, tumor-associated macrophages, and myeloid-

derived suppressor cells. The crosstalk between tumors and immune cells has

been clearly shown to foster metastatic dissemination. Therefore, unraveling the

mechanisms of tumor metastasis is crucial to develop more effective therapies.

In this review, we interpret several characteristics of the TME that promote the

lymphatic metastasis of cervical cancer, such as immune suppression and

premetastatic niche formation. Furthermore, we summarize the complex

interactions between tumor cells and immune cells within the TME, as well as

potential therapeutic strategies to target the TME.

KEYWORDS

cervical cancer, tumor microenvironment, immune cells, lymphatic metastasis,
lymphangiogenesis
Introduction

Cervical cancer (CC) ranks fourth among all types of cancers in terms of morbidity and

mortality in women, with an estimated 604,000 new cases and 342,000 deaths worldwide in

2020. Furthermore, CC is the most commonly diagnosed cancer in 23 countries and the leading

cause of cancer-related death in 36 countries (1). Although most patients with early-stage CC

recover well through surgery, patients with recurrent or metastatic CC are rarely treated

effectively (2, 3). Therefore, patients with advanced CC have a poor prognosis and low survival
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rate (4, 5). Lymphatic vessels are one of the crucial routes by which CC

cells metastasize, and treatment failure is often associated with lymph

node metastasis (6). In the past, lymphatic vessels were considered to

play a passive role in metastasis, acting merely as a channel for tumor

cells to invade. However, growing evidence has suggested that tumor-

associated lymphatic vessels can actively participate in tumor-related

pathological processes, thereby promoting the lymphatic metastasis of

CC (7). On the one hand, peritumoral lymphatic vessels can boost

tumor cell lymphatic invasion; on the other hand, tumor-draining

lymphatic vessels promote tumor metastasis by increasing pumping

and lymph flow, recruiting tumor cells, providing cancer stem cell

niches, and modulating antitumor immune responses (8).

The tumor microenvironment (TME) has been an area of active

research in recent years, as it exerts an instrumental influence on

tumor progression and metastasis (9). The TME is largely

composed of immune cells, fibroblasts, endothelial cells, stromal

cells, and extracellular matrix (ECM) (10, 11). It is well-accepted

that the interactions between tumors and immune cells are more

complex and dynamic than previously thought. Many subtypes of

immune cells infiltrating the TME also possess potent tumor-

promoting abilities (11, 12). However, the impact of the crosstalk

between the TME and immune cells on tumor metastasis remains

unclear. A better understanding of the interactions between CC cells

and immune cell and their roles in lymphatic metastasis will be

beneficial for developing alternative therapies. In this review, we

summarize the role of the TME in CC and introduce five main

characteristics of the TME that promote lymph node metastasis.
Characteristics of the TME

Successful lymphatic metastasis is a consequence of complex

processes involving interactions among multiple components in the

TME. The progression can be simplified into four steps: the
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dissemination of locally invasive tumor cells to the lymphatic

vessels, the transport of tumor cells through the lymphatic system

to the lymph nodes, the settlement of tumor cells in the lymph

nodes, and the growth of micrometastases into a detectable mass

(13). Observations of metastasis in afferent lymphatic vessels, as

well as the specific and early involvement of the tumor-draining

lymph nodes have strongly indicated that tumor cells initiate lymph

node metastasis by entering tumor-associated lymphatic vessels

(14). Interestingly, the lymphatic system does not act as a passive

channel for tumors to invade but actively facilitates lymphatic

metastasis in the TME (7, 15). The complicated interplay among

tumor cells, immune cells, and the local stroma promotes the

lymphatic metastasis of CC. At least five key characteristics of the

TME favor this process, including immunosuppression,

premetastatic niche formation, lymphangiogenesis, epithelial-

mesenchymal transition (EMT), and ECM remodeling (Figure 1).
Immunosuppression

There is a consensus that CC is an immunogenic tumor induced

by persistent infection with the high-risk human papillomavirus

(HPV) (16). During persistent HPV infection, tumor cells employ a

range of strategies for immune evasion. Studies indicate that HPV

downregulates the gene expression of C-X-C motif chemokine ligand

14 (CXCL14), the adhesion molecule E-cadherin and Toll-like

receptors in host cells, disrupting the recruitment of natural killer

(NK) cells, T cells, Langerhans cells and dendritic cells (17, 18).

Moreover, HPV impairs the expression of MHC class-I (MHC-I),

immunoproteasome subunits, and transporter associated with antigen

processing (TAP), interfering with antigen presentation (19). All these

strategies enable the virus to escape immunosurveillance and persist

for a long time, increasing the risk of lesion progression and

malignant transformation.
FIGURE 1

Characteristics of the TME and their effects on lymphatic metastasis in cervical cancer. The complex interactions between cervical cancer and
immune cells empower the TME to hamper antitumor immunity. Various bioactive substances derived from primary tumors participate in the
regulation of ECM and lymphangiogenesis. After EMT, tumor cells can easily reach and enter the lymphatic vessel. Moreover, creating a
premetastatic niche provides supportive sites for metastatic tumor cells.
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In addition to the virus, the TME actively participates in tumor

proliferation and lymph node metastasis by suppressing antitumor

immunity and inducing regulatory and suppressive immune cells.

The TME is characterized by an imbalance in T helper (Th) cells in

tumor tissues. Normally, CD4+ T cells aid cytotoxic CD8+ T cells in

tumor rejection. However, during the progression of the tumor, the

Th1 tumor-suppressive phenotype is converted into a Th2 tumor-

promoting phenotype, which hinders the activity of CD8+ T cells

(12). In fact, reduced intraepithelial infiltration of CD8+ T cells and

a significantly decreased CD8+/CD4+ T-cell ratio have been found

in CC patients with lymph node metastases (20). Additionally,

studies on metastatic tumor-draining lymph nodes in CC have

shown that these sites are characterized by suppressor-type cells

with significant Th2 polarization and reduced content of effector-

type CD8+ T cells (21). Recently, researchers have found that the

TME exhibits an immunosuppressive state in CC tissue,

characterized by infiltration of exhausted CD8+ T cells and

CD163+ CD68+ M2-like macrophages (22). Similarly, another

study has demonstrated that the cytotoxic activities of CD8+ T

cells are significantly curtailed by high-level expression of

checkpoint genes, such as programmed cell death 1 (PD-1),

lymphocyte activating 3 (LAG3) and hepatitis A virus cellular

receptor 2 (HAVCR2) (23). All these findings suggest the

existence of profoundly immunosuppressive microenvironments

in primary tumors and tumor-draining lymph nodes, which

protect metastatic tumor cel ls from immune attacks.

Consequently, tumor cells are able to migrate to the lymph nodes.

Notably, specific immune cells, including tumor-associated

macrophages (TAMs) and myeloid-derived suppressor cells

(MDSCs), contribute to the formation of immunosuppressive

TME. Increased infiltration of TAMs is related to a more advanced

stage and lymph node metastasis in CC (24–26), as is increased

infiltration of MDSCs (27, 28). Both of these cell populations can

suppress the proliferation and function of effector T cells and induce

the recruitment of regulatory T (Treg) cells and regulatory B (Breg)

cells (28–30). Additionally, Th17 cells have been found to promote

tumor progression by triggering chronic inflammation within the

TME. They are attracted by fibroblasts expressing high levels of C-C

motif chemokine ligand (CCL20) (31). Lymphatic endothelial cells

(LECs) are also reprogrammed into an essential component with

immunosuppressive effects in the TME. In a mouse model, exosome-

encapsulated microRNA-1468-5p secreted by CC cells could promote

programmed cell death ligand 1 (PD-L1) expression in LECs. Then,

the LECs impaired CD8+ T-cell immunity by binding to PD-1,

enabling CC immune escape (2). Overall, the significant

immunosuppressive state offers suitable conditions for tumor

proliferation and a window for tumor metastasis.
Premetastatic niches

Primary tumors can instruct the formation of microenvironments

in distant organs hospitable to tumor cells before arriving at these sites.

These predetermined microenvironments are termed premetastatic

niches (32, 33). Well-established premetastatic niches with a fertile

microenvironment support the survival, seeding, colonization, and
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outgrowth of metastatic tumor cells, resulting in the formation of

micrometastases (33). Evidence suggests that the nearest draining

lymph nodes in patients with CC can be prepared early to host

metastatic cells (15). To successfully build a premetastatic niche,

primary CC cells, MDSCs, and other components in the local

stromal microenvironment of the host (or future metastatic organ)

work together. However, there needs more research to understand the

role of CC cells in establishing the premetastatic niche.

The creation of a premetastatic niche is fostered by mobilized

and recruited immune cells. These cells remodel the local

microenvironment by secreting inflammatory cytokines, growth

factors, and proangiogenic molecules (34). For instance, in mouse

models, MDSCs have been shown to contribute to premetastatic

niche formation by expressing high levels of proinflammatory

chemoattractants such as Cxcl2, S100a8, S100a9, and Bv8 (35).

Similarly, in ME180 tumor-bearing rats, MDSCs were found to

express S100a8/a9 to create a premetastatic niche in the lymph

nodes (36). Before metastasis, Treg cells may also condition lymph

nodes to form a metastatic niche. Subsequently, PD-L1+ M2-like

macrophages are recruited to facilitate the expansion of the next

wave of Treg cells, preparing for further metastatic spread (37).

Changes in the TME, such as lymphangiogenesis and ECM

remodeling, establish a supportive microenvironment that may

foster the colonization and outgrowth of metastatic tumor cells in

secondary sites (33, 38). Periostin (POSTN) has recently been

identified as a crucial matricellular protein in lymph node

premetastatic niche development. In a preclinical murine model,

cancer-associated fibroblast (CAF)-derived POSTN regulated the

function of LECs and promoted the implantation of metastatic cells

in the lymph nodes (38, 39). Moreover, both in mouse and human

CC, lymphangiogenesis is detected in the tumor-draining lymph

nodes even before lymphatic metastasis, confirming the presence of

a premetastatic niche (8). The role of lymphatic vessels in

promoting metastasis via the premetastatic niche has yet to be

fully understood. Further analysis of LECs and identification of

the key components involved in promoting metastasis via

lymphangiogenesis may help to unravel these mysteries.
Tumor lymphangiogenesis

In CC, lymphatic metastasis is one of the major routes of

metastasis, within which tumor-associated lymphangiogenesis is

an essential event. Tumor lymphangiogenesis involves the

migration of endothelial cells into the tumor tissue and the

formation of new lymphatic vessels. This process leads to an

increase in tumoral lymphatic vessels and enlargement of tumor-

draining collecting vessels. The expansion of the lymphatic network

promotes tumor migration into the lymphatic circulation and entry

into the lymph nodes, where the tumor cells multiply, and

potentially facilitate migration to distant organs (14, 40).

Clinicopathological studies have shown a positive correlation

between lymphatic microvessel density and metastasis (41). As

mentioned before, premetastatic lymphangiogenesis in the lymph

nodes plays an important role in preparing the site for metastatic

dissemination (15). Therefore, lymphangiogenesis and lymphatic
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remodeling are functionally important in the promotion of

tumor metastasis.

Lymphangiogenesis is mediated by various lymphangiogenic

factors released by CC cells or host-derived cells within the TME,

including vascular endothelial growth factor A (VEGF-A), VEGF-C/D,

and angiopoietins. VEGF-C/D promotes tube formation by binding to

their receptor VEGFR-3 expressed by LECs (14, 42), while VEGF-A

stimulates both angiogenesis and lymphangiogenesis by binding to

VEGFR-2 (14). Clinical data indicate elevated VEGF-C expression in

peripheral leukocytes and retroperitoneal lymph nodes in CC is

associated with tumor progression and lymphatic metastasis (43).

Some tumor-derived factors have been found to promote

lymphangiogenesis in CC. For instance, the receptor for activated C-

kinase 1 (RACK1), a scaffold protein that participates in many

intracellular signal transduction pathways, facilitates tumor invasion

and lymphatic tube formation. Upregulated expression of RACK1

promotes lymphangiogenesis via galectin-1 (44), which promotes

lymphatic vascular growth and contributes to the maintenance of the

lymphatic endothelial phenotype (45). In addition, RACK1 interacts

with insulin−like growth factor 1 receptor (IGF1R) to promote

lymphangiogenesis via activation of the AKT/mTOR pathway in CC

cells (46). Hematological and neurological expressed 1 (HN1), a

microtubule-associated protein, induces lymphangiogenesis by

activating the NF-kB signaling pathway (47). Likewise, sine oculis

homeobox homolog 1 (SIX1) and protein tyrosine phosphatase

receptor type M (PTPRM) expressed in tumor cells both promote

tumor lymphangiogenesis by inducing increased expression of VEGF-

C (48, 49). Moreover, cancer-secreted exosomal microRNA-221-3p

transferred to LECs may promote lymphangiogenesis by

downregulating vasohibin-1, an endogenous angiogenesis inhibitor

(40). CC-secreted exosomal microRNA-1468-5p also promotes

lymphangiogenesis by reprogramming LECs (2). As a regulator of

the function of Treg cells, the Foxp3 gene has a vital role in forming the

immunosuppressive microenvironment. Interestingly, a study

indicated that Foxp3 was positively correlated with VEGF-C

expression and might be involved in lymph node metastasis of CC

by promoting lymphangiogenesis (50). These results indicate that

multiple tumor-associated factors play important roles in inducing

lymphangiogenesis, leading to the lymphatic metastasis of CC.

Other tumor partners in the TME also contribute to

lymphangiogenesis in CC. For example, after being cultured in a

conditioned medium from CC cell-macrophage coculture, human

LECs formed more tube-like structures in vitro. These TAMs

promoted lymphangiogenesis by increasingly expressing VEGF-C

and VEGF-A, which was induced by the interactions with

surrounding CC cells (26). Tumor-associated LECs actively

participate in lymphatic metastasis by highly expressing soluble

semaphorin 4C (sSEMA4C), which promotes lymphangiogenesis by

activating PlexinB2-ERBB2 signaling in LECs and facilitates tumor

proliferation and migration by activating PlexinB2-MET signaling (7).

CAFs regulate LEC functions and promote metastatic cell implantation

in the lymph nodes by secreting POSTN, which induces VEGF-C-

driven lymphangiogenesis (38). Moreover, cancer-associated

inflammation is likely to promote lymphangiogenesis and facilitate

metastasis. Studies in CC provide evidence for a clinical association

between cyclooxygenase-2 (COX-2) and VEGF-C expression. COX-2,
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an enzyme required for prostaglandin synthesis, is induced by

inflammatory signals in various cell types, including myeloid and

endothelial cells. As a consequence, prostaglandins induce the

expression of VEGF-C and increase tumor lymphangiogenesis (41,

51). Taken together, these data suggest that various molecules in the

TME of CC contribute to tumor lymphangiogenesis. However, it is

unclear whether the increased quantity of lymphatic vessels and

enlarged draining collecting vessels due to lymphangiogenesis and

remodeling are prerequisites for lymphatic metastasis, and the

mechanisms underlying these events require further elucidation.
EMT

EMT refers to the cellular phenotype change, in which epithelial

cells acquire mesenchymal properties and attain motility. The EMT

phenotype promotes attachment to the ECM. It enhances the

migratory potential of an individual tumor cell by reorganizing

actin fibers, which confers mesenchymal traits that are extremely

important for tumor cells to efficiently intravasate into basement

membranes and lymphatic vessels. In fact, infiltrating tumor cells

undergo “partial” or “hybrid” EMT, leading to a mixed phenotype

with both epithelial and mesenchymal traits, which favor collective

over single-cell infiltration (52). In the tumor context, EMT is

induced by various signals, such as transforming growth factor b
(TGF-b), WNT/b-catenin, AKT signaling, inflammation, and

hypoxia, which activate EMT-associated transcription factors

including Snail, Twist, and Zeb family members (49, 53–59).

These transcription factors trigger EMT, converge at the

promotion of E-cadherin repressors, and mediate phenotypic

changes by downregulating epithelial traits while inducing

mesenchymal characteristics (60). Ultimately, the expressed

cytoskeletal-remodeling and ECM-degrading proteases enable

tumor cells to invade the surrounding tissue (61, 62).

Numerous EMT-inducing factors in the TME are associated

with an increased risk of metastasis and a worse prognosis. For

instance, the elevated expression of fatty acid-binding protein 5

(FABP5), nucleolar and spindle associated protein 1 (NUSAP1),

and the oncoprotein cancerous inhibitor of protein phosphatase 2

(CIP2A) in the tumor tissue of CC patients is significantly

associated with lymph node metastasis. Furthermore, the effects

of knockdown or overexpression of these factors in different CC cell

lines demonstrate that these molecules promote EMT by activating

NF-kB signaling, Wnt/b-catenin signaling, and MEK/ERK

signaling pathway, respectively (63–65). The long noncoding

RNAs taurine-upregulated gene 1 (TUG1) and steroid receptor

RNA activator (SRA), microRNA-21 and microRNA-663b

modulate the EMT process and ultimately promote local and

distant metastasis (66–69). Additionally, overexpressed PD-L1

binds directly to integrin b4 (ITGB4) and activates the AKT/

GSK3b signaling pathway, consequently inducing the expression

of Snail (56). PTPRM promotes EMT via the Src-AKT signaling

pathway (49). Indeed, cancer cells are not the only cells that can

induce EMT; CAFs also induce EMT by overexpressing TGF-b1
and stromal cell-derived factor 1 (SDF-1), further promoting the

growth, invasion, and migration of CC (70). Taken together, these
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findings indicate that significant EMT in the TME is involved in

lymphatic metastasis by promoting tumor adhesion and

intravasation into the lymphatic vessel endothelium.
ECM remodeling

Tumor metastasis requires the breakdown of the basement

membrane and remodeling of the ECM. The proteolytic cleavage

and degradation of ECM proteins are coordinated by a number of

enzymes, including serine proteases, matrix metalloproteinases

(MMPs) (71–73), and cysteine cathepsins (74). Alterations in

these ECM molecules can be observed in the TME during tumor

metastasis. For instance, elevated expression of MMPs has been

reported in invasive CC tissues compared with normal cervical

tissues, especially MMP-3 and MMP-9 (75). MMPs play a role in

the degradation of the ECM through direct action. As one of the

cysteine proteases, cathepsin L not only reduces cell adhesion

through cleavage of E-cadherin but also degrades the ECM to

support tumor migration and invasion. Moreover, increased

cathepsin L expression in CC tissues correlates with poorer 5-year

overall cumulative survival in CC patients (74).

These proteolytic enzymes can be secreted by tumor cells.

However, the majority are secreted by resident stromal cells, such as

cancer-associated myofibroblasts (myCAFs) (76). MMP-1 andMMP-2

secreted by CAFs play vital roles in initiating the invasion of malignant

tumors and make tumor intravasation easier by clearing ECM proteins

that block access to the endothelium. CAFs also promote the migration

of tumor cells that express laminin receptors by facilitating the

synthesis of laminin-1, which has been proven to be an efficient

chemoattractant (71). Additionally, POSTN and lysyl oxidase-like 1

(LOXL1) overexpressed by CAFs degrade the basementmembrane and

stromal ECM and initiate the invasion of malignant tumors.

Researchers have found that POSTN-expressing CAFs can impair

lymphatic endothelial barriers by activating the integrin-FAK/Src/

VE-cadherin signaling pathway in lymphatic endothelial cells. The

impaired lymphatic endothelial barrier facilitates tumor cell

intravasation and transendothelial migration, consequently

promoting lymphatic metastasis in CC. Consistently, high stromal

POSTN expression is closely associated with lymph node metastasis

and low overall survival in CC patients (39). Overall, the abnormal

metabolism of ECM components results in disturbed ECM

homeostasis in the TME, which promotes stromal reconstruction

and influences the infiltration of inflammatory components. Then,

active ECM remodeling in the TME offers the necessary prerequisites

for local invasion and distant metastasis by clearing the physiological

barrier. In summary, the above five characteristics of the TME may

promote lymphatic metastasis of CC in different but integrative ways.
Diverse cells and intercellular
interactions in the TME

With further investigation of tumor metastasis, the crucial role

of the TME has gradually been revealed. Primary tumor-
Frontiers in Oncology 05
suppressive immune cells can be converted into tumor-promoting

cells in the TME. Immune cells display significant diversity and

plasticity in response to stimulatory or suppressive cytokines (77).

These immune cells, including T cells, B cells, TAMs, and MDSCs

that undergo phenotypic changes can exert immunosuppressive

effects through their surface receptors and released cytokines,

creating a tolerogenic microenvironment in the tumor-draining

lymph nodes that allows tumors to grow and metastasize

(12) (Figure 2).
T cells

Cellular immunity mediated by T lymphocytes is the

cornerstone of antitumor immunity. However, tumor progression

and metastasis are usually accompanied by a remarkably

compromised antitumor response. The immunosuppressive TME

driven by the close interactions between cancer cells and T

lymphocytes contributes to tumor progression and forms a

barrier that triggers resistance to immunotherapy. As mentioned

before, tumor cells not only block the normal function of effector

immune cells but also recruit suppressive lymphocytes. The

metastatic lymph nodes in CC patients are characterized by the

accumulation of PD-L1+ CD14+ antigen-presenting cells (APCs),

FOXP3+ Treg cells, and PD-L1+ myeloid cells (37, 78).

Furthermore, both CC cells and APCs at the invasive front

express indoleamine 2,3-dioxygenase (IDO), which can recruit

FOXP3+ Treg cells (79, 80). Tumors also promote Treg cell

expansion by secreting exosomes that carry abundant signaling

molecules, such as TGF-b, cyclic GMP-AMP synthase, and 2’-3’-

cGAMP. Then, these exosomes activate the T cell-intrinsic

stimulator of interferon genes (STING) signaling, resulting in

immune suppression and poor outcomes in CC patients (81). In
FIGURE 2

Diverse cells and intercellular interactions in the TME. Tumor cells
recruit suppressive immune cells via released factors including
cytokines, chemokines, and metabolic products, such as IL-6,
CCL22 and IDO etc. Furthermore, these pro-tumor cells disrupt
immune surveillance by suppressing the activity of natural killer cells
and CD8+ T cells.
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addition, the level of Th17 cells gradually increases with tumor

progression, which is associated with an advanced clinical stage and

lymph node metastases (82, 83). Mechanistically, CC cells indirectly

support Th17 cell recruitment by instructing fibroblasts to produce

high levels of CCL20 via the CCAAT/enhancer-binding protein b
pathway (31). Besides, tumor-derived interleukin 6 (IL-6) supports

IL23-mediated Th17 cell expansion (84).

In addition to aiding the immune evasion of tumor cells,

immunosuppressive lymphocytes promote tumor proliferation

and aggression. For instance, Th17 cells can promote

angiogenesis, tumor proliferation, and invasion by secreting IL-17

and activating the NF-kB signaling pathway (85). Treg cells

obtained from CC patients were shown to suppress the immune

function of natural killer cells through the TGF-b pathway in vitro

(86). Collectively, the close interactions between tumors and T cells

result in a suppressive or even protumor immune state.
B cells

Compared with T cells, the role of B cells in antitumor

immunity remains poorly understood. B cells are principally

known for their involvement in humoral immune responses.

However, B cells from primary tumors are functionally different

from those in the lymph node. In CC tumor-bearing mice, the

percentage of B cells in the draining lymph nodes progressively

increased with tumor growth. But there were few B cells in the

primary tumor, and most of the tumor-infiltrating lymphocytes

were T cells. These accumulated B cells were characterized by the

overexpression of PD-L1 and the downregulation of MHC II

molecules and participated in establishing an immunosuppressive

TME. After being shaped by the microenvironment of draining

lymph nodes, B cells promoted tumor growth in an IL-10-

independent manner (87). More recently, studies on CC patients

showed that elevated CD19+ CD5+ CD1d+ Breg cell levels were

associated with lymph node metastasis and might be involved in the

immunoregulation and inhibition of CD8+ T cells. In vitro, after

coculture with Breg cells, the amounts of perforin and granzyme B

secreted by CD8+ T cells were significantly decreased (88).

Conversely, other studies have revealed an antitumorigenic role

for B cells in HPV-related cervical squamous cell carcinomas and a

remarkably beneficial impact on patient outcomes (89). Overall, B

cells in the TME may possess dual functions. Specifically, B cells

within the lymph nodes have potential immunoregulatory

properties, and the ones in the primary CC tissue may play a key

role in tumor control. However, due to the small amounts of B cells

in the primary tumor, they exert limited antitumor effects.
TAMs

In the TME, tumors actively recruit macrophages in various

ways. For instance, CCL2 expressed by CC cells is associated with

TAMs at the tumor site (90). Similarly, CCL8 derived from cancer

cells attracts macrophages by binding to the receptor C-C

chemokine receptor 2 (CCR2) on macrophages, which is related
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to the progression of CC. Notably, in the process of TAMmigration,

the hypoxia-induced transcription factor ZEB1 activates the

transcription of CCL8, which is more important than CCL2 and

macrophage colony-stimulating factor (M-CSF) (91). Macrophages

possess a certain degree of plasticity that is regulated by

microenvironmental stimulation. CC cells induce the polarization

of macrophages into M2-like TAMs, which produce smaller

amounts of proinflammatory cytokines, such as tumor necrosis

factor a (TNF-a), IL-1b, IL-6, and nitrogen oxide (NO), but greater

amounts of anti-inflammatory cytokines, such as IL-10 (92, 93).

Tumor cells induce M2 polarization in macrophages by secreting

various cytokines and growth factors. A blocking study revealed

that M2 differentiation was caused by tumor-produced

prostaglandin E2 (PGE2) and IL-6. However, TGF-b, IL-10,

VEGF, and M-CSF did not play a role (94). Recently, research

has confirmed that the nuclear factor of activated T cell 1

(NFATc1), a member of the Wnt family, is highly expressed in

the CC microenvironment (95). It promotes M2 polarization of

TAMs by regulating IL-10 secretion mediated by the c-myc/PKM2

pathway, thereby promoting tumor growth, invasion, and

metastasis (96). Moreover, TAMs can promote their polarization

toward M2a macrophages by secreting CCL22 in CC (97). In

addition to the abovementioned mechanisms, tumor cells

modulate metabolites to induce TAMs. For example, neuropilin-1

(Nrp-1) accumulation in the hypoxic TME educates recruited

macrophages to polarize into the M2-phenotype (25). Lactate

secreted by CC cells mediates crosstalk between tumor cells and

macrophages, which promotes the secretion of IL-1, IL-10, and IL-

6, and upregulates the expression of hypoxia-induced factor-1,

further promoting a suppressive phenotype (98). Moreover,

researchers have observed a direct transfer of tyrosine kinase with

immunoglobulin and epidermal growth factor homology domains 2

(TIE2) proteins from TIE2-high CC cells to monocytes and

macrophages via exosomes, which promoted increased infiltration

of M2-like TAMs (99). All these findings suggest that CC cells in the

TME actively recruit normal macrophages and induce them to serve

as immunosuppressive TAMs by secreting various cytokines and

manipulating metabolites.

Under the influence of tumor-derived factors, the TME is

dominated by M2-like TAMs (30). Furthermore, TAMs modulate

the immune response to facilitate tumor growth and progression.

M2-like macrophages from HPV16-associated tumor-bearing mice

were shown to induce a regulatory phenotype in CD8+ T

lymphocytes by expressing IL-10 and Foxp3 (30). TAMs also

recruit Treg cells by secreting the chemokine CCL22, and high

expression of CCL22 is associated with poor outcomes in CC

patients (80). PD-L1+ TAMs, which have been identified in

different histological subtypes of CC, exert immunosuppressive

effects by binding to PD-1 expressed on T lymphocytes (100).

Moreover, studies have demonstrated that increased levels of

macrophages in the tumor stroma are significantly associated

with peritumoral lymphangiogenesis and lymphatic metastasis in

CC. TAMs induce lymphangiogenesis by increasing the production

of VEGF-C/D and VEGF-A, which stimulate the division of

preexisting lymphatic endothelial cells (26, 101). Recently, a novel

metastasis-promoting lymphatic pattern was found in CC, wherein
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TAMs encapsulated lymphatic vessels to form an interconnected

network. After the formation of this pattern, the lymphatic vessels

acquired an advantageous metastatic capacity. TAMs adjacent to

lymphatic vessels could secrete IL-10 within the hypoxic TME,

which increased the expression of Sp1 in LECs. As a transcriptional

regulator in LECs that contributes to CC metastasis, Sp1 promoted

the transactivation of CCL1 to facilitate TAMs and tumor cell

recruitment further, forming a positive feedback loop to strengthen

the pattern (102). In short, accumulated TAMs not only cooperate

with CC cells to develop an immunosuppressive TME but also

participate in lymphatic metastasis by inducing lymphangiogenesis.
MDSCs

MDSCs are a group of heterogeneous immature myeloid cells

with blocked maturation in cancer. They are one of the main

driving forces of immunosuppressive TME (16). According to

differences in phenotype and morphology, these cells can be

divided into two subsets: granulocytic MDSCs (G-MDSCs), which

resemble neutrophils, and monocytic MDSCs (Mo-MDSCs), which

are similar to monocytes (103). An increased number of MDSCs in

CC patients was first demonstrated in 2014 (104). Since then, a

growing number of reports have indicated that the number of

MDSCs, especially G-MDSCs, is significantly increased in the

peripheral blood (35, 105–107), lymph nodes (36, 78), and tumor

tissues of CC patients (108–110), which is associated with visceral

or lymph node metastases (35, 78). In mouse models, MDSC

depletion by splenectomy or anti-Gr-1-neutralizing antibody

administration not only inhibited visceral organ metastasis and

premetastatic niche formation but also prolonged the survival of

CC-bearing mice (35, 104, 108, 109). In the TME of CC, tumor cells

secrete various molecules to recruit MDSCs from immature bone

marrow cells, including granulocyte colony-stimulating factor (G-

CSF) (35, 36, 107, 108), IL-6 (111), and highly expressed C-X-C

chemokine receptor 2 (CXCR2) chemokines, such as CXCL1,

CXCL2, CXCL3, CXCL5, and CXCL8 (110).

MDSCs can inhibit T-cell proliferation and cytotoxic function

by suppressing IL-2 and interferon g (IFN-g) production in CD4+ T

cells and IFN-g production in CD8+ T cells (105, 106, 109).

Activated MDSCs secrete immunosuppressive factors, such as

inducible nitric oxide synthase (iNOS), reactive oxygen species

(ROS), IDO, and arginase I (Arg-1) to inhibit CD8+ T cells (28,

106, 112). It remains unclear by what mechanism and to what

degree these factors derived from MDSCs lead to T-cell

suppression. However, it is known that these factors lead to

abnormal amino acid metabolism and the production of NO,

resulting in diminished T-cell proliferation and impaired antigen

presentation and recognition by CD8+ T cells (113). Using an HPV-

mediated CC mouse model, researchers demonstrated that MDSCs

mediated immunosuppressive activity via IL-6/JAK/STAT3

signaling. STAT3 activation mediated by the proinflammatory

cytokine IL-6 might be responsible for the expansion of MDSCs,

which then accelerated tumor growth (112). Moreover, MDSC-

derived IL-6 was reported to be partly involved in stimulating
Frontiers in Oncology 07
tumor cell proliferation (111, 114). Additionally, MDSCs interact

with B lymphocytes in the TME of CC via the B cell activating factor

(BAFF) expressed on the surface of MDSCs. By acting on the BAFF

receptor expressed by B cells, MDSCs induce B cells to differentiate

into Breg cells. Furthermore, IL-10 secreted by Breg cells

can promote STAT3 phosphorylation and activate MDSCs, thus

establishing a positive feedback loop. The constant differentiation of

Breg cells and activation of MDSCs induce an immunosuppressive

state and enable tumor immune escape in CC patients (28).

Studies of mouse models have revealed that MDSCs also

contribute to premetastatic niche formation (36), tumor

angiogenesis (107), and the enhancement of the stem-like

properties of cancer cells (108), all of which facilitate tumor

metastasis (35). For instance, MDSCs have been reported to

enhance the stemness of CC cells by producing PGE2. MDSC

depletion inhibited the induction of cancer stem-like cells and

enhanced the efficacy of chemotherapy in experimental models of

CC (108). MDSCs also stimulate tumor angiogenesis by secreting

Bv8, a potent proangiogenic factor (104, 107). In summary, MDSCs

utilize several mechanisms to enhance the proliferation and

metastasis of CC. After being recruited to the TME, they exert

powerful immunosuppressive effects mainly by suppressing T-

cell function.
Therapeutic strategies for targeting
the TME of cervical cancer

Over the past several years, standard treatments for patients with

advanced CC have included radiotherapy and chemotherapy, but their

prognosis has been disappointing (115). Therefore, researchers focus

on exploring new treatment options, among which immunotherapy is

considered promising. The importance of immunotherapy has been

highlighted in recent years as further insights into the interactions

between tumors and immune cells in the TME have been reported. To

date, three immunotherapeutic drugs have been approved by the Food

and Drug Administration (FDA) for treating CC: pembrolizumab,

tisotumab vedotin, and nivolumab. Furthermore, various

immunotherapeutic strategies are being developed to reactivate the

antitumor immune responses or remodel the immunosuppressive

microenvironment. Therefore, we briefly summarize the progress in

therapeutic strategies targeting the TME of CC.
Targeting immune checkpoint molecules

In particular, the upregulation of immune checkpoint molecules

in tumor tissues, such as PD-L1 and PD-1, promotes immune

escape by downregulating T-cell function. Anti-PD-1 therapies

have been demonstrated to enhance the disease-free progression

and survival rates of CC patients (116, 117). Although the FDA has

approved several anti-PD-L1 antibodies for tumor immunotherapy,

none have yet been approved for treating CC. A clinical trial

performed with patients with recurrent or metastatic CC

indicated that the anti-PD-L1 monoclonal antibody (mAb)
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socazolimab has durable safety and efficacy (118). Several other

trials have demonstrated the therapeutic benefit of immune

checkpoint inhibitors (ICIs) in CC, as reviewed in (119, 120).

However, ICI monotherapy in CC yields limited durable

responses. A few relevant clinical trials are ongoing to find more

effective therapies or combination regimens. Recently, a

bifunctional agent bintrafusp a was developed to target PD-L1

and TGF-b simultaneously, and one CC patient demonstrated a

durable complete response in this phase I clinical trial (121). Rather

than solely targeting immunosuppression in the TME or enhancing

effector immune cells, combining multiple strategies may achieve

better outcomes. The preliminary data of a phase I clinical trial

combining an anti-PD-L1 mAb (durvalumab) with anti-cytotoxic

T-lymphocyte associated protein 4 (CTLA4) (tremelimumab) and

metronomic chemotherapy reported that one CC patient achieved a

complete response and four patients achieved stable disease, and a

phase II trial is currently ongoing (122). Except for the PD-1/PD-L1

axis and CTLA4, other therapeutic antibodies aiming to activate T

cells and eliminate the inhibition of T-cell activation are being

tested. For example, single-agent human agonistic mAbs specific for

OX40 and 4-1BB, such as ivuxolimab or utomilumab, have

demonstrated safety and preliminary antitumor activity in CC

patients. OX40 and 4-1BB belong to the tumor necrosis factor

receptor superfamily and play important roles in T-cell activation,

proliferation, and survival. Costimulating these molecules induces

clonal expansion of CD4+ and CD8+ T cells, as well as increased

cytotoxicity of T cells (123). Nevertheless, no such treatment has yet

been approved for application in CC.
Targeting suppressive immune cells

Due to the existence of suppressive immune cells in the TME,

compromised efficacy or resistance to ICI therapy may occur.

Therefore, therapeutic approaches targeting suppressive immune

cells, such as MDSCs and TAMs, are being tested for their capacity

to improve sensitivity to ICIs. In fact, the antitumor effects of anti-

PD-1 therapy are enhanced by inhibiting the main chemokine

receptor CXCR2 that recruits MDSCs in human pancreatic

cancer (124). Research on CC also indicates that treatment with a

CXCR2 antagonist weakens the proliferation and migration of CC

cells (125). Additionally, the approaches targeting the CSF-1/CSF-

1R axis of TAMs are being tested in mouse models. CSF-1R

inhibition attenuates the turnover rate of TAMs while increasing

the number of CD8+ T cells that infiltrate tumor tissue (126).

Although these are results from only cellular and animal

experiments, they bring forward new ideas for the treatment of

CC. As mentioned before, various metabolites derived from

suppressive immune cells, such as Arg-1 and IDO, contribute to

the impaired function of effector T cells. Thus. limiting certain

metabolites holds promise. Recently, the arginase inhibitor

INCB001158 was tested in a clinical trial for metastatic solid

tumors treatment (NCT02903914). Another immunosuppressive

metabolite, IDO, within the TME is also speculated to be a worthy

target for intervention. Treating IL-6 knockout mice with IDO

inhibitors was shown to inhibit IDO expression. Furthermore,
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combination therapy with a therapeutic vaccine resulted in

decreased intratumoral polymorphonuclear MDSCs and Treg

cells, supporting IL-6 and IDO as immune-metabolic adjuvants

for immunotherapies against CC (127). Considering this preclinical

research data, it appears that targeting the suppressive immune cells

and metabolites within the TME can be used in combination

therapies to boost tumor-specific immunity, further improving

the therapeutic antitumor effect.
Anti-lymphangiogenesis and
anti-inflammatory therapy

Currently, chemotherapy in combination with bevacizumab, an

antiangiogenic molecule, is the first-line therapy for recurrent or

metastatic CC. In contrast, the search for a therapeutic agent that

explicitly inhibits lymphangiogenesis has yet to achieve a

breakthrough. As lymphangiogenesis and lymphatic remodeling

are functionally important in tumor progression, they represent

potential targets for treating metastatic CC. The VEGF-C/VEGFR-3

signaling axis is the most prominent and specific pathway that

induces tumor lymphangiogenesis (14, 26, 38, 41). Blocking VEGF-

C/VEGFR-3 has been shown to reduce tumor lymphangiogenesis

and metastasis in experimental models (128). However, due to the

scarcity of relevant studies in CC, the exact effects of targeting

lymphangiogenesis are still unclear, and more research is needed.

Since chronic inflammation is another essential contributor to

tumorigenesis and metastasis, anti-inflammatory drugs may be a

promising tool. The combined effect of nonsteroidal anti-

inflammatory drugs with chemotherapy and radiotherapy has

increased sensitivity in patients with locally advanced CC.

Therapeutic targeting of the COX/PGE2 axis in CC has been

reviewed (129). In addition, several anti-inflammatory drug

candidates can potentially be therapeutic agents for CC, but

further experimental validations are needed (130). Currently,

lymphangiogenesis and inflammation-inhibiting therapies are

only used as supplements to chemoradiotherapy and

immunotherapy. The interactions of various cells in the TME are

so complicated that the effect of any single therapy is limited. An

increasing number of clinical trials are focusing on novel

combination therapies, which are expected to significantly

improve the outcome and prognosis of patients with recurrent or

metastatic CC.
Nanomaterial-based photodynamic therapy

Nanomaterial-based photodynamic therapy (PDT) has emerged

as a novel noninvasive and highly selective treatment for cancer.

Photosensitizers enriched in tumor sites are activated by light to

sensitize endogenous molecular oxygen and generate cytotoxic ROS,

which induces apoptosis or necrosis in tumor cells. However, PDT

efficiency is significantly limited because ROS-mediated therapy

heavily depends on O2, while TME is hypoxic. A novel nanoagent,

copper ferrite nanospheres (CFNs), has been reported to exhibit

enhanced ROS production. CFNs reduce the hypoxia and antioxidant
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activity of tumors by catalyzing the high content of H2O2 in the TME

to produce O2 and consume glutathione, improving the effects of

PDT. Moreover, CFNs have shown considerable anticancer effects in

vitro and in vivo. After treating xenograft CC cell (U14) tumor

models with CFNs, tumor tissues were damaged, and tumor growth

was apparently inhibited (131). Recently, an oxygen-independent

supramolecular photodynamic agent was developed to oxidize water

to generate highly cytotoxic hydroxyl radicals directly. This agent

exhibited superb photocytotoxicity even under severely hypoxic

environments and excellent antitumor efficacy in HeLa tumor-

bearing mouse models (132).

In addition to nanoparticles that kill cancer cells via ROS, other

nanoparticles with different functions have been developed. A

synthetic therapeutic antibody based on molecularly imprinted

nanoparticles (MIP-NPs) has been designed to abrogate cell-cell

adhesion. The abolishment of cell adhesion by these antibodies

inhibits primary tumor growth and metastatic progression,

although the mechanism is not completely understood.

Remarkably, when applied to CC (HeLa) cells, MIP-NPs disrupted

preformed tumor spheroids and inhibited cancer cell invasion in

vitro. Moreover, the dense ECM in the TME makes it difficult for

drugs to penetrate tumors. MIPs, an antibody against cadherins, can

help to loosen cells to allow more effective drug penetration (133).

Because of the high tumor interstitial pressure (TIP), delivering

nanodrugs to tumors can be challenging. Considering this

situation, researchers fabricated the photocatalytic drug AWS@M,

which effectively reduced TIP levels, to enhance intratumoral drug

delivery and inhibit tumor growth in U14 tumor-bearing mice (134).

Nanomaterials are a prospective agent in tumor therapy, with new

nanoagents constantly being developed to achieve excellent

biocompatibility and higher selectivity. The combination of

multiple approaches, including immunotherapy, targeted therapy,

and PDT, is expected to improve tumor-targeting efficiency and

capability and bring hope to cancer patients.
Conclusion and future perspectives

Over the past decade, the field has reached a consensus on the

critical roles of the TME in tumor progression and metastasis.

Generally, CC cells actively recruit immunosuppressive cells, such as

Th17 cells, Treg cells, TAMs, and MDSCs, into the TME. These cells

hamper immunosurveillance and weaken therapeutic effects by

participating in multiple pathological processes. Recent studies have

shown that tumor-derived exosomes mediate nonrandom

dissemination patterns by biasing metastasis to different target

organs due to their affinity for specific recipient cells. However,

evidence in CC is still scarce, and it is difficult to determine how

CC cells preferentially metastasize to the lymph nodes. Many

significant issues regarding premetastatic niche formation,

dynamics, and lymphangiogenesis in CC remain unanswered.

Regarding the mechanism research of tumor-immune cell

interactions involved in the lymphatic metastasis of CC, some

limitations must be addressed. First, most preclinical studies have

not specifically tested metastatic CC or with lymphatic metastasis as

an end-point. Of note, most CC-related tumor biology studies have
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explored only the effects of certain types of immune cells in tumor

progression. An in-depth exploration of the underlying mechanisms is

still needed. Second, the degree to which lymphangiogenesis directly

contributes to lymphatic metastasis and the mechanism through

which this occurs needs to be defined. Third, due to the significant

heterogeneity among tumor cells and immune cells in the TME, as

well as the multidirectional and pleiotropic effects of cytokines and

growth factors, it is difficult to determine the roles played by individual

immune cell subsets in the overall tumor progression process.

In summary, a part of the complex interactions between tumors

and various immune cells has been gradually unveiled, but a large part

remains unknown, and more research is needed. A better

understanding of the mechanisms driving tumor lymphatic

metastasis will contribute to more precise targeting of vital pathways

or molecules, enabling better clinical outcomes for CC patients.
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